
Fundamental Journal of Mathematics and Applications, 1 (1) (2018) 61-68

Fundamental Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/fujma

Some new Pascal sequence spaces

Harun Polata*

aDepartment of Mathematics, Faculty of Science and Arts, Muş Alparslan University, Muş, Turkey
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Abstract

The main purpose of the present paper is to study of some new Pascal sequence spaces
p∞, pc and p0. New Pascal sequence spaces p∞, pc and p0 are found as BK-spaces and
it is proved that the spaces p∞, pc and p0 are linearly isomorphic to the spaces l∞, c and
c0 respectively. Afterward, α-, β - and γ-duals of these spaces pc and p0 are computed
and their bases are consructed. Finally, matrix the classes (pc : lp) and (pc : c) have been
characterized.

1. Preliminaries, background and notation

By w, we shall denote the space all real or complex valued sequences. Any vector subspace of w is called a sequence space. We

shall write l∞, c, and c0 for the spaces of all bounded, convergent and null sequence are given by l∞ =

{
x = (xk) ∈ w : sup

k→∞

|xk|< ∞

}
,

c =
{

x = (xk) ∈ w : lim
k→∞

xk exists
}

and c0 =

{
x = (xk) ∈ w : lim

k→∞
xk = 0

}
. Also by bs, cs, l1 and lp we denote the spaces of all bounded,

convergent, absolutely convergent and p-absolutely convergent series, respectively.
A sequence space λ with a linear topology is called an K-space provided each of the maps pi : λ → C defined by pi (x) = xi is continuous
for all i ∈ N; where C denotes the set of complex field and N= {0,1,2, ...}. An K-space λ is called an FK- space provided λ is a complete
linear metric space. An FK-space provided whose topology is normable is called a BK- space [1].
Let X , Y be any two sequence spaces and A = (ank) be an infinite matrix of real numbers ank, where n, k ∈ N. Then, we write Ax = ((Ax)n),
the A-transform of x, if An (x) = ∑k ankxk converges for each n ∈ N. If x ∈ X implies that Ax ∈ Y , then we say that A defines a matrix
transformation from X into Y and denote it by A : X → Y . By (X : Y ) we denote the class of all infinite matrices A such that A : X → Y . For
simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞.
Let F denote the collection of all finite subsets on N and K, N⊂ F . The matrix domain XA of an infinite matrix A in a sequence space X is
defined by

XA = {x = (xk) ∈ w : Ax ∈ X} (1.1)

which is a sequence space.
The approach constructing a new sequence space by means of the matrix domain of a particular limitation method was used by authors
[2, 3, 4, 5, 6, 7, 8]. They introduced the sequence spaces (c0)T r = tr

0 and (c)T r = tr
c in [2], (c0)Er = er

0 and (c)Er = er
c in [3], (c0)C = c0 and

cC = c in [4],
(
lp
)

Er = er
p in [5], (l∞)Rt = rt

∞, cRt = rt
c and (c0)Rt = rr

0 in [6],
(
lp
)

C = Xp in [7] and (lp)Nq in [8] where T r, Er, C, Rt and
Nq denote the Taylor, Euler, Cesaro, Riesz and Nörlund means, respectively.
Following [2, 3, 4, 5, 6, 7, 8], this way, the purpose of this paper is to introduce the new Pascal sequence spaces p∞, pc and p0 and derive
some results related to those sequence spaces. Furthermore, we have constructed the basis and computed the α-, β - and γ-duals of the spaces
p∞, pc and p0. Finally, we have characterized the matrix mappings from the space pc to lp and from the space pc to c.
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2. The Pascal matrix of inverse formula and Pascal sequence spaces

Let P denote the Pascal means defined by the Pascal matrix [9] as is defined by

P = [pnk] =

{ ( n
n−k
)
,(0≤ k ≤ n)

0, (k > n)
,(n,k ∈ N)

and the inverse of Pascal’s matrix Pn = [pnk] [10] is given by

P−1 = [pnk]
−1 =

{
(−1)n−k( n

n−k
)
, (0≤ k ≤ n)

