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A class of slant surfaces of the nearly Kähler
S3 × S3
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Abstract
We investigate slant surfaces of the nearly Kähler S3 × S3 which are
orbits of isometric actions, classify them and show that for a prescribed
angle there exists corresponding slant surface. Also, amongst them, we
find the totally geodesic ones.
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1. Introduction
Let (M̃, g, J) be an almost Hermitian manifold, i.e. a manifold endowed with an

almost complex structure J , J2 = −Id, such that g(JX, JY ) = g(X,Y ) for arbitrary
vector fields X,Y on M̃ . If ∇̃ is the Levi-Civita connection of the metric g, denote by
G(X,Y ) = (∇̃XJ)Y , the (2, 1)-tensor field on M̃ . If the tensor field G vanishes identically
we say that the manifold M̃ is Kähler. If manifold satisfies the weaker condition, that G
is skew symmetric, then M̃ is a nearly Kähler manifold.

It is known that there exist only four six-dimensional homogeneous nearly Kähler
manifolds, that are not Kähler: the sphere S6, the complex projective space CP 3, the
flag manifold F3 and S3 × S3, see [4].

It is natural to investigate the submanifolds of a manifold M̃ with an almost complex
structure with respect to that structure. We say thatM is an almost complex submanifold
if JTpM = TpM for any p ∈ M , and it is totally real if JTpM ⊂ TpM

⊥, for each
p ∈ M , where by TpM⊥ we denote the normal space of the submanifold at a point p.
Specially, if JTpM = TpM

⊥, M is said to be a Lagrangian submanifold. Amongst the
four six-dimensional nearly Kähler manifolds mentioned before, the almost complex and
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the totally real submanifolds and their generalizations have been mostly investigated in
the case of the sphere S6, we recall [2, 3, 7, 8, 12, 11]. Recently, the investigation of
the geometry of almost complex and Lagrangian submanifolds of S3 × S3 has been also
initiated, we refer the reader to [1, 10, 9].

The most natural generalizations of the notions of the almost complex and the totally
real subamnifolds are CR and slant submanifolds. We say that a submanifold M is slant
if the angle between the vector JX and tangent space TpM , for p ∈ M and X ∈ TpM
is constant, i.e. independent on the choice of the point p and the vector X. This angle
is called the Wirtinger angle of X, see [5, 6]. Obviously, the almost complex and the
totally real submanifolds can be considered as a special type of slant submanifolds with
Wirtinger angles, respectively, 0 and π/2. If a slant submanifold does not belong to one
of these two types we say that it is a proper slant submanifold. If the ambient manifold of
a proper slant submanifold M is six-dimensional, then M has to be two-dimensional (see
[6]). Note also that there do not exist four-dimensional almost complex submanifolds in
the six-dimensional nearly Kähler manifold, see [15], so even in the case when Wirtinger
angle is 0, the submanifold is a surface. There are not many known examples of the
proper slant submanifolds of the nearly Kähler manifolds, we refer the reader to [13, 14]
in the case of S6. In [11], Hashimoto and Mashimo found a family of examples of three
dimensional CR submanifolds of S6, which were orbit submanifolds. The same approach
was then used in [14], for obtaining orbit slant surfaces in S6. Here we investigate the
slant surfaces of S3 × S3 which are orbits of a two-dimensional connected Lie subgroup
of the nearly Kähler isometries and prove the following theorems.

1.1. Theorem. Let M be a slant, two-dimensional submanifold of the nearly Kähler
S3 × S3 which is an orbit of the point (p, q) of an isometric action of a connected Lie
subgroup of the nearly Kähler isometries group S3 × S3 × S3. Then M is congruent to
an orbit immersion of (1, 1) given by

f(t, s) =
(
(cos(a1t+ a2s) + sin(a1t+ a2s)α)(cos(c2s)− sin(c2s)γ),

(cos(b1t+ b2s) + sin(b1t+ b2s)β)(cos(c2s)− sin(c2s)γ)
)
,(1.1)

where α, β, γ are arbitrary unit imaginary quaternions. Here (a1, b1, 0), (a2, b2, c2) are
unit and orthogonal vectors in the space R3 such that, in the case that α, β and γ are
collinear (taking α = β = γ), satisfy additional condition:

(a2, b2, c2) 6= ±
1√

(a1 − b1)2 + 1)
(−(a1 − b1)b1, (a1 − b1)a1, 1).

