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Abstract

The main object of the present paper is to investigate certain interesting argument inequalities
and differential subordinations properties of multivalent functions associated with a linear
operator Dn

λ ,p( f ∗g)(z) defined by Hadamard product

1. Introduction

Let A(p) denote the class of functions of the form:

f (z) = zp +
∞

∑
k=1

ak+pzk+p (p ∈ N= {1,2, ....}), (1.1)

which are analytic and p-valent in the open unit disc U = {z : z ∈C and |z|< 1}. If f and g are analytic in U , we say that f is subordinate to
g, written symbolically as follows:

f ≺ g or f (z)≺ g(z) ,

if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)|< 1 (z∈U) such that f (z) = g(w(z)) (z∈
U). In particular, if the function g(z) is univalent in U , then we have the following equivalence (cf., e.g., [4], [13]; see also [14, p. 4]:

f (z)≺ g(z) ⇔ f (0) = g(0) and f (U)⊂ g(U).

For functions f (z) ∈ A(p) given by (1.1), and g(z) ∈ A(p) defined by

g(z) = zp +
∞

∑
k=1

bk+pzk+p (p ∈ N), (1.2)

The Hadamard product (or convolution) of f (z) and g(z) is given by

( f ∗g)(z) = zp +
∞

∑
k=1

ak+pbk+pzk+p = (g∗ f )(z) (p ∈ N;z ∈U). (1.3)

For functions f ,g ∈ A(p), we define the following differential operator:

Email addresses: mkaouf127@yahoo.com (M. K. Aouf) r elashwah@yahoo.com (R. M. El-Ashwah) ekram 008eg@yahoo.com (E. E. Ali)



Fundamental Journal of Mathematics and Applications 83

D0
λ ,p( f ∗g)(z) = ( f ∗g)(z), (1.4)

D1
λ ,p( f ∗g)(z) = Dλ ,p( f ∗g)(z) = (1−λ )( f ∗g)(z)+

λ z
p
( f ∗g)′(z) (λ ≥ 0),

(1.5)

and (in general)

Dn
λ ,p( f ∗g)(z) = Dλ ,p(D

n−1
λ ,p ( f ∗g)(z))

= zp +
∞

∑
k=1

(
p+λk

p

)n
ak+pbk+pzk+p

(λ ≥ 0; p ∈ N;n ∈ N0 = N∪{0}). (1.6)

From (1.6) it is easy to verify that

λ

p
z(Dn

λ ,p( f ∗g)(z))′ = Dn+1
λ ,p ( f ∗g)(z)− (1−λ )Dn

λ ,p( f ∗g)(z) (λ > 0;n ∈ N0). (1.7)

The operator Dn
λ ,p( f ∗g)(z), when p = 1, was introduced and studied by Aouf and Mostafa [3].

We observe that the linear operator Dn
λ ,p( f ∗g)(z) reduces to several interesting operators for different choices of n,λ , p and the function

g(z):
(i) For λ = 1 and g(z) = zp

1−z (or bk+p = 1), Dn
1,p( f ∗g)(z) = Dn

p f (z), where Dn
p is the p-valent Salagean operator introduced and studied

by Kamali and Orhan [9], Orhan and Kiziltunc [17] (see also [2]);
(ii) For g(z) = zp

1−z (or bk+p = 1), we have

Dn
λ ,p( f ∗g)(z) = Dn

λ ,p f (z) = zp +
∞

∑
k=1

(
p+λk

p

)n
ak+pzk+p (λ ≥ 0);

for p = 1, the operator Dn
λ

is the generalized Sălăgean operator introduced and studied by Al-Oboudi [1]) which in turn contains as special
case the Sălăgean operator see [20];
(iii) For n = 0 and

g(z) = zp +
∞

∑
k=1

[
p+ `+λk

p+ `

]m
zk+p (λ ≥ 0; p ∈ N;`,m ∈ N0),

we see that D0
λ ,p( f ∗g)(z) = ( f ∗g)(z) = Im

p (λ , `) f (z), where Im
p (λ , `) is the generalized multiplier transformation which was introduced

and studied by Cătaş [5], the operator Im
p (λ , `), contains as special cases, the multiplier transformation Im

p (`) (see Kumar et al. [11] and
Srivastava et al. [23]);
(iv) For n = 0,

g(z) = zp +
∞

∑
k=1

(α1)k...(αq)k

(β1)k...(βs)k
.
zk+p

k!
(1.8)

