Some new Pascal sequence spaces

Harun Polat ${ }^{\mathbf{t}^{*}}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science and Arts, Muş Alparslan University, Muş, Turkey
*Corresponding author E-mail: h.polat@alparslan.edu.tr

Article Info

Keywords: α-, β - and γ-duals and basis of sequence, Matrix mappings, Pascal sequence spaces
2010 AMS: 46A35, 46A45, 46B45
Received: 27 March 2018
Accepted: 25 June 2018
Available online: 30 June 2018

Abstract

The main purpose of the present paper is to study of some new Pascal sequence spaces p_{∞}, p_{c} and p_{0}. New Pascal sequence spaces p_{∞}, p_{c} and p_{0} are found as $B K$-spaces and it is proved that the spaces p_{∞}, p_{c} and p_{0} are linearly isomorphic to the spaces l_{∞}, c and c_{0} respectively. Afterward, $\alpha-, \beta$ - and γ-duals of these spaces p_{c} and p_{0} are computed and their bases are consructed. Finally, matrix the classes $\left(p_{c}: l_{p}\right)$ and $\left(p_{c}: c\right)$ have been characterized.

1. Preliminaries, background and notation

By w, we shall denote the space all real or complex valued sequences. Any vector subspace of w is called a sequence space. We shall write l_{∞}, c, and c_{0} for the spaces of all bounded, convergent and null sequence are given by $l_{\infty}=\left\{x=\left(x_{k}\right) \in w: \sup _{k \rightarrow \infty}\left|x_{k}\right|<\infty\right\}$, $c=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty} x_{k}\right.$ exists $\}$ and $c_{0}=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty} x_{k}=0\right\}$. Also by $b s, c s, l_{1}$ and l_{p} we denote the spaces of all bounded, convergent, absolutely convergent and p-absolutely convergent series, respectively.
A sequence space λ with a linear topology is called an K-space provided each of the maps $p_{i}: \lambda \rightarrow \mathbb{C}$ defined by $p_{i}(x)=x_{i}$ is continuous for all $i \in \mathbb{N}$; where \mathbb{C} denotes the set of complex field and $\mathbb{N}=\{0,1,2, \ldots\}$. An K-space λ is called an $F K$ - space provided λ is a complete linear metric space. An $F K$-space provided whose topology is normable is called a $B K$ - space [1].
Let X, Y be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we write $A x=\left((A x)_{n}\right)$, the A-transform of x, if $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$. If $x \in X$ implies that $A x \in Y$, then we say that A defines a matrix transformation from X into Y and denote it by $A: X \rightarrow Y$. By $(X: Y)$ we denote the class of all infinite matrices A such that $A: X \rightarrow Y$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞.
Let F denote the collection of all finite subsets on \mathbb{N} and $K, \mathbb{N} \subset F$. The matrix domain X_{A} of an infinite matrix A in a sequence space X is defined by

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\} \tag{1.1}
\end{equation*}
$$

which is a sequence space.
The approach constructing a new sequence space by means of the matrix domain of a particular limitation method was used by authors [2, 3, 4, 5, 6, 7, 8]. They introduced the sequence spaces $\left(c_{0}\right)_{T^{r}}=t_{0}^{r}$ and $(c)_{T^{r}}=t_{c}^{r}$ in [2], $\left(c_{0}\right)_{E^{r}}=e_{0}^{r}$ and $(c)_{E^{r}}=e_{c}^{r}$ in [3], $\left(c_{0}\right)_{C}=\bar{c}_{0}$ and $c_{C}=\bar{c}$ in [4], $\left(l_{p}\right)_{E^{r}}=e_{p}^{r}$ in [5], $\left(l_{\infty}\right)_{R^{t}}=r_{\infty}^{t}, c_{R^{t}}=r_{c}^{t}$ and $\left(c_{0}\right)_{R^{t}}=r_{0}^{r}$ in [6], $\left(l_{p}\right)_{C}=X_{p}$ in [7] and $\left(l_{p}\right)_{N_{q}}$ in [8] where T^{r}, E^{r}, C, R^{t} and N_{q} denote the Taylor, Euler, Cesaro, Riesz and Nörlund means, respectively.
Following $[2,3,4,5,6,7,8]$, this way, the purpose of this paper is to introduce the new Pascal sequence spaces p_{∞}, p_{c} and p_{0} and derive some results related to those sequence spaces. Furthermore, we have constructed the basis and computed the α-, β - and γ-duals of the spaces p_{∞}, p_{c} and p_{0}. Finally, we have characterized the matrix mappings from the space p_{c} to l_{p} and from the space p_{c} to c.