0 , (k > n)
,(n,k ∈ N). (2.1)

There is some interesting properties of Pascal matrix. For example; we can form three types of matrices: symmetric, lower triangular, and
upper triangular, for any integer n > 0. The symmetric Pascal matrix of order n is defined by

Sn = (si j) =
(

i+ j−2
j−1

)
i, j = 1,2, ....,n. (2.2)

We can define the lower triangular Pascal matrix of order n by

Ln = (li j) =

{ ( i−1
j−1
)
,(0≤ j ≤ i)

0, ( j > i)
, (2.3)

and the upper triangular Pascal matrix of order n is defined by

Un = (ui j) =

{ ( j−1
i−1
)
,(0≤ i≤ j)

0, ( j > i)
. (2.4)

We notice that Un = (Ln)
T , for any positive integer n.

i. Let Sn be the symmetric Pascal matrix of order n defined by (2.1), Ln be the lower triangular Pascal matrix of order n defined by (2.3), and
Un be the upper triangular Pascal matrix of order n defined by (2.4), then Sn = LnUn and det(Sn) = 1 [11].
ii. Let A and B be n×n matrices. We say that A is similar to B if there is an invertible n×n matrix P such that P−1AP = B [12].
iii. Let Sn be the symmetric Pascal matrix of order n defined by (2.2), then Sn is similar to its inverse S−1

n [11].
iv. Let Ln be the lower triangular Pascal matrix of order n defined by (2.3), then L−1

n = ((−1)i− jli j) [13].
We wish to introduce the Pascal sequence spaces p∞, pc and p0, as the set of all sequences such that P-transforms of them are in the spaces
l∞, c and c0, respectively, that is

p∞ =

{
x = (xk) ∈ w : sup

n

∣∣∣∣∣ n

∑
k=0

(
n

n− k

)
xk

∣∣∣∣∣< ∞

}
,

pc =

{
x = (xk) ∈ w : lim

n→∞

n

∑
k=0

(
n

n− k

)
xk exists

}

and

p0 =

{
x = (xk) ∈ w : lim

n→∞

n

∑
k=0

(
n

n− k

)
xk = 0

}
.

With the notation of (1.1), we may redefine the spaces p∞, pc and p0 as follows:

p∞ = (l∞)P, pc = (c)P and p0 = (c0)P . (2.5)

If λ is an normed or paranormed sequence space, then matrix domain λP is called an Pascal sequence space. We define the sequence y = (yn)
which will be frequently used, as the P-transform of a sequence x = (xn) i.e.,

yn =
n

∑
k=0

(
n

n− k

)
xk, (n ∈ N) . (2.6)

It can be shown easily that p∞, pc and p0 are linear and normed spaces by the following norm:

‖x‖p0
= ‖x‖pc

= ‖x‖p∞
= ‖Px‖l∞ . (2.7)

Theorem 2.1. The sequence spaces p∞, pc and p0 endowed with the norm (2.7) are Banach spaces.
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Proof. Let sequence {xt}= {x(t)0 ,x(t)1 ,x(t)2 , ...} at p∞ a Cauchy sequence for every fixed t ∈ N. Then, there exists an n0 = n0(ε) for every
ε > 0 such that ‖xt − xr‖

∞
< ε for all t, r > n0. Hence, |P(xt − xr)|< ε for all t, r > n0 and for each k ∈ N.

Therefore, {Pxt
k} = {

(
Px0)

k ,
(
Px1)

k ,
(
Px2)

k , ...} is a Cauchy sequence in the set of complex numbers C. Since C is complete, it is
convergent say lim

t→∞
(Pxt)k = (Px)k and lim

m→∞
(Pxm)k = (Px)k for each k ∈ N. Hence, we have

lim
m→∞

∣∣Pxt
k− xm

k
∣∣= ∣∣P(xt

k− xk
)
−P(xm

k − xk)
∣∣≤ ε for all n≥ n0.

