Differential bubordinations and argument inequalities for certain multivalent functions defined by convolution structure

Mohamed Kamal Aouf ${ }^{\text {a }}$, Rabha El-Ashwah ${ }^{\text {b }}$ and Ekram Elsayed Ali ${ }^{\text {* }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
${ }^{\text {b }}$ Department of Mathematics, Faculty of Science, Damietta University, New Damiette, 34517, Egypt
${ }^{\mathrm{c}}$ Department of Mathematics and Computer Science, Faculty of Science, Port-Said University, Port-Said, 42521, Egypt
* Corresponding author E-mail: ekram_008eg@yahoo.com

Article Info

Keywords: Multiplier transformation, Hadamard product, Subordination 2010 AMS: 30C45
Received: 12 March 2018
Accepted: 5 June 2018
Available online: 30 June 2018

Abstract

The main object of the present paper is to investigate certain interesting argument inequalities and differential subordinations properties of multivalent functions associated with a linear operator $D_{\lambda, p}^{n}(f * g)(z)$ defined by Hadamard product

1. Introduction

Let $A(p)$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}=\{1,2, \ldots .\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$. If f and g are analytic in U, we say that f is subordinate to g, written symbolically as follows:

$$
f \prec g \text { or } f(z) \prec g(z),
$$

if there exists a Schwarz function w, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$ such that $f(z)=g(w(z))(z \in$ U). In particular, if the function $g(z)$ is univalent in U, then we have the following equivalence (cf., e.g., [4], [13]; see also [14, p. 4]:

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U)
$$

For functions $f(z) \in A(p)$ given by (1.1), and $g(z) \in A(p)$ defined by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p} \quad(p \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

The Hadamard product (or convolution) of $f(z)$ and $g(z)$ is given by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p}=(g * f)(z) \quad(p \in \mathbb{N} ; z \in U) \tag{1.3}
\end{equation*}
$$

For functions $f, g \in A(p)$, we define the following differential operator:

$$
\begin{align*}
D_{\lambda, p}^{0}(f * g)(z) & =(f * g)(z) \tag{1.4}\\
D_{\lambda, p}^{1}(f * g)(z) & =D_{\lambda, p}(f * g)(z)=(1-\lambda)(f * g)(z)+\frac{\lambda z}{p}(f * g)^{\prime}(z)(\lambda \geq 0) \tag{1.5}
\end{align*}
$$

and (in general)

$$
\begin{align*}
D_{\lambda, p}^{n}(f * g)(z) & =D_{\lambda, p}\left(D_{\lambda, p}^{n-1}(f * g)(z)\right) \\
& =z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+\lambda k}{p}\right)^{n} a_{k+p} b_{k+p} z^{k+p} \\
(\lambda & \left.\geq 0 ; p \in \mathbb{N} ; n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.6}
\end{align*}
$$

From (1.6) it is easy to verify that

$$
\begin{equation*}
\frac{\lambda}{p} z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{\prime}=D_{\lambda, p}^{n+1}(f * g)(z)-(1-\lambda) D_{\lambda, p}^{n}(f * g)(z)\left(\lambda>0 ; n \in \mathbb{N}_{0}\right) \tag{1.7}
\end{equation*}
$$

The operator $D_{\lambda, p}^{n}(f * g)(z)$, when $p=1$, was introduced and studied by Aouf and Mostafa [3].
We observe that the linear operator $D_{\lambda, p}^{n}(f * g)(z)$ reduces to several interesting operators for different choices of n, λ, p and the function $g(z)$:
(i) For $\lambda=1$ and $g(z)=\frac{z^{p}}{1-z}\left(\right.$ or $\left.b_{k+p}=1\right), D_{1, p}^{n}(f * g)(z)=D_{p}^{n} f(z)$, where D_{p}^{n} is the p-valent Salagean operator introduced and studied by Kamali and Orhan [9], Orhan and Kiziltunc [17] (see also [2]);
(ii) For $g(z)=\frac{z^{p}}{1-z}\left(\right.$ or $\left.b_{k+p}=1\right)$, we have