2. The Pascal matrix of inverse formula and Pascal sequence spaces

Let P denote the Pascal means defined by the Pascal matrix [9] as is defined by

$$
P=\left[p_{n k}\right]=\left\{\begin{array}{c}
\binom{n}{n-k},(0 \leq k \leq n) \\
0,(k>n)
\end{array},(n, k \in \mathbb{N})\right.
$$

and the inverse of Pascal's matrix $P_{n}=\left[p_{n k}\right][10]$ is given by

$$
P^{-1}=\left[p_{n k}\right]^{-1}=\left\{\begin{array}{c}
(-1)^{n-k}\binom{n}{n-k},(0 \leq k \leq n) \tag{2.1}\\
0,(k>n)
\end{array},(n, k \in \mathbb{N}) .\right.
$$

There is some interesting properties of Pascal matrix. For example; we can form three types of matrices: symmetric, lower triangular, and upper triangular, for any integer $n>0$. The symmetric Pascal matrix of order n is defined by

$$
\begin{equation*}
S_{n}=\left(s_{i} j\right)=\binom{i+j-2}{j-1} i, j=1,2, \ldots, n . \tag{2.2}
\end{equation*}
$$

We can define the lower triangular Pascal matrix of order n by

$$
L_{n}=\left(l_{i j}\right)=\left\{\begin{array}{cc}
\binom{i-1}{j-1}, & (0 \leq j \leq i) \tag{2.3}\\
0, & (j>i)
\end{array},\right.
$$

and the upper triangular Pascal matrix of order n is defined by

$$
U_{n}=\left(u_{i j}\right)=\left\{\begin{array}{cc}
\binom{j-1}{i-1}, & (0 \leq i \leq j) \tag{2.4}\\
0, & (j>i)
\end{array} .\right.
$$

We notice that $U_{n}=\left(L_{n}\right)^{T}$, for any positive integer n.
i. Let S_{n} be the symmetric Pascal matrix of order n defined by (2.1), L_{n} be the lower triangular Pascal matrix of order n defined by (2.3), and U_{n} be the upper triangular Pascal matrix of order n defined by (2.4), then $S_{n}=L_{n} U_{n}$ and $\operatorname{det}\left(S_{n}\right)=1$ [11].
ii. Let A and B be $n \times n$ matrices. We say that A is similar to B if there is an invertible $n \times n$ matrix P such that $P^{-1} A P=B$ [12].
iii. Let S_{n} be the symmetric Pascal matrix of order n defined by (2.2), then S_{n} is similar to its inverse S_{n}^{-1} [11].
iv. Let L_{n} be the lower triangular Pascal matrix of order n defined by (2.3), then $L_{n}^{-1}=\left((-1)^{i-j} l_{i j}\right)$ [13].

We wish to introduce the Pascal sequence spaces p_{∞}, p_{c} and p_{0}, as the set of all sequences such that P-transforms of them are in the spaces l_{∞}, c and c_{0}, respectively, that is

$$
\begin{gathered}
p_{\infty}=\left\{x=\left(x_{k}\right) \in w: \sup _{n}\left|\sum_{k=0}^{n}\binom{n}{n-k} x_{k}\right|<\infty\right\}, \\
p_{c}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} x_{k} \text { exists }\right\}
\end{gathered}
$$

and

$$
p_{0}=\left\{x=\left(x_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} x_{k}=0\right\} .
$$