Moreover, it holds that:
a) Any such immersion is flat.
b) The immersion f is totally geodesic if and only if α, β and γ are collinear.

1.2. Theorem. For any prescribed angle θ there exists a slant immersion of the form
(1.1) with the Wirtinger angle θ.

2. Preliminaries
Let S3 ⊂ R4 = H be a unit three-dimensional sphere, which we can regard as the set

of all unit quaternions. It is well known that S3 is a Lie group isometric to SU(2) and
that it admits a global moving frame. If we denote by p = x1 + ix2 + x3j + x4k ∈ S3 an
arbitrary point of the sphere, one of such moving frames is given by X1(p) = pi,X2(p) =
pj,X3(p) = −pk. Straightforwardly, we get that these vector fields form an orthonormal
moving frame and that [Xi, Xj ] = −2εijkXk, where εijk are the Levi-Civita symbols.



253

This relation directly implies that there are no two-dimensional Lie subalgebras of the
Lie algebra T1S

3 = su(2).
Obviously, an arbitrary tangent vector field can be represented in the form X = pα,

where p denotes the position vector field, and α(p) is purely imaginary quaternion.
The isometry of the spaces T(p,q)(S

3 × S3) ∼= TpS
3 ⊕ TqS3 allows us to represent an

arbitrary tangent vector at a point (p, q) ∈ S3 × S3 by Z = (U, V ) = (pα, qβ), where
α and β are imaginary quaternions. Recall that the Cayley product of the imaginary
quaternions satisfies

α · β = −〈α, β〉+ α× β,

where we denote by 〈, 〉 and × the standard metric of R4 and the cross product in R3,
respectively.

One of the useful moving frames of S3 × S3, obtained in a natural way from the
quaternionic structure is the following, see [1]:

E1(p, q) = (pi, 0), E2(p, q) = (pj, 0), E3(p, q) = −(pk, 0),
F1(p, q) = (0, qi), F2(p, q) = (0, qj), F3(p, q) = −(0, qk).

The almost complex structure on S3 × S3 is given by, see [1, 4]:

JZ(p,q) =
1√
3
(2pq−1V − U,−2qp−1U + V ).

Since the almost complex structure is not an isometry with regard to the standard product
metric inherited from the space R8 which we also denote by 〈, 〉, we define another metric
g by

g(Z,Z′) =
1

2
(〈Z,Z′〉+ 〈JZ, JZ′〉).

Then (S3×S3, g, J) is an almost complex manifold. We denote the Levi-Civita connection
of g by ∇̃ and by G(X,Y ) = (∇̃XJ)Y . Then, see [1], we have that

∇̃EiEj = −εijkEk, ∇̃EiFj =
εijk
3

(Ek − Fk),

∇̃FiEj =
εijk
3

(Fk − Ek), ∇̃FiFj = −εijkFk.

Moreover, straightforwardly, it holds that

G(Ei, Ej) = −
2

3
√
3
εijk(Ek + 2Fk), G(Ei, Fj) = −

2

3
√
3
εijk(Ek − Fk),

G(Fi, Ej) = −
2

3
√
3
εijk(Ek − Fk), G(Fi, Fj) =

2

3
√
3
εijk(2Ek + Fk),(2.1)

which further implies that G is a skew-symmetric tensor field, and S3 × S3 is a nearly
Kähler manifold.

In [1] the following almost product structure P was introduced

P (U, V ) = (pq−1V, qp−1U),

and it was also shown that it holds

P 2 = Id, PJ = −JP,
g(PZ, PZ′) = g(Z,Z′), g(PZ,Z′) = g(Z,PZ′),

PG(X,Y ) +G(PX,PY ) = 0.(2.2)
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Denote for an imaginary quaternion α = α1i+ α2j + α3k

Vα = (pα, 0) = α1E1 + α2E2 − α3E3,

Wα = (0, qα) = α1F1 + α2F2 − α3F3.