$$
D_{\lambda, p}^{n}(f * g)(z)=D_{\lambda, p}^{n} f(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+\lambda k}{p}\right)^{n} a_{k+p} z^{k+p}(\lambda \geq 0)
$$

for $p=1$, the operator D_{λ}^{n} is the generalized Sălăgean operator introduced and studied by Al-Oboudi [1]) which in turn contains as special case the Sălăgean operator see [20];
(iii) For $n=0$ and

$$
g(z)=z^{p}+\sum_{k=1}^{\infty}\left[\frac{p+\ell+\lambda k}{p+\ell}\right]^{m} z^{k+p}\left(\lambda \geq 0 ; p \in \mathbb{N} ; \ell, m \in \mathbb{N}_{0}\right)
$$

we see that $D_{\lambda, p}^{0}(f * g)(z)=(f * g)(z)=I_{p}^{m}(\lambda, \ell) f(z)$, where $I_{p}^{m}(\lambda, \ell)$ is the generalized multiplier transformation which was introduced and studied by Cătaş [5], the operator $I_{p}^{m}(\lambda, \ell)$, contains as special cases, the multiplier transformation $I_{p}^{m}(\ell)$ (see Kumar et al. [11] and Srivastava et al. [23]);
(iv) For $n=0$,

$$
\begin{gather*}
g(z)=z^{p}+\sum_{k=1}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{s}\right)_{k}} \cdot \frac{z^{k+p}}{k!} \tag{1.8}\\
\left(\alpha_{i} \in \mathbb{C} ; i=1, \ldots, q ; \beta_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\} ; j=1, \ldots, s ;\right. \\
\left.q \leq s+1 ; q, s \in \mathbb{N}_{0}, p \in \mathbb{N} ; z \in U\right)
\end{gather*}
$$

and

$$
(\theta)_{v}=\frac{\Gamma(\theta+v)}{\Gamma(\theta)}=\left\{\begin{array}{cc}
1 & \left(v=0 ; \theta \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right) \\
\theta(\theta-1) \ldots(\theta+v-1) & (v \in \mathbb{N} ; \theta \in \mathbb{C})
\end{array}\right.
$$

we have $D_{\lambda, p}^{0}(f * g)(z)=(f * g)(z)=H_{p, q, s}\left(\alpha_{1}\right) f(z)$, where $H_{p, q, s}\left(\alpha_{1}\right)$ is the Dziok-Srivastava operator introduced and studied by Dziok and Srivastava [8]. The operator $H_{p, q, s}\left(\alpha_{1}\right)$ contains in turn many interesting operators such as, Carlson and Shaffer linear operator (see [19]), the Ruscheweyh derivative operator (see [10]), the Choi-Saigo-Srivastava operator (see [7]), the Cho-Kwon-Srivastava operator (see [6]), the differeintegral operator (see Srivastava and Aouf [22] and Patel and Mishra [18]) and the Noor integral operator (see Liu and Noor [12]);
(v) For $p=1$ and $g(z)$ of the form (1.8), the operator $D_{\lambda}^{n}(f * g)(z)$ inroduced and studied by Selvaraj and Karthikeyan [21].

For $f, g \in A(p), \lambda>0, \delta \geq 0, p \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$, we define a function $H(z)$ by

$$
\begin{equation*}
H(z)=H_{\lambda, p, \delta}^{n}(f * g)(z)=\left[1-\delta\left(1+\frac{p}{\lambda}-p\right)\right] D_{\lambda, p}^{n}(f * g)(z)+\delta \frac{p}{\lambda} D_{\lambda, p}^{n+1}(f * g)(z) \tag{1.9}
\end{equation*}
$$

We note that:
(i) For $\lambda=1$ and $g(z)=\frac{z^{p}}{1-z}$ in (1.9), we obtain

$$
\begin{equation*}
H_{1, p, \delta}^{n}\left(f * \frac{z^{p}}{1-z}\right)(z)=G_{p, \delta}^{n} f(z)=G(z)=(1-\delta) D_{p}^{n} f(z)+\delta p D_{p}^{n+1} f(z) ; \tag{1.10}
\end{equation*}
$$