With the notation of (1.1), we may redefine the spaces p_{∞}, p_{c} and p_{0} as follows:

$$
\begin{equation*}
p_{\infty}=\left(l_{\infty}\right)_{P}, p_{c}=(c)_{P} \text { and } p_{0}=\left(c_{0}\right)_{P} . \tag{2.5}
\end{equation*}
$$

If λ is an normed or paranormed sequence space, then matrix domain λ_{P} is called an Pascal sequence space. We define the sequence $y=\left(y_{n}\right)$ which will be frequently used, as the P-transform of a sequence $x=\left(x_{n}\right)$ i.e.,

$$
\begin{equation*}
y_{n}=\sum_{k=0}^{n}\binom{n}{n-k} x_{k}, \quad(n \in N) . \tag{2.6}
\end{equation*}
$$

It can be shown easily that p_{∞}, p_{c} and p_{0} are linear and normed spaces by the following norm:

$$
\begin{equation*}
\|x\|_{p_{0}}=\|x\|_{p_{c}}=\|x\|_{p_{\infty}}=\|P x\|_{l_{\infty}} . \tag{2.7}
\end{equation*}
$$

Theorem 2.1. The sequence spaces p_{∞}, p_{c} and p_{0} endowed with the norm (2.7) are Banach spaces.

Proof. Let sequence $\left\{x^{t}\right\}=\left\{x_{0}^{(t)}, x_{1}^{(t)}, x_{2}^{(t)}, \ldots\right\}$ at p_{∞} a Cauchy sequence for every fixed $t \in \mathbb{N}$. Then, there exists an $n_{0}=n_{0}(\varepsilon)$ for every $\varepsilon>0$ such that $\left\|x^{t}-x^{r}\right\|_{\infty}<\varepsilon$ for all $t, r>n_{0}$. Hence, $\left|P\left(x^{t}-x^{r}\right)\right|<\varepsilon$ for all $t, r>n_{0}$ and for each $k \in \mathbb{N}$.
Therefore, $\left\{P x_{k}^{t}\right\}=\left\{\left(P x^{0}\right)_{k},\left(P x^{1}\right)_{k},\left(P x^{2}\right)_{k}, \ldots\right\}$ is a Cauchy sequence in the set of complex numbers \mathbb{C}. Since \mathbb{C} is complete, it is convergent say $\lim _{t \rightarrow \infty}\left(P x^{t}\right)_{k}=(P x)_{k}$ and $\lim _{m \rightarrow \infty}\left(P x^{m}\right)_{k}=(P x)_{k}$ for each $k \in \mathbb{N}$. Hence, we have

$$
\lim _{m \rightarrow \infty}\left|P x_{k}^{t}-x_{k}^{m}\right|=\left|P\left(x_{k}^{t}-x_{k}\right)-P\left(x_{k}^{m}-x_{k}\right)\right| \leq \varepsilon \text { for all } n \geq n_{0} .
$$

This implies that $\left\|x^{t}-x^{m}\right\| \rightarrow \infty$ for $t, m \rightarrow \infty$. Now, we should that $x \in p_{\infty}$. We have

$$
\begin{gathered}
\left.\|x\|_{\infty}=\|P x\|_{\infty}=\sup _{n}\left|\sum_{k=0}^{n}\binom{n}{n-k} x_{k}\right|=\sup _{n} \right\rvert\, \sum_{k=0}^{n}\binom{n}{n-k}\left(x_{k}-x_{k}^{t}+x_{k}^{t} \mid\right. \\
\leq \sup _{n}\left|P\left(x_{k}^{t}-x_{k}\right)\right|+\sup _{n}\left|P x_{k}^{t}\right| \\
\leq\left\|x^{t}-x\right\|_{\infty}+\left|P x_{k}^{t}\right|<\infty
\end{gathered}
$$

for $t, k \in \mathbb{N}$. This implies that $x=\left(x_{k}\right) \in p_{\infty}$. Thus, p_{∞} the space is a Banach space with the norm (2.7). It can be shown that p_{0} and p_{c} are closed subspaces of p_{∞} which leads us to the consequence that the spaces p_{0} and p_{c} are also the Banach spaces with the norm (2.7). Furthermore, since p_{∞} is a Banach space with continuous coordinates, i.e., $\left\|P\left(x_{k}^{t}-x\right)\right\|_{\infty} \rightarrow \infty$ imples $\left|P\left(x_{k}^{t}-x_{k}\right)\right| \rightarrow \infty$ for all $k \in \mathbb{N}$, it is also a $B K$-space.