(
αi ∈ C; i = 1, ...,q;β j ∈ C\Z−0 = {0,−1,−2, ...} ; j = 1, ...,s;

q≤ s+1;q,s ∈ N0, p ∈ N;z ∈U)

and

(θ)ν =
Γ(θ +ν)

Γ(θ)
=

{
1 (ν = 0;θ ∈ C∗ = C\{0}),

θ(θ −1)...(θ +ν−1) (ν ∈ N;θ ∈ C),

we have D0
λ ,p( f ∗g)(z) = ( f ∗g)(z) = Hp,q,s (α1) f (z), where Hp,q,s(α1) is the Dziok-Srivastava operator introduced and studied by Dziok

and Srivastava [8]. The operator Hp,q,s (α1) contains in turn many interesting operators such as, Carlson and Shaffer linear operator (see
[19]), the Ruscheweyh derivative operator (see [10] ), the Choi-Saigo-Srivastava operator (see [7]), the Cho-Kwon-Srivastava operator (see
[6]), the differeintegral operator (see Srivastava and Aouf [22] and Patel and Mishra [18]) and the Noor integral operator (see Liu and Noor
[12]);
(v) For p = 1 and g(z) of the form (1.8), the operator Dn

λ
( f ∗g)(z) inroduced and studied by Selvaraj and Karthikeyan [21].

For f ,g ∈ A(p),λ > 0,δ ≥ 0, p ∈ N and n ∈ N0, we define a function H(z) by

H(z) = Hn
λ ,p,δ ( f ∗g)(z) =

[
1−δ

(
1+

p
λ
− p
)]

Dn
λ ,p( f ∗g)(z)+δ

p
λ

Dn+1
λ ,p ( f ∗g)(z). (1.9)

We note that:
(i) For λ = 1 and g(z) = zp

1−z in (1.9), we obtain
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Hn
1,p,δ ( f ∗ zp

1− z
)(z) = Gn

p,δ f (z) = G(z) = (1−δ )Dn
p f (z)+δ pDn+1

p f (z); (1.10)

(ii) For g(z) = zp

1−z in (1.9), we obtain

Hn
λ ,p,δ ( f ∗ zp

1− z
)(z) = Kn

λ ,p,δ f (z) = K(z)

=
[
1−δ

(
1+

p
λ
− p
)]

Dn
λ ,p f (z)+δ

p
λ

Dn+1
λ ,p f (z). (1.11)

In this paper, we investigate some interesting argument inequalities and differential subordinations properties of the function H(z) given by
(1.9). The following lemma will be required in our investigation.

Lemma 1.1. [15], [16] Let a function φ(z) = 1+b1z+ ... be analytic in U and φ(z) 6= 0 (z ∈U). If there exists a point z0 ∈U such that

|argφ(z)|< π

2
β (|z|< |z0|) and |argφ(z0)|=

π

2
β (0 < β ≤ 1) ,

then we have z0φ
′
(z0)/φ(z0) = ikβ , where

k ≥ 1
2
(a+

1
a
) (where argφ(z0) =

πβ

2
) ,

k ≤ −1
2
(a+

1
a
) (where argφ(z0) =−

πβ

2
) ,

and (φ(z0))
1
β =±ia (a > 0).

2. Main results

Unless otherwise mentioned, we shall assume in the reminder of this paper that λ > 0,δ ≥ 0, p ∈ N,n ∈ N0 and g(z) is given by (1.2).

Theorem 2.1. Let f ,g ∈ A(p) and let H be defined by (1.9). If

∣∣∣∣∣arg

(
H(q)(z)

zp−q

)∣∣∣∣∣< π

2
β (z ∈U) , (2.1)

then ∣∣∣∣∣∣∣arg


(

Dn
λ ,p( f ∗g)(z)

)(q)
zp−q


∣∣∣∣∣∣∣<

π

2
β (z ∈U) ,

where 0 < β ≤ 1 and 0≤ q≤ p .

