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The Language of Soil: Soil Analysis with a 
Machine Learning Approach 
 
Toprağın Dili: Makine Öğrenimi Yaklaşımı ile Toprak Analizi  
ABSTRACT 

In Türkiye, rapid population growth combined with unsustainable agricultural practices 
threatens the sustainable use of fertile soils and poses serious risks for the agricultural 
sector. To address this challenge, the present study analyzes soil data from the Odunpazarı 
district of Eskişehir province and proposes a machine learning–based approach. First, 
Principal Component Analysis (PCA) was applied to reduce data dimensionality, after which 
the K-Means algorithm classified the soils into three clusters. These clusters revealed 
significant differences in physical structure, moisture, salinity, and mineral composition, 
thereby providing a robust basis for further modeling. Building on this foundation, 
supervised machine learning models were developed and their performances compared. 
Logistic Regression achieved the highest accuracy (98.9%), followed by Decision Tree 
(97.8%), Random Forest (97.2%), and K-Nearest Neighbors (91.7%). The findings 
demonstrate that machine learning algorithms can reliably predict soil group membership 
and generate valuable insights for regional soil productivity analysis. Overall, the study 
highlights the effectiveness of data-driven methods in supporting sustainable agricultural 
planning and offers an integrative model that can guide future applications in precision 
agriculture. 

Keywords: Supervised machine learning, Unsupervised machine  learning, Cluster analysis,  
Sustainable agriculture, Productivity 
 

ÖZ 

Türkiye’de artan nüfus ve bilinçsiz tarım uygulamaları, verimli toprakların sürdürülebilir 
kullanımını tehdit etmekte ve tarım sektöründe ciddi riskler oluşturmaktadır. Bu 
çalışmada, söz konusu soruna çözüm arayışıyla Eskişehir ili Odunpazarı ilçesine ait toprak 
analiz verileri incelenmiş ve makine öğrenmesi tabanlı bir yaklaşım geliştirilmiştir. 
Öncelikle, veri boyutunu azaltmak amacıyla Temel Bileşenler Analizi (PCA) uygulanmış, 
ardından K-Ortalama (K-Means) algoritmasıyla topraklar üç kümeye ayrılmıştır. Kümeler; 
fiziksel yapı, nem, tuzluluk ve mineral içerikleri açısından anlamlı farklılıklar göstermiş, 
böylece sınıflandırma süreci için sağlam bir temel oluşturmuştur. Bu aşamanın ardından 
kümelenen veriler kullanılarak denetimli makine öğrenmesi modelleri geliştirilmiş ve 
performansları karşılaştırılmıştır. Lojistik Regresyon modeli %98,9 doğruluk ile en yüksek 
başarıyı elde ederken, Karar Ağacı %97,8, Rastgele Orman %97,2 ve K-En Yakın Komşu 
(KNN) %91,7 doğruluk oranına ulaşmıştır. Bulgular, makine öğrenmesi algoritmalarının 
toprak gruplarını güvenilir biçimde tahmin edebildiğini ve bölgesel toprak verimliliği 
analizlerinde değerli katkılar sunduğunu ortaya koymaktadır. Sonuç olarak çalışma, akıllı 
tarım uygulamaları için veri odaklı karar destek sistemlerinin geliştirilmesine yönelik 
örnek bir model sunmaktadır. 

Anahtar Kelimeler: Denetimli makine öğrenmesi, Denetimsiz makine öğrenmesi, 
Kümeleme analizi, Sürdürülebilir tarım, Verimlilik 
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Introduction 

Agriculture is a fundamental activity that provides food and 
raw materials to people through crop cultivation and animal 
husbandry. It makes significant contributions to the gross 
national product of many countries. In addition, it supplies 
raw materials to sectors such as textiles, the food industry, 
energy, and biotechnology. However, climate change, the 
growth of the world population, and the reduction of 
agricultural resources have caused serious problems in 
agriculture. Mismanagement practices such as improper 
land use, overgrazing, faulty crop rotation, and unbalanced 
fertilizer application are gradually reducing agricultural 
lands, thereby making agriculture a strategic priority (Demir 
et al., 2023; Kılavuz & Erdem, 2019). Moreover, fluctuations 
in the global economy directly affect the performance of 
enterprises at both national and regional levels. Therefore, 
countries aiming for economic growth and development 
should consider the importance of agriculture and base their 
strategic policies on sound analyses (Esmer & Gezer, 2021). 