Theorem 2.2. The sequence spaces p_{∞}, p_{c} and p_{0} are linearly isomorphic to the spaces l_{∞}, c and c_{0} respectively, i.e $p_{\infty} \cong l_{\infty}, p_{c} \cong c$ and $p_{0} \cong c_{0}$.

Proof. To prove the fact $p_{0} \cong c_{0}$, we should show the existence of a linear bijection between the spaces p_{0} and c_{0}. Consider the transformation T defined, with the notation (2.6), from p_{0} to c_{0}. The linearity of T is clear. Further, it is trivial that $x=0$ whenever $T x=0$ and hence T is injective.
Let $y \in c_{0}$. We define the sequence $x=\left(x_{k}\right)$ as follows:

$$
x_{k}=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{k-i} y_{i} .
$$

Then

$$
\lim _{n \rightarrow \infty}(P x)_{n}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}\binom{n}{n-k} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{k-i} y_{i}=\lim _{n \rightarrow \infty} y_{n}=0 .
$$

Thus, we have that $x \in p_{0}$. In addition, note that

$$
\|x\|_{p_{0}}=\sup _{n \in \mathbb{N}}\left|\sum_{k=0}^{n}\binom{n}{n-k} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{k-i} y_{i}\right|=\sup _{n \in \mathbb{N}}\left|y_{n}\right|=\|y\|_{c_{0}}<\infty .
$$

Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which therefore says us that the spaces p_{0} to c_{0} are linearly isomorphic. In the same way, it can be shown that p_{c} and p_{∞} are linearly isomorphic to c and l_{∞}, respectively, and so we omit the detail.

Before giving the basis of of the sequence spaces p_{c} and p_{0}, we define the Schauder basis. A sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ in a normed sequence space λ is called a Schauder basis (or briefly basis) [14], if for every $x \in \lambda$ there is a unique sequence (α_{n}) of scalars such that

$$
\lim _{n \rightarrow \infty}\left\|x-\left(\alpha_{0} x_{0}+\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right)\right\|=0
$$

In the following theorem, we shall give the Schauder basis for the spaces p_{c} and p_{0}.
Theorem 2.3. Let $k \in \mathbb{N}$ a fixed natural number and $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ where

$$
b_{n}^{(k)}=\left\{\begin{array}{cc}
0, & (0 \leq n<k) \\
(-1)^{n-k}\binom{n}{n-k},(n \geq k
\end{array} .\right.
$$

Then the following assertions are true:
i. The sequence $\left\{b_{n}^{(k)}\right\}$ is a basis for the space p_{0} and every $x \in p_{0}$ has a unique representation of the from $x=\sum_{k} \lambda_{k} b^{(k)}$ where $\lambda_{k}=(P x)_{k}$ for all $k \in \mathbb{N}$.
ii. The set $\left\{e, b^{(0)}, b^{(1)}, \ldots, b^{(k)}, \ldots\right\}$ is a basis for the space p_{c} and every $x \in p_{c}$ has a unique representation of the form $x=l e+$ $\sum_{k}\left(\lambda_{k}-l\right) b^{(k)}$, where $l=\lim _{k \rightarrow \infty}(P x)_{k}$ and $\lambda_{k}=(P x)_{k}$ for all $k \in \mathbb{N}$.

3. The $\alpha-, \beta$ - and γ - duals of the spaces p_{∞}, p_{c} and p_{0}

In this section, we state and prove the theorems determining the α-, β - and γ-duals of the sequence spaces p_{∞}, p_{c} and p_{0}. For the sequence spaces X and Y define the set $S(X, Y)$ by

$$
S(X, Y)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in Y \text { for all } x \in X\right\} .
$$

The α-, β - and γ-duals of the sequence spaces λ, which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ} are defined by Garling [15], by $\lambda^{\alpha}=S\left(\lambda, l_{1}\right), \lambda^{\beta}=S(\lambda, c s)$ and $\lambda^{\gamma}=S(\lambda, b s)$. We shall begin with the Lemmas due to Stieglitz and Tietz [16], which are needed in the proof of the Theorems 3.4-3.6.