Then, we have PVα =Wα, and

JVα = − 1√
3
(Vα + 2Wα), JWα =

1√
3
(2Vα +Wα).

By using (2.1) and the last relation of (2.2) straightforwardly we obtain that

G(Vα, Vβ) =
2

3
√
3
(Vα×β + 2Wα×β),

G(Vα,Wβ) =
2

3
√
3
(Vα×β −Wα×β),

G(Wα, Vβ) =
2

3
√
3
(Vα×β −Wα×β),

G(Wα,Wβ) = −
2

3
√
3
(2Vα×β +Wα×β).(2.3)

Also, directly we have

〈Vα, Vβ〉 = 〈Wα,Wβ〉 = 〈α, β〉, 〈Vα,Wβ〉 = 0,

which further implies

〈JVα, JVβ〉 = 〈JWα, JWβ〉 =
5

3
〈α, β〉, 〈JVα, JWβ〉 = −

4

3
〈α, β〉.

Then we obtain

g(Vα, Vβ) = g(Wα,Wβ) =
4

3
〈α, β〉, g(Vα,Wβ) = −

2

3
〈α, β〉.(2.4)

In [9] it was shown that the relation between the Euclidean connection ∇ and ∇̃ is
given by

∇XY = ∇̃XY +K(X,Y ),

where by K(X,Y ) = 1
2
(JG(X,PY )+JG(Y, PX)) we denote the difference tensor of the

two connections.
The isometries preserving the nearly Kähler structure are given by

Fa,b,c : (p, q) 7→ (apc−1, bqc−1),(2.5)

for unit quaternions a, b, c, see [15]. Straightforwardly, the group of isometries of (S3 ×
S3, g, J) is isomorphic to the Lie group S3 × S3 × S3.

We consider the orbits of two-dimensional connected Lie subgroup of S3 × S3 × S3.
Let (p, q) be a point of a surface M immersed into S3 × S3 and X,Y orthonormal basis
of T(p,q)M . Since g(X, JX) = 0, the projection of JX to the tangent plane is collinear
with Y . Therefore, we have

| cos∠(JX, T(p,q)M)| = | cos∠(JX, Y )| = | cos∠(X, JY )|
= | cos∠(JY, T(p,q)M)|,

so the Wirtinger angle does not depend on a choice of tangent vector at a point. Assume,
now thatM is also an orbit of isometric action, preserving nearly Kähler structure. Then
it is obvious that Wirtinger angle is also independent of the choice of the point and that
M is a slant surface.
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3. Proof of the Theorems 1.1 and 1.2
Let us find the two-dimensional connected Lie subgroups of S3×S3×S3. An element

of the corresponding Lie algebra h = su(2) ⊕ su(2) ⊕ su(2) is of the form E + F + G,
E = (α, 0, 0), F = (0, β, 0), G = (0, 0, γ), where α, β, γ are imaginary quaternions. The
Lie bracket of the direct sum of algebras is taken componentwise so, for two elements of
the Lie algebra h we have [E1 + F1 +G1, E2 + F2 +G2] = [E1, E2] + [F1, F2] + [G1, G2].
Therefore a two-dimensional subspace of h is a subalgebra if, respectively, E1 and E2, F1

and F2, G1 and G2 span algebras of su(2). If E1 and E2 are not collinear, the Lie bracket
[E1, E2] is in the direction of the vector orthogonal to both E1, E2. Therefore, E1 and
E2, and similarly F1 and F2, G1 and G2 are, respectively, collinear, their Lie brackets
vanish, and the two-dimensional subalgebra g of h is Abelian.

Therefore, if W1 and W2 span the two-dimensional subalgebra g, there exist unit
vectors, with respect to standard metric, E,F and G in each copy of su(2) such that
Wi = aiE + biF + ciG, i = 1, 2. Denote by α, β, γ the unit imaginary quaternions such
that E = (α, 0, 0), F = (0, β, 0), G = (0, 0, γ). Vectors W1 and W2 commute, and
moreover, the algebra g contains a vector orthogonal to G, so from now on, we can take
that it is W1, i.e. c1 = 0. Also we may assume that W1,W2 are unit and orthogonal.
Here we also consider the standard metrics. Note that two connected subalgebras having
the same Lie algebra are equal, see [16].