This implies that ‖xt − xm‖→ ∞ for t, m→ ∞. Now, we should that x ∈ p∞. We have

‖x‖
∞
= ‖Px‖

∞
= sup

n

∣∣∣∣∣ n

∑
k=0

(
n

n− k

)
xk

∣∣∣∣∣= sup
n

∣∣∣∣∣ n

∑
k=0

(
n

n− k

)
(xk− xt

k + xt
k

∣∣∣∣∣
≤ sup

n

∣∣P(xt
k− xk

)∣∣+ sup
n

∣∣Pxt
k
∣∣

≤
∥∥xt − x

∥∥
∞
+
∣∣Pxt

k
∣∣< ∞

for t, k ∈ N. This implies that x = (xk) ∈ p∞. Thus, p∞ the space is a Banach space with the norm (2.7). It can be shown that p0 and pc
are closed subspaces of p∞ which leads us to the consequence that the spaces p0 and pc are also the Banach spaces with the norm (2.7).
Furthermore, since p∞ is a Banach space with continuous coordinates, i.e.,

∥∥P
(
xt

k− x
)∥∥

∞
→ ∞ imples

∣∣P(xt
k− xk

)∣∣→ ∞ for all k ∈ N, it is
also a BK-space.

Theorem 2.2. The sequence spaces p∞, pc and p0 are linearly isomorphic to the spaces l∞, c and c0 respectively, i.e p∞
∼= l∞, pc ∼= c and

p0 ∼= c0.

Proof. To prove the fact p0 ∼= c0, we should show the existence of a linear bijection between the spaces p0 and c0. Consider the transformation
T defined, with the notation (2.6), from p0 to c0. The linearity of T is clear. Further, it is trivial that x = 0 whenever T x = 0 and hence T is
injective.
Let y ∈ c0. We define the sequence x = (xk) as follows:

xk =
k

∑
i=0

(−1)k−i
(

k
k− i

)
yi.

Then

lim
n→∞

(Px)n = lim
n→∞

n

∑
k=0

(
n

n− k

) k

∑
i=0

(−1)k−i
(

k
k− i

)
yi = lim

n→∞
yn = 0.

Thus, we have that x ∈ p0. In addition, note that

‖x‖p0
= sup

n∈N

∣∣∣∣∣ n

∑
k=0

(
n

n− k

) k

∑
i=0

(−1)k−i
(

k
k− i

)
yi

∣∣∣∣∣= sup
n∈N
|yn|= ‖y‖c0

< ∞.

Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which therefore says us that the spaces p0 to c0 are
linearly isomorphic. In the same way, it can be shown that pc and p∞ are linearly isomorphic to c and l∞, respectively, and so we omit the
detail.

Before giving the basis of of the sequence spaces pc and p0, we define the Schauder basis. A sequence (bn)n∈N in a normed sequence space
λ is called a Schauder basis (or briefly basis) [14], if for every x ∈ λ there is a unique sequence (αn) of scalars such that

lim
n→∞
‖x− (α0x0 +α1x1 + ...+αnxn)‖= 0.

In the following theorem, we shall give the Schauder basis for the spaces pc and p0.

Theorem 2.3. Let k ∈ N a fixed natural number and b(k) =
{

b(k)n

}
n∈N

where

b(k)n =

{
0, (0≤ n < k)
(−1)n−k( n

n−k
)
, (n≥ k

.

Then the following assertions are true:
i. The sequence

{
b(k)n

}
is a basis for the space p0 and every x ∈ p0 has a unique representation of the from x = ∑k λkb(k) where

λk = (Px)k for all k ∈ N.

ii. The set
{

e,b(0),b(1), ...,b(k), ...
}

is a basis for the space pc and every x ∈ pc has a unique representation of the form x = le +

∑k (λk− l)b(k), where l = lim
k→∞

(Px)k and λk = (Px)k for all k ∈ N.
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3. The α−, β − and γ− duals of the spaces p∞, pc and p0

In this section, we state and prove the theorems determining the α-, β - and γ-duals of the sequence spaces p∞, pc and p0. For the sequence
spaces X and Y define the set S (X ,Y ) by

S (X ,Y ) = {z = (zk) ∈ w : xz = (xkzk) ∈ Y for all x ∈ X} .