Lemma 3.1. $A \in\left(c_{0}: l_{1}\right)=\left(c: l_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|<\infty . \tag{3.1}
\end{equation*}
$$

Lemma 3.2. $A \in\left(c_{0}: c\right)$ if and only if

$$
\begin{gather*}
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty, \tag{3.2}\\
\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k},(k \in \mathbb{N}) . \tag{3.3}
\end{gather*}
$$

Lemma 3.3. $A \in\left(c_{0}: l_{\infty}\right)$ if and only if (3.2) holds.
Theorem 3.4. The $\alpha-$ dual of the sequence spaces p_{∞}, p_{c} and p_{0} is the set

$$
D=\left\{a=\left(a_{k}\right) \in w: \sup _{K \in F} \sum_{n}\left|\sum_{k \in K}(-1)^{n-k}\binom{n}{n-k} a_{n}\right|<\infty\right\} .
$$

Proof. Let $a=\left(a_{n}\right) \in w$ and consider the matrix B whose rows are the products of the rows of the matrix P^{-1} and sequence $a=\left(a_{n}\right)$. Bearing in mind the relation (2.3), we immediately derive that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{n-k} a_{n} y_{k}=\sum_{k=0}^{n} b_{n k} y_{k}=(B y)_{n},(n \in \mathbb{N}) . \tag{3.4}
\end{equation*}
$$

Therefore by (3.4) we observe that that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x \in p_{\infty}, p_{c}$ and p_{0} if and only if $B y \in l_{1}$ whenever $y \in l_{\infty}, c$, and c_{0}. Then, we derive by Lemma 3.1 that

$$
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K}(-1)^{n-k}\binom{n}{n-k} a_{n}\right|<\infty
$$

which yields the consequences that $\left\{p_{\infty}\right\}^{\alpha}=\left\{p_{c}\right\}^{\alpha}=\left\{p_{0}\right\}^{\alpha}=D$.
Theorem 3.5. Consider the sets D_{1}, D_{2} and D_{3} defined as follows:

$$
\begin{gathered}
D_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in N} \sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right|<\infty\right\}, \\
D_{2}=\left\{a=\left(a_{k}\right) \in w: \sum_{i=k}^{\infty}(-1)^{i-k}\binom{i}{i-k} a_{i} \text { exists for each } k \in \mathbb{N}\right\},
\end{gathered}
$$

and

$$
D_{3}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i} \text { exists }\right\} .
$$

Then $\left\{p_{0}\right\}^{\beta}=D_{1} \cap D_{2},\left\{p_{c}\right\}^{\beta}=D_{1} \cap D_{2} \cap D_{3}$ and $\left\{p_{\infty}\right\}^{\beta}=D_{2} \cap D_{3}$.
Proof. We give the proof only for the space p_{0}. Since the proof may be given by a similar way for the spaces p_{c} and p_{∞}, we omit it. Consider the equation

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} y_{i}\right] a_{k}=\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right] y_{k}=(D y)_{n}, \tag{3.5}
\end{equation*}
$$

where

$$
D=\left(d_{n k}\right)=\left\{\begin{array}{cc}
\sum_{i=k}^{n}(-1)^{i-k}\left(i_{i-k}^{i}\right) a_{i}, & (0 \leq k \leq n) \tag{3.6}\\
0 & ,(k>n)
\end{array},(n, k \in \mathbb{N}) .\right.
$$

Thus, we deduce from Lemma 3.2 with (3.5) that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in p_{0}$ if and only if $D y \in c$ whenever $y=\left(y_{k}\right) \in$ c_{0}. Therefore, using relations (3.2) and (3.3), we conclude that $\lim _{n \rightarrow \infty} d_{n k}$ exists fo each $k \in \mathbb{N}$ and

$$
\sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right|<\infty
$$

which shows that $\left\{p_{0}\right\}^{\beta}=D_{1} \cap D_{2}$.