The inadequacy of traditional farming methods has brought 
smart farming applications to the forefront. Smart farming 
does not only aim to increase soil fertility but also seeks to 
ensure the efficient and sustainable development of 
agriculture. These approaches minimize environmental 
damage and enable the effective use of natural resources. 

Higher yields can be achieved with less water, fertilizer, and 
fuel. At the same time, more crops can be cultivated in 
smaller areas, reducing farmers’ costs. Big data analytics 
enables the analysis of variables such as climate conditions 
and soil fertility, thereby optimizing processes. At this point, 
machine learning (ML) methods play an active role in data 
analysis and prediction (Demir et al., 2023). Thus, innovations 
ranging from digital technologies to autonomous systems are 
being implemented in smart agriculture. 

The primary goal of agriculture is crop production, and with 
population growth, the demand for food continues to rise. A 
review of the literature reveals numerous studies on crop 
management. For instance, Reddy et al. (2019) developed a 
crop recommendation system using ML algorithms in the 
Ramtek region of India. Garanayak et al. (2021) analyzed 
climate and soil data with ML regression methods to improve 
soil fertility in the Andhra Pradesh region. Paudel et al. (2022) 
proposed regional ML models for crop yield prediction at 
multiple spatial levels. Patel and Patel (2023) aimed to improve 
crop yield and optimize resource use with ML methods in 
Gujarat. Bhargavi and Jagannathan (2024) used weather, soil, 
and location data to predict crop yields in the Maharashtra and 
Karnataka regions. Burhan and Soydan (2023) predicted 
production quantities and yields for 2021–2022 using datasets 
provided by the Turkish Grain Board (TMO) and the Turkish 
State Meteorological Service (MGM). Prity et al. (2024) 

developed an ML-based crop recommendation system. Yakut 
et al. (2023) analyzed more than 7,500 soil data samples from 
Isparta using ML algorithms to determine which soils are more 
suitable for which crops. 

Crop cultivation depends directly on soil quality and nutrient 
content, while fertilization, modern irrigation, seed 
improvement, and erosion prevention play a key role in 
enhancing fertility. However, continuous cropping depletes 
nutrients and reduces soil fertility, which is usually determined 
by nutrient presence or absence (Gruhn et al., 2000). 
Sustainable soil fertility depends on the soil’s ability to supply 
nutrients to plants. Therefore, assessing soil fertility is a critical 
aspect of sustainable agriculture (Maathuis, 2009). 

The literature shows that crop management studies also 
consider the physical, biological, and mineral characteristics of 
the soil. Soil classification based on fertility is used to identify 
nutrient deficiencies and to develop crop recommendation 
systems (Taher et al., 2021). Once soil data are obtained, they 
can be analyzed with ML algorithms for classification, enabling 
fertilizer and treatment recommendations. For example, 
Bhargavi and Jyothi (2011) analyzed soil data using data mining 
techniques. Hayattu et al. (2020) examined soil analysis data 
from northwestern Nigeria with similar approaches. Yadav et 
al. (2021) applied various ML algorithms to group and classify 
soils. 

Soil fertility differs across regions, and crops are selected 
accordingly. Studies in the literature have been conducted by 
considering the factors affecting soil fertility in different 
countries. However, studies that comprehensively classify soil 
properties in Turkey using ML algorithms are very limited. A 
holistic evaluation of Turkey’s soil analysis data and their 
classification through machine learning methods represents an 
important research need. 

In this study, soil analysis data obtained from the Odunpazarı 
district of Eskişehir, provided by the Ministry of Agriculture and 
Forestry of the Republic of Turkey, were used. The physical and 
chemical components of the soil (e.g., soil depth, water 
saturation, total salt, lime, sand, clay, calcium, magnesium, 
boron, sodium, saturation, and other variables) were 
considered. First, the K-means clustering algorithm was applied 
to group soils, allowing meaningful differentiation and 
evaluation of fertility levels. Then, these clusters were used as 
labels to train supervised machine learning models. The aim 
was to predict the cluster of a randomly selected soil sample. 
The findings are expected to guide farmers in soil management 
practices and contribute to future research. In this context, this 
study aims to provide benefits such as accurate crop selection 
for farmers, supporting sustainable agricultural practices, 
preventing soil degradation, reducing costs through efficient 
land use, and minimizing environmental impacts. 
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Methods 

In this study, similar soil types were grouped using the K-
Means clustering algorithm after data pre-processing. The 
overall workflow at this stage of the study is presented 
schematically in Figure 1. 