Proof. Let

φ(z) =
(p−q)!

p!

(
Dn

λ ,p( f ∗g)(z)
)(q)

zp−q (z ∈U). (2.2)

Then φ(z) is analytic in U , φ 6= 0 for all z ∈U and φ(z) can be written as φ(z) = 1+b1z+ ... . Since

(
z
(

Dn
λ ,p( f ∗g)(z)

)′)(q)
= q

(
Dn

λ ,p( f ∗g)(z)
)(q)

+ z
(

Dn
λ ,p( f ∗g)(z)

)(q+1)
, (2.3)

we have from (1.7), (1.9) and (2.3) that

H(q)(z) =
[
1−δ

(
1+

p
λ
− p
)](

Dn
λ ,p( f ∗g)(z)

)(q)
+δ

p
λ

(
Dn+1

λ ,p ( f ∗g)(z)
)(q)

=
[
1−δ

(
1+

p
λ
− p
)](

Dn
λ ,p( f ∗g)(z)

)(q)
+δ

(
z
(

Dn
λ ,p( f ∗g)(z)

)′)(q)

+δ
p
λ
(1−λ )

(
Dn

λ ,p( f ∗g)(z)
)(q)

= (1−δ +δq)(Dn
λ ,p( f ∗g)(z))(q)+δ z(Dn

λ ,p( f ∗g)(z))(q+1).
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(2.4)

It is easy to see from (2.4) and (2.2) that

H(q)(z)
zp−q = (1−δ +δq)

(Dn
λ ,p( f ∗g)(z))(q)

zp−q +δ

z(Dn
λ ,p( f ∗g)(z))(q+1)

zp−q

=
p!(1−δ +δq)

(p−q)!
φ(z)+

δ p!
(p−q)!

(
(p−q)φ(z)+ zφ

′
(z)
)

=
p!(1−δ +δ p)

(p−q)!

(
φ(z)+

δ

1−δ +δ p
zφ
′
(z)
)
. (2.5)

Suppose there exists a point z0 ∈U such that

|argφ(z)|< π

2
β (|z|< |z0|)

and

|argφ(z0)|=
π

2
β .

Then, by using Lemma 1.1, we can write that z0φ
′
(z0)/φ(z0) = ikβ and (φ(z0))

1
β =±ia (a > 0). Therefore, if argφ(z0) =

π

2 β , then by
using (2.5), we have

H(q)(z0)

zp−q
0

=
p!(1−δ +δ p)

(p−q)!
φ(z0)

(
1+

δ

1−δ +δ p
z0φ

′
(z0)

φ(z0)

)

=
p!(1−δ +δ p)

(p−q)!
aβ eiπβ/2

(
1+

δ

1−δ +δ p
ikβ

)
.

This shows that

arg

(
H(q)(z0)

zp−q
0

)
=

π

2
β + arg

(
1+

δkβ i
1−δ +δ p

)
=

π

2
β + tan−1

(
δkβ

1−δ +δ p

)
≥ π

2
β , (where k ≥ 1

2
(a+

1
a
)≥ 1),

which contradicts the condition (2.1). Similarly, if argφ(z0) =
−πβ

2 , then we obtain

arg

(
H(q)(z0)

zp−q
0

)
≤−π

2
β ,

which also contradicts the condition (2.1). Thus, the function φ(z) satisfies |argφ(z)|< πβ

2 (z ∈U). This shows that

∣∣∣∣∣∣∣arg


(

Dn
λ ,p( f ∗g)(z)

)(q)
zp−q


∣∣∣∣∣∣∣<

π

2
β (z ∈U) .

This completes the proof of Theorem 2.1.