Theorem 3.6. The $\gamma-$ dual of the sequence spaces p_{∞}, p_{c} and p_{0} are D_{1}.

Proof. We give the proof only for the space p_{0}. Consider the equality

$$
\begin{aligned}
\left|\sum_{k=0}^{n} a_{k} x_{k}\right| & =\left|\sum_{k=0}^{n} a_{k}\left[\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{k-i} y_{i}\right]\right| \\
& =\left|\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right] y_{k}\right| \\
& \leq \sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right|\left|y_{k}\right| .
\end{aligned}
$$

Taking supremum over $n \in \mathbb{N}$, we get

$$
\begin{aligned}
\sup _{n \in N}\left|\sum_{k=0}^{n} a_{k} x_{k}\right| & \leq \sup _{n \in N}\left(\sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right|\left|y_{k}\right|\right) \\
& \leq\|y\|_{c_{0}} \sup _{n}\left(\sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right|\right) \leq \infty .
\end{aligned}
$$

This means that $a=\left(a_{k}\right) \in\left\{p_{0}\right\}^{\gamma}$. Hence,

$$
\begin{equation*}
D_{1} \subset\left\{p_{0}\right\}^{\gamma} . \tag{3.7}
\end{equation*}
$$

Conversely, let $a=\left(a_{k}\right) \in\left\{p_{0}\right\}^{\gamma}$ and $x \in p_{0}$. Then one can easily see that

$$
\left(\sum_{k=0}^{n}\left[\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right] y_{k}\right) \in l_{\infty}
$$

whenever $a x=\left(a_{k} x_{k}\right) \in b s$. This implies that the matrix D given at the (3.6) is in the class $\left(c_{0}: l_{\infty}\right)$. Hence, the condition

$$
\sup _{n}\left(\sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{i}\right|\right)<\infty
$$

is satisfied, which implies that $a=\left(a_{k}\right) \in D_{1}$. In other words,

$$
\begin{equation*}
\left\{p_{0}\right\}^{\gamma} \subset D_{1} . \tag{3.8}
\end{equation*}
$$

Therefore, by combining inclusions (3.7) and (3.8), we estahlish that the γ-dual of the sequence spaces p_{0} is D_{1}, which completes the proof.

4. Some matrix mappings related to Pascal sequence spaces

Lemma 4.1. [16, p. 57] The matrix mappings between $B K$-spaces are continuous.
Lemma 4.2. [16, p. 128] $A \in\left(c: l_{p}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in F} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|^{p}<\infty, 1 \leq p<\infty . \tag{4.1}
\end{equation*}
$$

Theorem 4.3. $A \in\left(p_{c}: l_{p}\right)$ if and only if the following conditions are satisfied: For $1 \leq p<\infty$,

$$
\begin{gather*}
\sup _{K \in F} \sum_{k}\left|\sum_{k \in K} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right|^{p}<\infty, \tag{4.2}\\
\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i} \text { exists for all } k, n \in \mathbb{N}, \tag{4.3}\\
\sum_{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i} \text { converges for all } n \in \mathbb{N}, \tag{4.4}\\
\sup _{m \in N} \sum_{k=0}^{m}\left|\sum_{i=k}^{m}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right|<\infty, n \in \mathbb{N}, \tag{4.5}
\end{gather*}
$$

and for $p=\infty$, conditions (4.3) and (4.5) are satisfied and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right|<\infty \tag{4.6}
\end{equation*}
$$