In the first stage, clustering analysis was performed, and 
soils were categorized according to their characteristics, 
allowing an evaluation of their soil fertility. In the second 
stage, a classification step was initiated to predict the 
group membership of a randomly selected soil sample. 

For this purpose, the cluster labels were used to train 
various machine learning models, including Random 
Forest, Logistic Regression, Decision Tree, and K-Nearest 
Neighbour (KNN), and their performances were compared. 
The process is illustrated in Figure 2. 

In addition, the overall two-stage workflow of the study is 
summarized in Figure 3, highlighting Stage 1 (unsupervised 
clustering) and Stage 2 (supervised classification). 

Data set 

The dataset used in this study consists of soil analysis data 
from the Odunpazarı region of Eskişehir province, obtained 
from the Ministry of Agriculture and Forestry. The dataset 
includes the physical and chemical properties of soil 
samples collected from various locations to evaluate soil 
fertility. These properties encompass parameters such as 
water saturation, total salt, lime, sand, clay, silt, calcium, 
magnesium, boron, sodium, electrical conductivity (EC), 
pH, sodium adsorption ratio (SAR), and exchangeable 
sodium percentage (ESP). 

Descriptive statistics for the main variables are presented 
in Table 1. The average water saturation rate is 83.75%, 
with values ranging from 50.6% to 136.4%, indicating 
substantial variation in the soils’ water holding capacity. 
The pH is slightly alkaline, averaging 7.74 (range 7.28–
8.19). Total salt content is low (average 0.034%), 
suggesting generally low salinity levels in the region. 

The proportions of sand, clay, and silt among the physical 
components are 30.29%, 45.40%, and 23.66%, 
respectively. These ratios indicate that the soils are 
generally clayey-loamy. Regarding chemical properties, the 
calcium (1.67 meq/L) and magnesium (0.66 meq/L) values 
provide insight into the mineral content of the soils. 
Additionally, the average SAR and ESP values (0.24 and 
1.60, respectively) suggest that the sodicity level is low. 

In general, these descriptive statistics show that the soils 
of Eskişehir Odunpazarı region have a heterogeneous 
physical and chemical structure, and this diversity will 
contribute to the correct grouping of soils in machine 
learning models. 

Figure 1.  

Workflow diagram of clustering analysis according to soil 
properties  

 
Figure 2.  

Workflow diagram of soil group prediction and model 
performance evaluation process 

 
Figure 3.  

Overall two-stage workflow of the study 
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Table 1.  

Summary descriptive statistics for numerical variables 

 Count Average Std. Deviation Minimum 25% 50% 75% Maximum 

Saturation with Water (%) 905 83.754 18.015 50.600 70.400 81.400 95.700 136.400 
pH in Water Saturated Soil 905 7.7431 0.168 7.280 7.630 7.730 7,.860 8.190 
Total Salt (%) 905 0.0343 0.011 0.011 0.026 0.034 0.042 0.067 
EC (μSm/cm) 905 0.6427 0.153 0.291 0.539 0.641 0.741 1.056 
Lime (%) 905 14.442 9.468 0.186 6.460 13.056 21.660 36.267 
Sand (%) 905 30.924 7.300 9.010 25.360 32.410 36.580 48.520 
Clay (%) 905 45.405 6.854 28.560 39.580 45.160 50.140 63.540 
Silt (%) 905 23.669 5.566 7.420 19.650 23.540 27.590 39.970 
Ca meq/l 905 1.673 0.812 0.007 1.082 1.566 2.174 4.202 
Mg meq/l 905 0.663 0.281 0.009 0.451 0.629 0.835 1.484 
Ca+Mg (meq/l) 905 2.335 0.905 0.000 1.677 2.247 2.912 4.897 
Na meq/l 905 0.248 0.108 0.005 0.167 0.238 0.311 0.566 
SAR 905 0.238 0.103 0.033 0.164 0.223 0.306 0.518 
ESP 905 1.606 0.148 1.308 1.498 1.584 1.704 2.008 
Boron (ppm) 905 0.230 0.119 0.006 0.144 0.217 0.305 0.558 

Figure 4.  
Correlation matrix of variables 
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The relationships between soil variables were analyzed 
using the correlation matrix (heat map) in Figure 4. A 
very strong positive correlation (.92) was found between 
water saturation rate and clay (%), indicating that soils 
retain more water as clay content increases. In contrast, 
water saturation showed a strong negative correlation (-
.73) with sand (%), suggesting lower water retention in 
sandy soils. 