We have that the flow corresponding to the vector aE + bF + cG is given by Fl(t) =
(cos(at) + sin(at)α, cos(bt) + sin(bt)β, cos(ct) + sin(ct)γ). Hence, a two-dimensional Lie
subgroup with the algebra g has elements of the form

It,s =(cos(a1t+ a2s) + sin(a1t+ a2s)α,

cos(b1t+ b2s) + sin(b1t+ b2s)β, cos(c2s) + sin(c2s)γ).

If we denote by a = a1t + a2s, b = b1t + b2s, c = c2s, taking (2.5), we obtain that the
orbit of the point (p, q) ∈ S3 × S3, is given by

f(t, s) = (f1, f2)(t, s)

=
(
(cos a+ sin aα)p(cos c− sin cγ), (cos b+ sin bβ)q (cos c− sin cγ)

)
.(3.1)

Notice that this orbit is congruent by the isometry Fp−1,q−1,1, see (2.5), to an orbit of
the point (1, 1) of the same form, determined by the imaginary quaternions p−1αp, q−1βq
and γ. Hence we can consider only the orbits of the point (p, q) = (1, 1).

Then, directly, we obtain that

∂tf = ft

= (a1(− sin a+ cos aα)(cos c− sin cγ), b1(− sin b+ cos bβ)(cos c− sin cγ))

= (f1a1(cos c+ sin cγ)α(cos c− sin cγ), f2b1(cos c+ sin cγ)β(cos c− sin cγ)),

∂sf = fs

= (a2(− sin a+ cos aα)(cos c− sin cγ), b2(− sin b+ cos bβ)(cos c− sin cγ)

− c2((cos a+ sin aα)(sin c+ cos cγ), (cos b+ sin bβ)(sin c+ cos cγ))

= (f1a2(cos c+ sin cγ)α(cos c− sin cγ), f2b2(cos c+ sin cγ)β(cos c− sin cγ))

− c2(f1γ, f2γ).

For an arbitrary imaginary quaternion σ we denote by

σ∗(s) = (cos c+ sin cγ)σ(cos c− sin cγ)

a curve in the space of imaginary quaternions. Note that γ∗ = γ is a constant curve.
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3.1. Lemma. The mapping (3.1) is of the rank less then two at arbitrary point if and
only if α, β, γ are collinear (α = β = γ) and

(a2, b2, c2) = ±
1√

(a1 − b1)2 + 1)
(−(a1 − b1)b1, (a1 − b1)a1, 1).

Proof. We can write now ft = (f1a1α
∗, f2b1β

∗) and fs = (f1a2α
∗, f2b2β

∗)−(f1c2γ, f2c2γ).
Because of the orthogonality of (a1, b1, 0) and (a2, b2, c2) for some λ ∈ R we have
(a2, b2) = λ(−b1, a1), where λ2 + c22 = 1. Also, since a21 + b21 = 1 we have that ft 6= 0.

Assume that ft and fs are collinear. Then there exists a coefficient k such that
fs = kft, i.e.

ka1α
∗ = a2α

∗ − c2γ, kb1β
∗ = b2β

∗ − c2γ.(3.2)

Assume first that c2 = 0 which implies λ = ±1. Then (3.2) reduce to

ka1 = a2 = −λb1, kb1 = b2 = λa1.(3.3)

If b1 6= 0 then the first relation of (3.3) implies a1, k 6= 0 and similarly from a1 6= 0 we
get b1 6= 0. Since a21 + b21 = 1 we have that a1, b1, k 6= 0. However, then relations (3.3)
also imply that the sign of a1 · b1 satisfies sgn(a1 · b1) = sgn(−kλ) = sgn(kλ) which is
impossible.