Putting n = 0 and λ = 1 in Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let f ,g ∈ A(p) and let Q be defined by

Q(z) = (1−δ )( f ∗g)(z)+δ
z
p
(( f ∗g)(z))

′
. (2.6)

If

∣∣∣∣∣arg

(
Q(q)(z)

zp−q

)∣∣∣∣∣< π

2
β (z ∈U) ,

then ∣∣∣∣∣arg

(
(( f ∗g)(z))(q)

zp−q

)∣∣∣∣∣< π

2
β (z ∈U) ,

where 0 < β ≤ 1 and 0≤ q≤ p.
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Theorem 2.3. Let f ,g ∈ A(p) and let H be defined by (1.9). If(
Dn

λ ,p( f ∗g)(z)
)(q)

zp−q ≺ p!
(p−q)!

1+(1−2α)z
1− z

(z ∈U) . (2.7)

Then

H(q)(z)
zp−q ≺ p!(1−δ +δ p)

(p−q)!
1+(1−2α)z

1− z
(|z|< ρ) , (2.8)

where 0≤ q≤ p,0≤ α < 1, and

ρ =

[
1+
(

δ

1−δ +δ p

)2
] 1

2

− δ

1−δ +δ p
. (2.9)

The bound ρ ∈ (0,1) is the best possible.

Proof. Set

ψ(z) = (1− γ)
z

1− z
+ γ

z
(1− z)2 (z ∈U) ,

where γ = δ

1−δ+δ p > 0. We need to show that

Re
{

ψ(ρz)
ρz

}
>

1
2

(z ∈U) , (2.10)

where ρ = (1+ γ2)
1
2 − γ and 0 < ρ < 1. Let 1

1−z = R eiθ and |z|= r < 1. In view of

cosθ =
1+R2(1− r2)

2R
, R≥ 1

1+ r
,

we have

2Re
{

ψ(z)
z
− 1

2

}
= 2(1− γ)Rcosθ +2γR2 cos2θ −1

= R4
γ(1− r2)2 +R2

(
(1− γ)(1− r2

)
−2γr2)

≥ R2(γ(1− r)2 +(1− γ)(1− r2)−2γr2)

= R2(1−2γr− r2)> 0

for |z|= r < ρ , which gives (2.10). Thus the function ψ has the integral representation

ψ(ρz)
ρz

=
∫

1x1=1

dµ(x)
1− xz

(z ∈U) , (2.11)

where µ(x) is a prabability measure on |x|= 1.
Now letting φ(z) be in the form (2.2), we see that φ(z) = 1+b1z+ ... is analytic in U and it follows from (2.7) that

Reφ(z)> α (0≤ α < 1;z ∈U) . (2.12)

Since we can write

φ(z)+ γzφ
′
(z) =

(
ψ(z)

z

)
∗φ(z) ,

it follows from (2.11) that

Re
{

φ(ρz)+ γρzφ
′
(ρz)

}
= Re

{(
ψ(ρz)

ρz

)
∗φ(z)

}

= Re


∫

1x1=1

φ(xz)dµ(x)

> α (z ∈U) . (2.13)
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Thus, from (2.3) and (2.13), we conclude that (2.8)) holds. To show that the bound ρ is sharp we take f ,g ∈ A(p) defined by

(p−q)!
(p)q

(
Dn

λ ,p( f ∗g)(z)
)(q)

zp−q = α +(1−α)
1+ z
1− z

.

Since

(p−q)!
(p)q(1−δ +δ p)

H(q)(z)
zp−q = α +(1−α)

1+ z
1− z

+ γ(1−α)z
(

1+ z
1− z

)′
= α +(1−α)

1+2γz− z2

(1− z)2 = α

for z =−ρ , it follows that ρ is sharp.

Remark 2.4. (i) Putting λ = 1 and g(z) = zp

1−z in the above results we obtain the results for function G(z) defined by (1.10).
(ii) Putting g(z) = zp

1−z in the above results we obtain the results for function K(z) defined by (1.11).

3. Conclusion

In this paper, three subclasses Hn
λ ,p,δ ( f ∗g)(z), Gn

p,δ f (z) and Kn
λ ,p,δ f (z) are introduced and certain interesting argument inequalities and

differential subordinations properties are investigated.
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Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoģlu, Editors), pp. 241–250,
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