Total salt content was positively correlated with 
electrical conductivity (EC) (.75), confirming that salt 
increases ionic conductivity. Calcium (Ca) showed a very 
high correlation (.95) with Ca+Mg, highlighting the need 
to evaluate these elements together for mineral 
balance. 

On the other hand, very strong positive relationships 
were found between sodium (Na) and SAR (Sodium 
Adsorption Rate) with a coefficient of .88 and between 
SAR and ESP (Exchangeable Sodium Percentage) with a 
coefficient of 1.00. This shows that soil sodicity 
parameters are closely related to each other and 
provides critical information for salinity management. In 
general, correlation analysis reveals how the physical 
and chemical properties of soil components are related 
to each other, which provides an important basis for 
variable selection in machine learning models. 

Figure 5.  

Distribution of raw data 

 

In Figure 5, the distributions of the locations of the soil 
observations of the Odunpazarı region are visualized with 
the help of ArcGIS software. Before the analysis, the data 
was cleaned, missing values were removed, and outliers 
were checked. In addition, dimensionality reduction was 
performed using Principal Component Analysis (PCA) and 
the data set was made suitable for clustering and 
classification analyses. 

Methods used 

Principal Component Analysis (PCA) 

PCA represents multivariate data with fewer variables, 
reducing dimensionality with minimal information loss. It 
creates new, uncorrelated variables called principal 
components, thereby removing dependencies among the 
original variables (Ersungur et al., 2007). 

Principal component analysis aims to determine the best 
transformation that can express the available data with 
fewer variables. The variables obtained after the 
transformation are called principal components of the initial 
variables. The first principal component is the one with the 
largest variance value and the other principal components 
are ranked in order of decreasing variance values. The main 
advantages of this method are low sensitivity to noise, 
reduced memory and capacity requirements, and more 
efficient operation in low-dimensional spaces (Brownlee, 
2016; Koldere, 2008). 

Figure 6.  
PCA model 

 

Principal component analysis performs dimension reduction 
by representing multidimensional data with fewer 
components as shown in Figure 6. In addition, as can be seen 
in the figure, the three-dimensional data in the original data 
space is reduced to two main components called PC1 and 
PC2. This transformation preserves most of the total 
variance in the data set, allowing the data to be expressed 
in a simpler and more comprehensible component space. 

K-means clustering method 

K-Means is a fundamental unsupervised learning algorithm 
for clustering. It groups unlabeled data by assigning similar 
observations to the same cluster. The algorithm determines 
k centroids and assigns each data point to the nearest one, 
iteratively optimizing cluster similarity. The parameter k 
defines the number of clusters to be formed, and this 
process continues until the similarity between the data is 
maximized (Brownlee, 2016; Koldere, 2008). 
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As can be seen in Figure 7, in Step 1, the data are initially 
scattered and not clustered. Then two cluster centers are 
selected as blue and green stars. The data are assigned to 
clusters according to their proximity to these centers and 
the centers for each cluster are renewed by averaging the 
data in that cluster. This process is repeated until the 
centers remain constant and the clusters become distinct.  

Figure 7.  

Example of clustering model with k-means algorithm 

 

From this, the Euclidean distance 𝑑(𝑥𝑖, 𝑐𝑗) of the data point 

𝑥𝑖 to the centre 𝑐𝑗 is calculated as follows. 

𝑑(𝑥𝑖 , 𝑐𝑗) =  √∑ (𝑥𝑖𝑘 −  𝑐𝑗𝑘)2𝑛
𝑘=1  [1] 

Where n represents the size of the data point (number of 
features/parameters).  

The new center account, 

𝑐𝑗 =  
1

𝑁𝑗
 ∑ 𝑥𝑖𝑥𝑖∈ 𝐶𝑗

 [2] 

𝑐𝑗, calculates the centre of the jth cluster. 𝑁𝑗, denotes the 

number of data points in cluster j. and 𝐶𝑗 denotes all data 

points in that cluster. 