Therefore, we have c2 6= 0, and further that α∗, β∗ and γ are collinear, which then
implies that α, β and γ are collinear. By change of signs of ai, bi, i = 1, 2, if necessary,
we can assume that α = β = γ. Then (3.2) reduces to k(a1, b1) = (a2 − c2, b2 − c2) and
we have that k ∈ R. Further, it holds

c2 =λa1 − kb1 = −ka1 − λb1.(3.4)

The determinant of the system (3.4) over λ and k is a21 + b21 = 1, different from zero, and
therefore we have λ = c2(a1 − b1), k = −c2(a1 + b1), and c2 = ±1/

√
(a1 − b1)2 + 1.

Straightforwardly it follows that

(a2, b2, c2) = (−λb1, λa1, c2)

= ± 1√
(a1 − b1)2 + 1)

(−(a1 − b1)b1, (a1 − b1)a1, 1).(3.5)

Straightforward computation shows that α = β = γ and (3.5) implies that mapping (3.1)
is of rank less then two. �

3.2. Remark. We have that f1t = f1a1α
∗, f1s = f1(a2α

∗ − c2γ) and that imaginary
curves f1−1f1t and f1

−1f1s defining these vector fields depend only on parameter s.
Moreover, if we assume that f1 = const. it follows that a1 = 0 and a2α∗ = c2γ. We then
obtain that α∗ = γ, a2 = c2 and further (a1, b1, 0) = (0, 1, 0), (a2, b2, c2) = ( 1√

2
, 0, 1√

2
)

which implies that (f1, f2) is not an immersion. Same conclusion is obtained for assump-
tion f2 = const. Therefore, neither f1 nor f2 can be constant points.

From now on, we assume that either α, β, γ are not collinear or that

(a2, b2, c2) 6= ±
1√

(a1 − b1)2 + 1)
(−(a1 − b1)b1, (a1 − b1)a1, 1),

so that, by Lemma 3.1, we have that the mapping (3.1) is an immersion.
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Further we have that

ftt = −(a21(cos a+ sin aα)(cos c− sin cγ), b21(cos b+ sin bβ)(cos c− sin cγ)),(3.6)
fts

= −(a1a2(cos a+ sin aα)(cos c− sin cγ), b1b2(cos b+ sin bβ)(cos c− sin cγ))

− c2(a1(− sin a+ cos aα)(sin c+ cos cγ), b1(− sin b+ cos bβ)(sin c+ cos cγ)),

fss = 2c2(a2(sin a− cos aα)(sin c+ cos cγ), b2(sin b− cos bβ)(sin c+ cos cγ))

− c22f − (a22(cos a+ sin aα)(cos c− sin cγ), b22(cos b+ sin bβ)(cos c− sin cγ)).

Denote by e1 = 1√
g(ft,ft)

ft and by V = fs − g(fs, e1)e1 = fs − g(fs,ft)
g(ft,ft)

ft the vector field

orthogonal to e1. Then, straightforwardly, we get g(V, V ) = g(fs, fs) − g(fs,ft)
2

g(ft,ft)
. The

vector fields e1 and e2 = 1√
g(V,V )

V form an orthonormal frame. Therefore, the Wirtinger

angle of M is given by cos θ = g(Je1, e2), i.e.

cos2 θ =
g(Jft, fs)

2

g(ft, ft)g(fs, fs)− g(ft, fs)2
.(3.7)

We can write

ft = a1Vα∗ + b1Wβ∗ , fs = a2Vα∗ + b2Wβ∗ − c2(Vγ +Wγ),

Jft =
1√
3

(
− a1(Vα∗ + 2Wα∗) + b1(2Vβ∗ +Wβ∗)

)
,

Jfs =
1√
3

(
− a2(Vα∗ + 2Wα∗) + b2(2Vβ∗ +Wβ∗) + c2(−Vγ +Wγ)

)
.(3.8)

Since we have that 〈α∗, β∗〉 = 〈α, β〉, γ∗ = γ and a21 + b21 = a22 + b22 + c22 = 1 it follows

g(ft, ft) =
4

3
(1− a1b1〈α, β〉),

g(fs, fs) =
4

3
(1− a2c2〈α, γ〉 − b2c2〈β, γ〉 − a2b2〈α, β〉),

g(ft, fs) = −
2

3
((a1b2 + b1a2)〈α, β〉+ a1c2〈α, γ〉+ b1c2〈β, γ〉),

g(Jft, fs) =
2√
3
((b1a2 − a1b2)〈α, β〉+ a1c2〈α, γ〉 − b1c2〈β, γ〉).