(ii) For $g(z)=\frac{z^{p}}{1-z}$ in (1.9), we obtain

$$
\begin{align*}
H_{\lambda, p, \delta}^{n}\left(f * \frac{z^{p}}{1-z}\right)(z) & =K_{\lambda, p, \delta}^{n} f(z)=K(z) \\
& =\left[1-\delta\left(1+\frac{p}{\lambda}-p\right)\right] D_{\lambda, p}^{n} f(z)+\delta \frac{p}{\lambda} D_{\lambda, p}^{n+1} f(z) \tag{1.11}
\end{align*}
$$

In this paper, we investigate some interesting argument inequalities and differential subordinations properties of the function $H(z)$ given by (1.9). The following lemma will be required in our investigation.

Lemma 1.1. [15], [16] Let a function $\phi(z)=1+b_{1} z+\ldots$ be analytic in U and $\phi(z) \neq 0(z \in U)$. If there exists a point $z_{0} \in U$ such that

$$
|\arg \phi(z)|<\frac{\pi}{2} \beta \quad\left(|z|<\left|z_{0}\right|\right) \quad \text { and } \quad\left|\arg \phi\left(z_{0}\right)\right|=\frac{\pi}{2} \beta \quad(0<\beta \leq 1)
$$

then we have $z_{0} \phi^{\prime}\left(z_{0}\right) / \phi\left(z_{0}\right)=i k \beta$, where

$$
\begin{aligned}
& k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \quad\left(\text { where } \arg \phi\left(z_{0}\right)=\frac{\pi \beta}{2}\right) \\
& k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \quad\left(\text { where } \arg \phi\left(z_{0}\right)=-\frac{\pi \beta}{2}\right)
\end{aligned}
$$

and $\left(\phi\left(z_{0}\right)\right)^{\frac{1}{\beta}}= \pm i a(a>0)$.

2. Main results

Unless otherwise mentioned, we shall assume in the reminder of this paper that $\lambda>0, \delta \geq 0, p \in \mathbb{N}, n \in \mathbb{N}_{0}$ and $\mathrm{g}(\mathrm{z})$ is given by (1.2).
Theorem 2.1. Let $f, g \in A(p)$ and let H be defined by (1.9). If

$$
\begin{equation*}
\left|\arg \left(\frac{H^{(q)}(z)}{z^{p-q}}\right)\right|<\frac{\pi}{2} \beta \quad(z \in U) \tag{2.1}
\end{equation*}
$$

then

$$
\left|\arg \left(\frac{\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}}{z^{p-q}}\right)\right|<\frac{\pi}{2} \beta \quad(z \in U)
$$

where $0<\beta \leq 1$ and $0 \leq q \leq p$.
Proof. Let

$$
\begin{equation*}
\phi(z)=\frac{(p-q)!}{p!} \frac{\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}}{z^{p-q}} \quad(z \in U) \tag{2.2}
\end{equation*}
$$

Then $\phi(z)$ is analytic in $U, \phi \neq 0$ for all $z \in U$ and $\phi(z)$ can be written as $\phi(z)=1+b_{1} z+\ldots$. Since

$$
\begin{equation*}
\left(z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{\prime}\right)^{(q)}=q\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}+z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q+1)} \tag{2.3}
\end{equation*}
$$

we have from (1.7), (1.9) and (2.3) that

$$
\begin{aligned}
H^{(q)}(z)= & {\left[1-\delta\left(1+\frac{p}{\lambda}-p\right)\right]\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}+\delta \frac{p}{\lambda}\left(D_{\lambda, p}^{n+1}(f * g)(z)\right)^{(q)} } \\
= & {\left[1-\delta\left(1+\frac{p}{\lambda}-p\right)\right]\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}+\delta\left(z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{\prime}\right)^{(q)} } \\
& +\delta \frac{p}{\lambda}(1-\lambda)\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)} \\
= & (1-\delta+\delta q)\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}+\delta z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q+1)}
\end{aligned}
$$