The α-, β - and γ-duals of the sequence spaces λ , which are respectively denoted by λ α , λ β and λ γ are defined by Garling [15] , by
λ α = S (λ , l1) , λ β = S (λ ,cs) and λ γ = S (λ ,bs). We shall begin with the Lemmas due to Stieglitz and Tietz [16], which are needed in the
proof of the Theorems 3.4-3.6.

Lemma 3.1. A ∈ (c0 : l1) = (c : l1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑k∈K
ank

∣∣∣∣∣< ∞. (3.1)

Lemma 3.2. A ∈ (c0 : c) if and only if

sup
n

∑
k
|ank|< ∞, (3.2)

lim
n→∞

ank = αk, (k ∈ N). (3.3)

Lemma 3.3. A ∈ (c0 : l∞) if and only if (3.2) holds.

Theorem 3.4. The α− dual of the sequence spaces p∞, pc and p0 is the set

D =

{
a = (ak) ∈ w : sup

K∈F
∑
n

∣∣∣∣∣∑k∈K
(−1)n−k

(
n

n− k

)
an

∣∣∣∣∣< ∞

}
.

Proof. Let a = (an) ∈ w and consider the matrix B whose rows are the products of the rows of the matrix P−1 and sequence a = (an) .
Bearing in mind the relation (2.3), we immediately derive that

anxn =
n

∑
k=0

(−1)n−k
(

n
n− k

)
anyk =

n

∑
k=0

bnkyk = (By)n , (n ∈ N) . (3.4)

Therefore by (3.4) we observe that that ax = (anxn) ∈ l1 whenever x ∈ p∞, pc and p0 if and only if By ∈ l1 whenever y ∈ l∞, c, and c0. Then,
we derive by Lemma 3.1 that

sup
K∈F

∑
n

∣∣∣∣∣∑k∈K
(−1)n−k

(
n

n− k

)
an

∣∣∣∣∣< ∞

which yields the consequences that {p∞}α = {pc}α = {p0}α = D.

Theorem 3.5. Consider the sets D1, D2 and D3 defined as follows:

D1 =

{
a = (ak) ∈ w : sup

n∈N

n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

∣∣∣∣∣< ∞

}
,

D2 =

{
a = (ak) ∈ w :

∞

∑
i=k

(−1)i−k
(

i
i− k

)
ai exists for each k ∈ N

}
,

and

D3 =

{
a = (ak) ∈ w : lim

n→∞

n

∑
k=0

n

∑
i=k

(−1)i−k
(

i
i− k

)
ai exists

}
.

Then {p0}β = D1∩D2, {pc}β = D1∩D2∩D3 and {p∞}β = D2∩D3.

Proof. We give the proof only for the space p0. Since the proof may be given by a similar way for the spaces pc and p∞, we omit it. Consider
the equation

n

∑
k=0

akxk =
n

∑
k=0

[
n

∑
i=k

(−1)i−k
(

i
i− k

)
yi

]
ak =

n

∑
k=0

[
n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

]
yk = (Dy)n , (3.5)

where
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D = (dnk) =

{
∑

n
i=k(−1)i−k( i

i−k
)
ai, (0≤ k ≤ n)

0 , (k > n)
,(n,k ∈ N). (3.6)

Thus, we deduce from Lemma 3.2 with (3.5) that ax = (akxk) ∈ cs whenever x = (xk) ∈ p0 if and only if Dy ∈ c whenever y = (yk) ∈
c0. Therefore, using relations (3.2) and (3.3), we conclude that limn→∞ dnk exists fo each k ∈ N and

sup
n∈N

n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

∣∣∣∣∣< ∞

which shows that {p0}β = D1∩D2.