Proof. Let $1 \leq p<+\infty$. Assume that conditions (4.2) - (4.6) are satisfied and take any $x \in p_{c}$. Then $\left(a_{n k}\right) \in\left(p_{c}\right) \beta$ for all $k, n \in \mathbb{N}$, which implies that $A x$ exists. We define the matrix $G=\left(g_{n k}\right)$ with

$$
g_{n k}=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}
$$

for all $k, n \in \mathbb{N}$. Then, since condition (4.1) is satisfied for the matrix G, we have $G \in\left(c: l_{p}\right)$. Now consider the following equality obtained from the s. th partial sum of the series $\sum_{k} a_{n k} x_{k}$:

$$
\begin{equation*}
\sum_{k=0}^{s} a_{n k} x_{k}=\sum_{k=0}^{s} \sum_{i=k}^{s}(-1)^{i-k}\binom{i}{i-k} a_{n i} y_{k}, m, n \in \mathbb{N} . \tag{4.7}
\end{equation*}
$$

Therefore, we derive from (4.7) as $s \rightarrow \infty$ that

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{n k} x_{k}=\sum_{k=0}^{\infty} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i} y_{k}, n \in \mathbb{N} . \tag{4.8}
\end{equation*}
$$

Whence taking l_{p}-norm we get

$$
\begin{equation*}
\|A x\|_{l_{p}}=\|G y\|_{l_{p}}<\infty . \tag{4.9}
\end{equation*}
$$

This means that $A \in\left(p_{c}: l_{p}\right)$. Now let $p=\infty$. Assume that conditions (4.2) - (4.6) are satisfied and take any $x \in p_{c}$. Then $\left(a_{n k}\right) \in\left(p_{c}\right)^{\beta}$ for all $k, n \in \mathbb{N}$, which implies that $A x$ exists. Whence taking l_{∞}-norm (4.8)

$$
\|A x\|_{l_{\infty}}=\sup _{n \in N}\left|\sum_{k} g_{n k}\right| \leq\|y\|_{l_{\infty}} \sup _{n \in N} \sum_{k}\left|g_{n k}\right|<\infty .
$$

Then, we have $A \in\left(p_{c}: l_{\infty}\right)$.
Conversely, assume that $A \in\left(p_{c}: l_{p}\right)$. Then, since p_{c} and l_{p} are $B K$-spaces, it follows from Lemma 4 that there exists a real constant $K>0$ such that

$$
\begin{equation*}
\|A x\|_{l_{p}}=K\|x\|_{h_{c}} \tag{4.10}
\end{equation*}
$$

for all $x \in p_{c}$. Since inequality (4.10) also holds for the sequence

$$
x=\left(x_{k}\right)=\sum_{k \in F} b^{(k)} \in p_{c}
$$

where

$$
b^{(k)}=\left\{b_{n}^{(k)}\right\}=\left\{\begin{array}{c}
0,(0 \leq n<k) \\
(-1)^{n-k}\binom{n}{n-k},(n \geq k
\end{array}\right.
$$

for every fixed $k \in \mathbb{N}$. We have

$$
\|A x\|_{l_{p}}=\left[\sum_{n}\left|\sum_{k \in F} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right|^{p}\right]^{\frac{1}{p}} \leq K\|x\|_{p_{c}}=K
$$

which shows the necessity of (4.2).
Theorem 4.4. $A \in\left(p_{c}: c\right)$ if and only if conditions (4.3), (4.5) and (4.6) are satisfied,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}=\alpha_{k} \text { for all } k \in \mathbb{N} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}=\alpha \tag{4.12}
\end{equation*}
$$

Proof. Assume that A satisfies conditions (4.3), (4.5), (4.6), (4.11) and (4.12). Let us take an arbitrary an $x=\left(x_{k}\right)$ in p_{c} such that $x_{k} \rightarrow l$ as $k \rightarrow \infty$. Then $A x$ exists, and it is trivial that the sequence $y=\left(y_{k}\right)$ associated with the sequence $x=\left(x_{k}\right)$ by relation (2.3) belongs to c and is such that $y_{k} \rightarrow l$ as $k \rightarrow \infty$. At this stage, it follows from (4.11) and (4.6) that

$$
\sum_{j=0}^{k}\left|\alpha_{j}\right| \leq \sup _{n \in N} \sum_{j}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right|<\infty
$$

for every $n \in \mathbb{N}$. This yield $\alpha_{n} \in l_{1}$. Considering (4.8), we write

$$
\begin{equation*}
\sum_{k} a_{n k} x_{k}=\sum_{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\left(y_{k}-l\right)+l \sum_{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i} y_{k} \tag{4.13}
\end{equation*}
$$