Notice that, from α∗ · β∗ = (αβ)∗, and 〈α, β〉 = 〈α∗, β∗〉 we have that (α × β)∗ =
α∗ × β∗. Moreover, we have that

f−1
1 (− sin a+ cos aα)(sin c+ cos cγ) + 〈α, γ〉
= (cos c+ sin cγ)α(sin c+ cos cγ)(cos c+ sin cγ)(cos c− sin cγ) + 〈α, γ〉
= (αγ)∗ + 〈α, γ〉 = (αγ + 〈α, γ〉)∗ = (α× γ)∗.(3.9)

Note that, in case c2 = 0, which means that both W1 and W2 are orthogonal to G,
with regard to standard metric, we can choose W1 and W2, so that W1 is orhtogonal to
F . Than we can take W1 = E, W2 = F , i.e.

a1 = 1, b1 = 0, a2 = 0, b2 = 1, c1 = c2 = 0.(3.10)

Let us now show that Theorem 1.2 holds, i.e. that for arbitrary prescribed angle θ,
there exists a slant surfaceM in S3×S3 such that θ is its Wirtinger angle. For simplicity,
we consider the surfaces that satisfy (3.10). Then (3.7) reduces to cos2 θ = 3〈α,β〉2

4−〈α,β〉2 , so it

is sufficient to take the unit imaginary quaternions α and β that satisfy 〈α, β〉2 = 4 cos2 θ
3+cos2 θ

.
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Now, let us investigate the second fundamental form of the submanifoldM . Recall that
the second fundamental form of the immersion f1 : S3 → R4 with respect to the standard
connection is given by h4(X,Y ) = −〈X,Y 〉f1. Therefore, the second fundamental form of
the immersion (f1, f2) : S

3×S3 → R8 with respect to the standard Euclidean, i.e. product
connection is given by hD(X,Y ) = −〈π1(X), π1(Y )〉(f1, 0)−〈π2(X), π2(Y )〉(0, f2), where
by π1(X) and π2(X) we denote the projections of the vector X at a point on the first
or second four coordinates. If we denote by D the standard connection in space R8, we
then have, for the vector fields X,Y tangent to S3 × S3, that

DXY = hD(X,Y ) +K(X,Y ) + ∇̃XY.(3.11)

First, the direct computation by using (2.3) and G(Vα,Wα) = 0 we obtain that

G(ft, Pft) =
2√
3
a1b1(Vα∗×β∗ +Wα∗×β∗),

G(ft, Pfs) =
2

3
√
3

(
(2b1a2 + a1b2)Vα∗×β∗ + (2a1b2 + b1a2)Wα∗×β∗

+ a1c2(2Vγ×α∗ +Wγ×α∗) + b1c2(Vβ∗×γ + 2Wβ∗×γ)
)
,

G(fs, Pft) =
2

3
√
3

(
(2b2a1 + a2b1)Vα∗×β∗ + (2a2b1 + b2a1)Wα∗×β∗

+ a1c2(Vγ×α∗ + 2Wγ×α∗) + b1c2(2Vβ∗×γ +Wβ∗×γ)
)
,

G(fs, Pfs) =
2√
3
(a2b2(Vα∗×β∗ +Wα∗×β∗) + a2c2(Vγ×α∗ +Wγ×α∗)

+ b2c2(Vβ∗×γ +Wβ∗×γ)).