Classification algorithms 

KNN algorithm 
The main objective in classification problems is to accurately 
predict the classes to which the observations belong. The 
general purpose of the KNN algorithm, which is widely used 
in this context, is to assign observations to predetermined 
classes according to their own characteristics, as can be seen 
in Figure 8. In addition, the classification of a new 
observation is also provided. The new observation to be 
classified is classified into the same group with the k closest 
observations with the help of the learning dataset (Ağlarcı & 
Karakurt, 2024). This method, which assumes that data with 
similar characteristics are usually located close to each 
other, is based on neighbourhood relations when 

determining the class of new observations. The Euclidean 
distance is generally preferred for distance measurement. 
However, alternative distance measures, such as Manhattan 
and Minkowski, can also be used. The Euclidean distance 
measures the straight-line distance between two points and 
is particularly suitable for continuous variables. The 
Manhattan distance, on the other hand, is based on the sum 
of the absolute differences between two vectors. Finally, the 
Minkowski distance provides a generalized form of these 
two measurements and can be reduced to different distance 
types depending on the chosen parameter value. 
Performance metrics such as accuracy, precision, F1 score 
are used to evaluate the performance of the model. 

In this study, three distinct clusters generated using the K-
Means algorithm were designated as class labels. The 
Euclidean distance was employed to quantify the distances 
between observations, and the KNN algorithm was 
subsequently trained based on these labels. 

Figure 8.  

Example of classification model with KNN algorithm 

 

Logistic regression algorithm 
Logistic regression is a basic method of probability-based 
classification with two or more independent variables when 
the dependent variable is categorical. Logistic regression, 
unlike linear regression, uses a logistic function that limits 
the output values between 0 and 1. In this respect, it offers 
effective decision mechanisms in classification problems. In 
addition, it is widely preferred due to its simple structure 
and fast computational capability. Logistic regression can be 
applied in different types for binary, multiple and sequential 
classification problems (Hamid et al., 2018). 

In this study, due to the independent and multi-categorized 
structure of the clusters, binary logistic regression was not 
sufficient; instead, multinomial logistic regression model, 
which is suitable for multi-class problems, was preferred. 
The model predicted which of the three classes each 
observation belongs to on a probability basis through the 
softmax function. 
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Random forest algorithm 
Random Forest is one of the supervised learning methods 
and is widely used in classification and regression problems. 
As can be seen in Figure 9, this method is an ensemble 
model consisting of multiple decision trees. Each tree is 
trained with a random subset of the training data and 
different random features are used at each node. The 
decision made by each tree is considered when making 
predictions; the majority vote is taken in classification 
problems, and the average value is taken in regression 
problems. This structure prevents the model from 
overlearning and increases its generalization capability. 
Random Forest provides high success especially in large and 
complex data sets. In addition, thanks to its feature of 
determining the importance of variables, it also shows which 
variables are effective on prediction (Kumral et al., 2022). 

Figure 9.  

Example of classification model with random forest algorithm 

 

Decision tree algorithm 
Decision trees are among the most widely used supervised 
learning methods in classification and regression problems. 
Their main advantage lies in their ease of construction and 
the interpretability of the results they produce. The 
structure of decision trees consists of nodes, branches, and 
leaves. Data are split from the root node into branches and 
ultimately classified in the leaves. This allows the decision-
making process to be followed step by step, facilitates 
evaluation of the resulting structure, and enables direct 
application to new data. 

The performance of decision trees depends on several key 
parameters. Maximum depth determines the maximum 
number of layers a tree can have, while the minimum 
number of samples per leaf enhances the model’s 
generalization ability. As splitting criteria, Gini Index or 
Entropy are commonly used in classification, whereas Mean 
Squared Error (MSE) is employed in regression. Additionally, 
limiting the maximum number of features improves 
efficiency and helps prevent overfitting. 

The most important advantage of decision trees is their 
interpretability. However, very deep trees may become 
sensitive to noise and prone to overfitting. For this reason, 
decision trees are often combined with ensemble methods 
such as Random Forests or Gradient Boosted Trees, which 
provide higher accuracy and better generalization. 

Overall, decision trees stand out as a valuable machine 
learning method due to their transparent structure and 
ability to generate explicit decision rules. They are 
particularly useful in fields such as agriculture, healthcare, 
and environmental studies, where interpretability is of 
critical importance. The graphical representation of the 
model is given in Figure 10. 

Figure 10.  