It is easy to see from (2.4) and (2.2) that

$$
\begin{align*}
\frac{H^{(q)}(z)}{z^{p-q}} & =(1-\delta+\delta q) \frac{\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}}{z^{p-q}}+\delta \frac{z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q+1)}}{z^{p-q}} \\
& =\frac{p!(1-\delta+\delta q)}{(p-q)!} \phi(z)+\frac{\delta p!}{(p-q)!}\left((p-q) \phi(z)+z \phi^{\prime}(z)\right) \\
& =\frac{p!(1-\delta+\delta p)}{(p-q)!}\left(\phi(z)+\frac{\delta}{1-\delta+\delta p} z \phi^{\prime}(z)\right) . \tag{2.5}
\end{align*}
$$

Suppose there exists a point $z_{0} \in U$ such that

$$
|\arg \phi(z)|<\frac{\pi}{2} \beta \quad\left(|z|<\left|z_{0}\right|\right)
$$

and

$$
\left|\arg \phi\left(z_{0}\right)\right|=\frac{\pi}{2} \beta
$$

Then, by using Lemma 1.1, we can write that $z_{0} \phi^{\prime}\left(z_{0}\right) / \phi\left(z_{0}\right)=i k \beta$ and $\left(\phi\left(z_{0}\right)\right)^{\frac{1}{\beta}}= \pm i a(a>0)$. Therefore, if $\arg \phi\left(z_{0}\right)=\frac{\pi}{2} \beta$, then by using (2.5), we have

$$
\begin{aligned}
\frac{H^{(q)}\left(z_{0}\right)}{z_{0}^{p-q}} & =\frac{p!(1-\delta+\delta p)}{(p-q)!} \phi\left(z_{0}\right)\left(1+\frac{\delta}{1-\delta+\delta p} \frac{z_{0} \phi^{\prime}\left(z_{0}\right)}{\phi\left(z_{0}\right)}\right) \\
& =\frac{p!(1-\delta+\delta p)}{(p-q)!} a^{\beta} e^{i \pi \beta / 2}\left(1+\frac{\delta}{1-\delta+\delta p} i k \beta\right)
\end{aligned}
$$

This shows that

$$
\begin{aligned}
\arg \left(\frac{H^{(q)}\left(z_{0}\right)}{z_{0}^{p-q}}\right) & =\frac{\pi}{2} \beta+\arg \left(1+\frac{\delta k \beta i}{1-\delta+\delta p}\right) \\
& =\frac{\pi}{2} \beta+\tan ^{-1}\left(\frac{\delta k \beta}{1-\delta+\delta p}\right) \\
& \geq \frac{\pi}{2} \beta, \quad\left(\text { where } k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1\right)
\end{aligned}
$$

which contradicts the condition (2.1). Similarly, if $\arg \phi\left(z_{0}\right)=\frac{-\pi \beta}{2}$, then we obtain

$$
\arg \left(\frac{H^{(q)}\left(z_{0}\right)}{z_{0}^{p-q}}\right) \leq-\frac{\pi}{2} \beta
$$

which also contradicts the condition (2.1). Thus, the function $\phi(z)$ satisfies $|\arg \phi(z)|<\frac{\pi \beta}{2}(z \in U)$. This shows that

$$
\left|\arg \left(\frac{\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}}{z^{p-q}}\right)\right|<\frac{\pi}{2} \beta \quad(z \in U)
$$

This completes the proof of Theorem 2.1.
Putting $n=0$ and $\lambda=1$ in Theorem 2.1, we obtain the following corollary.
Corollary 2.2. Let $f, g \in A(p)$ and let Q be defined by

$$
\begin{equation*}
Q(z)=(1-\delta)(f * g)(z)+\delta \frac{z}{p}((f * g)(z))^{\prime} \tag{2.6}
\end{equation*}
$$

If

$$
\left|\arg \left(\frac{Q^{(q)}(z)}{z^{p-q}}\right)\right|<\frac{\pi}{2} \beta \quad(z \in U)
$$

then

$$
\left|\arg \left(\frac{((f * g)(z))^{(q)}}{z^{p-q}}\right)\right|<\frac{\pi}{2} \beta \quad(z \in U)
$$

where $0<\beta \leq 1$ and $0 \leq q \leq p$.