Theorem 3.6. The γ− dual of the sequence spaces p∞, pc and p0 are D1.

Proof. We give the proof only for the space p0. Consider the equality

∣∣∣∣∣ n

∑
k=0

akxk

∣∣∣∣∣ =

∣∣∣∣∣ n

∑
k=0

ak

[
k

∑
i=0

(−1)k−i
(

k
k− i

)
yi

]∣∣∣∣∣
=

∣∣∣∣∣ n

∑
k=0

[
n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

]
yk

∣∣∣∣∣
≤

n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

∣∣∣∣∣ |yk| .

Taking supremum over n ∈ N, we get

sup
n∈N

∣∣∣∣∣ n

∑
k=0

akxk

∣∣∣∣∣ ≤ sup
n∈N

(
n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

∣∣∣∣∣ |yk|
)

≤ ‖y‖c0
sup

n

(
n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

∣∣∣∣∣
)
≤ ∞.

This means that a = (ak) ∈ {p0}γ . Hence,

D1 ⊂ {p0}γ . (3.7)

Conversely, let a = (ak) ∈ {p0}γ and x ∈ p0. Then one can easily see that

(
n

∑
k=0

[
n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

]
yk

)
∈ l∞

whenever ax = (akxk) ∈ bs. This implies that the matrix D given at the (3.6) is in the class (c0 : l∞). Hence, the condition

sup
n

(
n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ai

∣∣∣∣∣
)

< ∞

is satisfied, which implies that a = (ak) ∈ D1. In other words,

{p0}γ ⊂ D1. (3.8)

Therefore, by combining inclusions (3.7) and (3.8), we estahlish that the γ-dual of the sequence spaces p0 is D1, which completes the
proof.
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4. Some matrix mappings related to Pascal sequence spaces

Lemma 4.1. [16, p. 57] The matrix mappings between BK-spaces are continuous.

Lemma 4.2. [16, p. 128] A ∈
(
c : lp

)
if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑k∈K
ank

∣∣∣∣∣
p

< ∞, 1≤ p < ∞. (4.1)

Theorem 4.3. A ∈
(

pc : lp
)

if and only if the following conditions are satisfied: For 1≤ p < ∞,

sup
K∈F

∑
k

∣∣∣∣∣∑k∈K

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

∣∣∣∣∣
p

< ∞ , (4.2)

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani exists for all k, n ∈ N, (4.3)

∑
k

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani converges for all n ∈ N, (4.4)

sup
m∈N

m

∑
k=0

∣∣∣∣∣ m

∑
i=k

(−1)i−k
(

i
i− k

)
ani

∣∣∣∣∣< ∞ , n ∈ N, (4.5)

and for p = ∞, conditions (4.3) and (4.5) are satisfied and

sup
n∈N

n

∑
k=0

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

∣∣∣∣∣< ∞. (4.6)

Proof. Let 1≤ p <+∞. Assume that conditions (4.2) - (4.6) are satisfied and take any x ∈ pc. Then (ank) ∈ (pc)
β for all k, n ∈ N, which

implies that Ax exists. We define the matrix G = (gnk) with

gnk =
n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

for all k,n ∈ N. Then, since condition (4.1) is satisfied for the matrix G, we have G ∈
(
c : lp

)
. Now consider the following equality obtained

from the s. th partial sum of the series ∑k ankxk:

s

∑
k=0

ankxk =
s

∑
k=0

s

∑
i=k

(−1)i−k
(

i
i− k

)
aniyk, m,n ∈ N. (4.7)

Therefore, we derive from (4.7) as s→ ∞ that

∞

∑
k=0

ankxk =
∞

∑
k=0

n

∑
i=k

(−1)i−k
(

i
i− k

)
aniyk, n ∈ N. (4.8)

Whence taking lp-norm we get

‖Ax‖lp
= ‖Gy‖lp

< ∞. (4.9)

This means that A ∈
(

pc : lp
)
. Now let p = ∞. Assume that conditions (4.2) - (4.6) are satisfied and take any x ∈ pc. Then (ank) ∈ (pc)

β for
all k, n ∈ N, which implies that Ax exists. Whence taking l∞-norm (4.8)

‖Ax‖l∞ = sup
n∈N

∣∣∣∣∣∑k
gnk

∣∣∣∣∣≤ ‖y‖l∞ sup
n∈N

∑
k
|gnk|< ∞.