Example of classification model with decision tree algorithm 

 

All classification algorithms were implemented using the 
scikit-learn library in Python. Default parameter settings 
were employed unless otherwise stated. Specifically, KNN 
was applied with Euclidean distance and k=5 neighbors, 
Random Forest with 100 trees (n_estimators=100) and 
unrestricted depth, and Decision Tree with unlimited depth 
and Gini impurity as the splitting criterion. Logistic 
Regression was applied with the ‘lbfgs’ solver and default 
regularization parameter (C=1.0). These settings correspond 
to the standard default values in scikit-learn (version 1.2.2). 

Results and Discussion 

In this study, by applying PCA, dimensionality reduction was 
made by reducing many variables in the dataset. In addition, 
the situation of affecting the performance of the 
classification models due to the high correlation between 
the features was eliminated. As a result, six components 
were determined, explaining a total variance of 80%.  

Table 2 shows the component load matrix, which illustrates 
the relationships between components and variables. 
Positive values indicate a direct relationship, whereas 
negative values reflect an inverse relationship. Variables 
with higher absolute values contribute more significantly to 
the explanation of the corresponding component. For the 
components, variables with loading values of 0.30 and 
above were considered dominant. 
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Table 2.  
Component load matrix 

 PC1 PC2 PC3 PC4 PC5 PC6 

Saturation with Water (%) 0.415586 -0.061068 0.198644 0.113304 -0.199862 0.033530 
pH in Water Saturated Soil 0.002300 0.038581 0.416919 -0.033836 0.282925 0.097506 
Total Salt (%) 0.351932 -0.142861 -0.396154 -0.001432 -0.186328 -0.047222 
EC (μSm/cm) 0.107791 -0.130041 -0.685855 -0.090043 -0.065777 -0.104965 
Lime (%) -0.137459 -0.032708 0.007639 0.006779 0.338558 -0.592244 
Sand (%) -0.349169 -0.000206 -0.241574 0.405781 0.283475 0.084129 
Clay (%) 0.409340 -0.072509 0.188487 0.213763 -0.159239 0.040214 
Silt (%) -0.046109 0.089572 0.084751 -0.795565 -0.175738 -0.159886 
Ca meq/l 0.201089 -0.384783 -0.001887 -0.173296 0.456553 -0.045457 
Mg meq/l 0.311076 -0.024382 0.072117 0.153362 0.007949 0.060140 
Ca+Mg (meq/l) 0.278631 -0.353852 0.022012 -0.106320 0.414892 -0.024034 
Na meq/l 0.310514 0.361122 -0.086779 -0.051507 0.333873 -0.037458 
SAR 0.182149 0.518991 -0.101796 -0.003153 0.157315 -0.020843 
ESP 0.182337 0.518787 -0.102861 -0.003417 0.157258 -0.019659 
Boron (ppm) -0.060200 -0.018620 -0.155223 -0.258950 0.219444 0.763298 

Table 3.  
Newly assigned names for PCA components 

 PCA Components Names Rasyon 

PC1 Soil Physical Structure, Moisture and Salinity 

PC2 Mineral Content and Ionic Balance 

PC3 pH, Salinity and Electrical Conductivity 

PC4 Soil Texture 

PC5 Chemical and Mineral Content with Ionic Balance 

PC6 Micronutrient and Mineral Content 

The newly assigned names for the PCA components are 
presented in Table 3.  

When examining the high loading values for each 
component, it is observed that certain groups of variables 
stand out. Accordingly, representative names were assigned 
to the PCA components based on the structural similarities 
of the dominant variables they contain. For example, in PC1, 
variables such as 'Saturation with Water (%)', 'Clay (%)', 
'Total Salt (%)', and 'Mg meq/l', which are related to physical 
structure, moisture, and salinity, have high loading values. 
Therefore, this component was named 'Soil Physical 
Structure, Moisture and Salinity'. Similarly, in PC2, variables 
like 'Na meq/l', 'SAR', and 'ESP', which are associated with 
sodium and ionic balance, are prominent, and thus the 
component was named 'Mineral Content and Ionic Balance'. 
For the other components as well, the dominant variables 
were evaluated collectively, and each component was 
named with meaningful and descriptive titles that reflect the 
representative structure in the data. 

Before the clustering process, the Elbow Method was 
applied to determine the most appropriate number of 
clusters and the optimal number of clusters, i.e. the optimal 
number of clusters, was determined through this method. 