Theorem 2.3. Let $f, g \in A(p)$ and let H be defined by (1.9). If

$$
\begin{equation*}
\frac{\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}}{z^{p-q}} \prec \frac{p!}{(p-q)!} \frac{1+(1-2 \alpha) z}{1-z} \quad(z \in U) . \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{H^{(q)}(z)}{z^{p-q}} \prec \frac{p!(1-\delta+\delta p)}{(p-q)!} \frac{1+(1-2 \alpha) z}{1-z} \quad(|z|<\rho) \tag{2.8}
\end{equation*}
$$

where $0 \leq q \leq p, 0 \leq \alpha<1$, and

$$
\begin{equation*}
\rho=\left[1+\left(\frac{\delta}{1-\delta+\delta p}\right)^{2}\right]^{\frac{1}{2}}-\frac{\delta}{1-\delta+\delta p} \tag{2.9}
\end{equation*}
$$

The bound $\rho \in(0,1)$ is the best possible.
Proof. Set

$$
\psi(z)=(1-\gamma) \frac{z}{1-z}+\gamma \frac{z}{(1-z)^{2}} \quad(z \in U)
$$

where $\gamma=\frac{\delta}{1-\delta+\delta p}>0$. We need to show that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\psi(\rho z)}{\rho z}\right\}>\frac{1}{2} \quad(z \in U) \tag{2.10}
\end{equation*}
$$

where $\rho=\left(1+\gamma^{2}\right)^{\frac{1}{2}}-\gamma$ and $0<\rho<1$. Let $\frac{1}{1-z}=R e^{i \theta}$ and $|z|=r<1$. In view of

$$
\cos \theta=\frac{1+R^{2}\left(1-r^{2}\right)}{2 R}, R \geq \frac{1}{1+r}
$$

we have

$$
\begin{aligned}
2 \operatorname{Re}\left\{\frac{\psi(z)}{z}-\frac{1}{2}\right\} & =2(1-\gamma) R \cos \theta+2 \gamma R^{2} \cos 2 \theta-1 \\
& =R^{4} \gamma\left(1-r^{2}\right)^{2}+R^{2}\left((1-\gamma)\left(1-r^{2}\right)-2 \gamma r^{2}\right) \\
& \geq R^{2}\left(\gamma(1-r)^{2}+(1-\gamma)\left(1-r^{2}\right)-2 \gamma r^{2}\right) \\
& =R^{2}\left(1-2 \gamma r-r^{2}\right)>0
\end{aligned}
$$

for $|z|=r<\rho$, which gives (2.10). Thus the function ψ has the integral representation

$$
\begin{equation*}
\frac{\psi(\rho z)}{\rho z}=\int_{1 x 1=1} \frac{d \mu(x)}{1-x z} \quad(z \in U) \tag{2.11}
\end{equation*}
$$

where $\mu(x)$ is a prabability measure on $|x|=1$.
Now letting $\phi(z)$ be in the form (2.2), we see that $\phi(z)=1+b_{1} z+\ldots$ is analytic in U and it follows from (2.7) that

$$
\begin{equation*}
\operatorname{Re} \phi(z)>\alpha \quad(0 \leq \alpha<1 ; z \in U) \tag{2.12}
\end{equation*}
$$

Since we can write

$$
\phi(z)+\gamma z \phi^{\prime}(z)=\left(\frac{\psi(z)}{z}\right) * \phi(z)
$$

it follows from (2.11) that

$$
\begin{gather*}
\operatorname{Re}\left\{\phi(\rho z)+\gamma \rho z \phi^{\prime}(\rho z)\right\}=\operatorname{Re}\left\{\left(\frac{\psi(\rho z)}{\rho z}\right) * \phi(z)\right\} \\
=\operatorname{Re}\left\{\int_{1 x 1=1} \phi(x z) d \mu(x)\right\}>\alpha \quad(z \in U) \tag{2.13}
\end{gather*}
$$

Thus, from (2.3) and (2.13), we conclude that (2.8)) holds. To show that the bound ρ is sharp we take $f, g \in A(p)$ defined by

$$
\frac{(p-q)!}{(p)_{q}} \frac{\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{(q)}}{z^{p-q}}=\alpha+(1-\alpha) \frac{1+z}{1-z}
$$