In this situation, letting $n \rightarrow \infty$ in (4.13), we establish that the first term on the right-hand side tends to $\sum_{k} \alpha_{k}\left(y_{k}-l\right)$ by (4.6) and(4.11), and the second term tends to $l \alpha$ by (4.11). Taking these facts into account, we deduce from (4.13) as $n \rightarrow \infty$ that

$$
(A x)_{n} \rightarrow \sum_{k} \alpha_{k}\left(y_{k}-l\right)+l \alpha
$$

which shows that $A \in\left(p_{c}: c\right)$.
Conversely, assume that $A \in\left(p_{c}: c\right)$. Then, since the inclusion $c \subset l_{\infty}$ holds the necessity of (4.3), (4.5) and (4.6) is immediately obtained from

$$
\sup _{n} \sum_{k}\left|\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right|<\infty .
$$

To prove the necessity of (4.11) consider the sequence $x=b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ in p_{c}. Where

$$
b^{(k)}=\left\{b_{n}^{(k)}\right\}=\left\{\begin{array}{c}
0,(0 \leq n<k) \\
(-1)^{n-k}\binom{n}{n-k},(n \geq k
\end{array}\right.
$$

for every fixed $k \in \mathbb{N}$. Since $A x$ exists and belongs to c for every $x \in p_{c}$, one can easily see that

$$
A b^{(k)}=\left\{\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right\}_{n \in \mathbb{N}}
$$

for each $k \in \mathbb{N}$, which yields the necessity of (4.11).
Similarly, by setting $x=e=(1,1, \ldots)$ in (4.8), we obtain

$$
A x=\left\{\sum_{k} \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{i-k} a_{n i}\right\}_{n \in \mathbb{N}}
$$

which belongs to the space c, and this shows the necessity of (4.12). This step conludes the proof.

References

[1] B. Choudhary and S. Nanda, Functional Analysis with Applications, Wiley, New Delhi, 1989.
[2] M. Kirişçi, On the Taylor Sequence Spaces of Non-Absolute Type which Include The Spaces c_{0} and c, Journal of Math. Analysis 6 (2015), 22-35.
[3] B. Altay, F. Başar, Some Euler Sequence Spaces of Non-Absolute Type, Ukrainian Math. J. 57 (2005), 1-17.
[4] M. Şengönül, F. Başar, Some New Cesaro Sequence Spaces of Non-Absolute Type which Include The Spaces c_{0} and c, Soochow J. Math. 31 (2005), 107-119.
[5] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include in the spaces l_{p} and l_{∞}, Inform. Sci. 176 (2006), $1450-1462$.
[6] E. Malkowsky, Recent results in the theory of matrix transformations in sequences spaces, Mat. Vesnik 49 (1997), 187-196.
[7] P. N. Ng, P. Y. Lee, Cesaro sequences spaces of non-absolute type, Comment. Math. Prace Mat. 20 (1978), 429-433.
[8] C. S. Wang, On Nörlund seqence spaces, Tamkang J. Math. 9 (1978), 269-274.
[9] G. H. Lawden, Pascal matrices, Mathematical Gazette 56 (1972), 325-327.
[10] S. Dutta and P. Baliarsingh, On some Toeplitz matrices and their inversions, J. Egypt Math. Soc. 22 (2014), 420-423
[11] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math. 45 (1990), 107-110.
[12] A. Edelman and G. Strang, Pascal Matrices, The Mathematical Association of America, Monthly 111 (2004), 189-197.
[13] C. Lay David, Linear Algebra and Its Applications, 4th Ed. Boston, Pearson, Addison-Wesley, 2012.
[14] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, 1981.
[15] D.J.H. Garling, The $\alpha-, \beta$ - and γ - Duality of Sequence Spaces, Proc. Comb. Phil. Soc. 63 (1967), 963-981.
[16] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisübersict, Math. Z. 154 (1977), 1-16.