Figure 11.  
Optimal number of clusters with Elbow method 

 

As can be seen from Figure 11, the most significant break in 
the curve gives the optimal number of clusters and this 
number of clusters is observed as k = 3. Thus, the data set is 
divided into three clusters. 

The K-Means clustering analysis classified the soil samples 
into three groups. Soils with similar physical and chemical 
properties were grouped together. Cluster centroids were 
calculated based on the mean values of the relevant principal 
components, and the results are presented in Table 4. 
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Table 4. 
Categorization of soil variables based on PCA 

 Soil Physical 
Structure, Moisture 

and Salinity 

Mineral Content 
and Ionic 
Balance 

pH, Salinity 
and 

Conductivity 
Soil Texture 

Chemical and Mineral 
Content with Ionic 

Balance 

Micronutrient 
and Mineral 

Content 

Cluster 0 1.120029 1.893867 -0.188349 -0.065788 0.065901 -0.049974 

Cluster 1 1.745496 -1.325928 0.114344 0.006652 -0.108815 0.125175 

Cluster 2 -1.930882 -0.266353 0.038773 0.036878 0.03467 -0.056196 

These groups, identified through clustering, demonstrated 
that the soils were significantly differentiated according to 
fertility levels. These clusters were then used as labels in 
supervised learning algorithms, supplying data for 
classification. As shown in the image below, these three 
clusters are clearly separated. 

As shown in Figure 12, Cluster 0 is primarily concentrated in 
the upper regions, and the soils in this cluster exhibit 
moderate moisture and salinity levels along with high 
mineral content. This structure indicates that these areas 
possess favorable and balanced soil properties for 
agriculture. 

Cluster 1 is concentrated in the right sub-region and consists 
of soils with high moisture and salinity but low mineral 
content. This group represents soils that may be considered 
fertile but require additional fertilizer supplementation. 

Cluster 2 is in the left sub-region and is generally 
characterized by low moisture, low salinity, and average 
mineral content. This indicates that the soils in this cluster 
are arid, have low fertility, and offer limited suitability for 
agricultural production. 

Figure 13 displays the locations of agricultural lands in the 
Odunpazarı district of Eskişehir province, according to the 
cluster labels obtained by the K-Means algorithm.

Figure 12.  

Clustering of soils 
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Figure 13.  

Location of the fields according to the determined clusters 

 

Mineral-rich and balanced soils (Cluster 0) generally 
exhibit a scattered distribution on the map, with higher 
concentrations especially in the western and eastern 
regions. This cluster is suitable for cereal, vegetable, and 
fruit cultivation. These soils have low fertilizer 
requirements and moderate irrigation needs. They are 
suitable for cereals such as wheat, barley, and corn, as 
well as vegetables like tomato, pepper, and eggplant, and 
fruits such as grape, apple, and pear. Moist, saline, and 
mineral-poor soils (Cluster 1) are generally densely 
clustered in central regions. These soils have a high-water 
retention capacity and are therefore particularly suitable 
for water-resistant crops like rice. With fertilizer support, 
vegetables such as spinach, lettuce, and beet, as well as 
salt-tolerant crops like barley and oats, are also suitable 
for these soils. Balanced but low-fertility soils (Cluster 2) 
are more distinctly clustered in eastern regions and 
consist of dry, low-salinity, sandy soils. These areas are 
more limited in terms of soil fertility and can be 
considered suitable for dry farming, pasture, or soil 
rehabilitation. Crops such as chickpea, lentil, bean, alfalfa, 

vetch, sainfoin, sesame, and safflower are suitable for 
these soils. 

In Phase 2 of the study, these clusters were treated as 
label variables to establish a suitable framework for the 
supervised learning process. Additionally, at this stage, 
PCA was applied again to reduce the dimensionality of the 
dataset and minimize the impact of correlations between 
variables, and the first six components explaining 80% of 
the total variance were included in the analysis. 