Since

$$
\begin{aligned}
\frac{(p-q)!}{(p)_{q}(1-\delta+\delta p)} \frac{H^{(q)}(z)}{z^{p-q}} & =\alpha+(1-\alpha) \frac{1+z}{1-z}+\gamma(1-\alpha) z\left(\frac{1+z}{1-z}\right)^{\prime} \\
& =\alpha+(1-\alpha) \frac{1+2 \gamma z-z^{2}}{(1-z)^{2}}=\alpha
\end{aligned}
$$

for $z=-\rho$, it follows that ρ is sharp.
Remark 2.4. (i) Putting $\lambda=1$ and $g(z)=\frac{z^{p}}{1-z}$ in the above results we obtain the results for function $G(z)$ defined by (1.10).
(ii) Putting $g(z)=\frac{z^{p}}{1-z}$ in the above results we obtain the results for function $K(z)$ defined by (1.11).

3. Conclusion

In this paper, three subclasses $H_{\lambda, p, \delta}^{n}(f * g)(z), G_{p, \delta}^{n} f(z)$ and $K_{\lambda, p, \delta}^{n} f(z)$ are introduced and certain interesting argument inequalities and differential subordinations properties are investigated.

Acknowledgements

The authors thank the referees for their valuable suggestions to improve the paper.

References

[1] F. M. Al-Oboudi, On univalent function defined by a generalized Salagean operator, Internat. J. Math. Math. Sci., 27(2004),1429-1436.
[2] M. K. Aouf and A.O. Mostaafa, On a subclass of p-valent functions prestarlike functions, Comput. Math. Appl., (2008), no. 55, 851-861.
[3] M.K.Aouf and A.O.Mostafa, Sandwich theorems for analytic functions defined by convolution, Acta Univ. Apulensis, 21(2010), 7-20.
[4] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[5] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoglu, Editors), pp. 241-250, TC İstanbul Kűltûr University Publications, Vol. 91, TC İstanbul Kűltûr University, İstanbul, Turkey, 2008.
[6] N. E.Cho, O. S. Kwon and H. M Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292(2004), 470-483.
[7] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276(2002), 432-445.
[8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13.
[9] M. Kamali and H. Orhan, On a subclass of certian starlike functions with negative coefficients, Bull. Korean Math. Soc. 41 (2004), no. 1, 53-71.
[10] Vinod Kumar and S. L. Shukla, Multivalent functions defined by Ruscheweyh derivatives, I and II, Indian J. Pure Appl. Math. 15(1984), no. 11, 1216-1227, 15(1984), no. 1, 1228-1238.
[11] S. S. Kumar, H. C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations, Kyungpook Math. J. (2006), no. 46, 97-109.
[12] J. L. Liu and K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21(2002), 81-90.
[13] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.
[14] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Texbooks in Pure and Applied Mathematics, Vol.225, Marcel Dekker, New York and Basel, 2000.
[15] N. Nunokawa, On properties of non- caratheodory functions, Proc. Jpn Acad. Ser.A Math. Sci. 68(1992), 152-153.
[16] N. Nunokawa, S. Owa, H. Saitoh, A. Ikeda and N. Koike, Some results for strongly starlike functions, J. Math. Anal. Appl. 212(1997), 98-106.
[17] H. Orhan and H. Kiziltunc, A generalization on subfamily of p-valent functions with negative coefficients, Appl. Math. Comput., 155(2004), 521-530.
[18] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332(2007), 109-122.
[19] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon. 44(1996), 31-38.
[20] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag) 1013(1983), 362-372.
[21] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS), 29 (2008), no. 2, 419-430.
[22] H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl. 171(1992), 1-13, 192(1995), 673-688.
[23] H. M. Srivastava, K. Suchithra, B. Adolf Stephen and S. Sivasubramanian, Inclusion and neighborhood properties of certian subclasses of multivalent functions of complex order, J. Ineq. Pure Appl. Math. 7(2006), no. 5, Art. 191, 1-8.