Then, we have A ∈ (pc : l∞).
Conversely, assume that A ∈

(
pc : lp

)
. Then, since pc and lp are BK-spaces, it follows from Lemma 4 that there exists a real constant K > 0

such that

‖Ax‖lp
= K ‖x‖hc

(4.10)

for all x ∈ pc. Since inequality (4.10) also holds for the sequence

x = (xk) = ∑
k∈F

b(k) ∈ pc,
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where

b(k) = {b( k)
n }=

{
0, (0≤ n < k)

(−1)n−k( n
n−k
)
, (n≥ k

for every fixed k ∈ N. We have

‖Ax‖lp
=

[
∑
n

∣∣∣∣∣∑k∈F

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

∣∣∣∣∣
p] 1

p

≤ K ‖x‖pc
= K,

which shows the necessity of (4.2).

Theorem 4.4. A ∈ (pc : c) if and only if conditions (4.3), (4.5) and (4.6) are satisfied,

lim
n→∞

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani = αk for all k ∈ N (4.11)

and

lim
n→∞

∑
k

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani = α . (4.12)

Proof. Assume that A satisfies conditions (4.3), (4.5), (4.6), (4.11) and (4.12). Let us take an arbitrary an x = (xk) in pc such that xk→ l as
k→ ∞. Then Ax exists, and it is trivial that the sequence y = (yk) associated with the sequence x = (xk) by relation (2.3) belongs to c and is
such that yk→ l as k→ ∞. At this stage, it follows from (4.11) and (4.6) that

k

∑
j=0

∣∣α j
∣∣≤ sup

n∈N
∑

j

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

∣∣∣∣∣< ∞

for every n ∈ N. This yield αn ∈ l1. Considering (4.8), we write

∑
k

ankxk = ∑
k

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani (yk− l)+ l ∑

k

n

∑
i=k

(−1)i−k
(

i
i− k

)
aniyk. (4.13)

In this situation, letting n→ ∞ in (4.13), we establish that the first term on the right-hand side tends to ∑k αk (yk− l) by (4.6) and(4.11), and
the second term tends to lα by (4.11). Taking these facts into account, we deduce from (4.13) as n→ ∞ that

(Ax)n→∑
k

αk (yk− l)+ lα

which shows that A ∈ (pc : c).
Conversely, assume that A ∈ (pc : c). Then, since the inclusion c⊂ l∞ holds the necessity of (4.3), (4.5) and (4.6) is immediately obtained
from

sup
n

∑
k

∣∣∣∣∣ n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

∣∣∣∣∣< ∞.

To prove the necessity of (4.11) consider the sequence x = b(k) =
{

b(k)n

}
n∈N

in pc. Where

b(k) = {b( k)
n }=

{
0, (0≤ n < k)

(−1)n−k( n
n−k
)
, (n≥ k

for every fixed k ∈ N. Since Ax exists and belongs to c for every x ∈ pc, one can easily see that

Ab(k) =

{
n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

}
n∈N

for each k ∈ N, which yields the necessity of (4.11).
Similarly, by setting x = e = (1,1, ...) in (4.8), we obtain

Ax =

{
∑
k

n

∑
i=k

(−1)i−k
(

i
i− k

)
ani

}
n∈N

,

which belongs to the space c, and this shows the necessity of (4.12). This step conludes the proof.
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[3] B. Altay, F. Başar, Some Euler Sequence Spaces of Non-Absolute Type, Ukrainian Math. J. 57 (2005), 1-17.
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