Then the difference tensor is given by

K(ft, ft) =
2

3
a1b1(Vα∗×β∗ −Wα∗×β∗),

K(ft, fs) =
1

3
((a1b2 + a2b1)(Vα∗×β∗ −Wα∗×β∗) + b1c2(Vβ∗×γ −Wβ∗×γ)

+ a1c2(Vγ×α∗ −Wγ×α∗)),

K(fs, fs) =
2

3
(a2b2(Vα∗×β∗ −Wα∗×β∗) + a2c2(Vγ×α∗ −Wγ×α∗)

+ b2c2(Vβ∗×γ −Wβ∗×γ)).(3.12)

Now, straightforwardly, by using (3.9) in (3.6), and further using (3.11) and (3.12) we
obtain that

∇̃∂t∂t = −
2

3
a1b1(Vα∗×β∗ −Wα∗×β∗),

∇̃∂t∂s =
1

3
(−(a1b2 + a2b1)(Vα∗×β∗ −Wα∗×β∗) + a1c2(2Vγ×α∗ +Wγ×α∗)

− b1c2(Vβ∗×γ + 2Wβ∗×γ)),

∇̃∂s∂s =
2

3
(−a2b2(Vα∗×β∗ −Wα∗×β∗) + a2c2(2Vγ×α∗ +Wγ×α∗)

− b2c2(Vβ∗×γ + 2Wβ∗×γ)).(3.13)

3.3. Lemma. The given coordinates (t, s) are flat.
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Proof. We denote ∂t = ft, ∂s = fs. By using (3.8), (2.4) and that the cross product of
two vectors is orthogonal to the components with respect to the metric 〈, 〉 we have that

g(∇̃∂t∂t, ∂s) = −
2

3
a1b1

(
g(Vα∗×β∗ −Wα∗×β∗ , a2Vα∗ + b2Wβ∗ − c2(Vγ +Wγ))

)
= −2

3
a1b1

(
a2(

4

3
〈α∗ × β∗, α∗〉 − (−2

3
)〈α∗ × β∗, α∗〉)

+ b2((−
2

3
)〈α∗ × β∗, β∗〉 − 4

3
〈α∗ × β∗, β∗〉)

− c2(
4

3
− 2

3
+

2

3
− 4

3
)〈α∗ × β∗, γ〉

)
= 0.

In the same manner we obtain that g(∇̃XY,Z) = 0, for all X,Y, Z ∈ {∂t, ∂s} which
concludes the proof. �

Hence, the expressions on the right hand side of (3.13) then represent the correspond-
ing components of the second fundamental form of the immersion into S3 × S3.

Let us find the necessary and sufficient conditions for the immersion (1.1) to be totally
geodesic.

First, assume that α∗ × β∗ = 0. Obviously, then for c2 = 0 we obtain the totally
geodesic immersion. Then we can trivially take γ collinear to α and β. Therefore, let’s
take c2 6= 0. Then, we obtain that (2aiα

∗ + biβ
∗) and (aiα

∗ + 2biβ
∗) for i = 1, 2 are

collinear to γ. Hence, we have aiα∗, biβ∗||γ. Therefore, we have α∗, β∗||γ, which we can
also take in the case that a1 = a2 = 0 or b1 = b2 = 0.

Assume that it holds α∗ × β∗ 6= 0. Therefore we have c2 6= 0 and exactly one of the
coefficients a1, b1 vanishes. For instance, take a1 = 1, b1 = 0, the other case is similar.
Then, in the same manner as before, there exist coefficients ki such that

γ × (2aiα
∗ + biβ

∗) = ki(α
∗ × β∗),

γ × (aiα
∗ + 2biβ

∗) = −ki(α∗ × β∗),

so γ × (aiα
∗ + biβ

∗) = 0. Therefore γ is collinear to a1α∗ and a2α∗ + b2β
∗. Further we

have that a2 = 0, so we can again take α∗, β∗||γ. Now, recall that α∗ is collinear to γ if
and only if α is collinear to γ. This ends the proof of the Theorem 1.1.

3.4. Example. Let us now give an example of the minimal, non totally geodesic immer-
sion. Straightforwardly, we have that the immersion is minimal if and only if

g(ft, ft)h(∂s, ∂s) + g(fs, fs)h(∂t, ∂t)− 2g(ft, fs)h(∂t, ∂s) = 0.

Let α = −β = 1√
2
(−i+ j), γ = i and a1 = b1 = 1√

2
, a2 = b2 = 0, c2 = 1. Then we have

g(fs, ft) = 0, h(∂t, ∂t) = h(∂s, ∂s) = 0, so the immersion is minimal. The corresponding
Wirtinger angle is given by cos2 θ = 1

2
.
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