The resulting dataset was divided into two subsets: 80% 
for training and 20% for testing. To ensure proportional 
representation of each class in both subsets, a stratified 
train/test split was applied. This approach helped to 
reduce the potential impact of class imbalance on the 
model. All pre-processing steps were applied exclusively 
to the training data, while the test data remained 
independent of these processes. This approach 
eliminated the risk of data leakage during model 
evaluation. Four different classification algorithms were 
employed within the scope of supervised machine 
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learning: Logistic Regression, Decision Tree, Random 
Forest, and KNN models. Each model was trained on the 
training data and subsequently evaluated using the test 
data. The performance of the models has been 
comparatively analyzed based on metrics such as 
accuracy, precision, recall, and F1 score. Below is a table 
containing detailed performance data for each model, 
including accuracy, precision, recall, and F1 score. This 
table allows for a clearer understanding of how each 
model performs across various metrics. 

Table 5. 

Evaluation metrics of models 

Model Accuracy Precision Recall F1 Score 

Logistic 
Regression 

0.9889 0.9895 0.9895 0.9895 

Decision 
Tree 

0.9779 0.9784 0.9784 0.9784 

Random 
Forest 

0.9613 0.9658 0.9593 0.9621 

KNN 0.9171 0.9143 0.9143 0.9143 

Table 5 compares the performance of four different 
classification algorithms based on metrics such as 
accuracy, precision, recall, and F1 score. Logistic 
Regression has demonstrated the highest overall 
performance. With an accuracy rate of 98.9%, this model 
also achieved similarly high values for other metrics such 
as precision, recall, and F1 score. The results suggest that 
Logistic Regression is a reliable and balanced model that 
can make accurate predictions even when classes are 
imbalanced. The Decision Tree model achieved an 
accuracy rate of 97.8%, falling behind Logistic Regression 
in terms of accuracy. However, it still delivered strong 
results for precision, recall, and F1 score. The Random 
Forest model, with an accuracy of 96.1%, ranks third in 
terms of accuracy but has demonstrated a well-balanced 
performance in terms of precision and recall. The KNN 
model, in contrast, performs the weakest among the four, 
with an accuracy rate of 91.7%, placing it at the bottom. 
Its precision, recall, and F1 score values are also lower 
compared to the other models.  

In conclusion, while Logistic Regression generally yields 
the best results, Random Forest and Decision Tree also 
provide strong alternatives. KNN, on the other hand, 
demonstrates a more limited performance, with lower 
accuracy compared to the other models. 

In the study conducted by Hayattu et al. (2020) in the 
Northwestern region of Nigeria, soils were categorized 
into soil fertility classes using the K-Means clustering 
algorithm. Based on soil parameters such as nitrogen, 
phosphorus, potassium, organic matter, and pH, three 

clusters were obtained, corresponding to high, medium, 
and low soil fertility levels. Similarly, in the present study, 
soils from the Odunpazarı district were classified into 
three groups according to their mineral content, 
moisture, and salinity levels. This shows clear similarities 
with the Nigerian case. However, while Hayattu et al. 
(2020) relied solely on clustering methods for soil fertility 
assessment, the current study additionally applied 
supervised classification techniques, with Logistic 
Regression achieving the highest accuracy of 99%. 
Therefore, although consistent with the international 
literature, this study further contributes by integrating 
both clustering and classification approaches, thus 
providing stronger predictive performance. 

In addition, when comparing the classification of soil 
types using machine learning with other studies, for 
instance, Taher et al. (2021), 400 soil samples from the 
Northwestern region of Nigeria were analyzed using 13 
soil component attributes to construct different soil 
fertility classes. According to the experimental results, 
the highest accuracy was obtained with the KNN 
algorithm (84%), while Naïve Bayes achieved 69.23%, and 
both Decision Tree and Random Forest reached 53.85%. 
In the present study, the Logistic Regression model 
achieved the highest performance with an accuracy of 
98.9%. Unlike the aforementioned studies in the 
literature, this model yielded higher accuracy values. This 
discrepancy may be attributed to differences in the type 
and number of variables used in the dataset, as well as 
the variation in sample sizes. 

This study has certain limitations. First, the dataset used 
includes only soil analysis results from the Odunpazarı 
district of Eskişehir. Therefore, the generalizability of the 
findings is limited, and they should be supported by 
similar studies conducted in different regions. Moreover, 
the dataset does not cover other agricultural factors such 
as climate conditions, irrigation practices, and crop 
diversity. Future research is recommended to utilize 
datasets with broader geographical coverage and to 
compare results obtained through different methods. 

Conclusion and Recommendations 

This study evaluated the soil fertility of the Odunpazarı 
district in Eskişehir province, located in Türkiye’s Central 
Anatolia Region, using soil analysis data and machine 
learning techniques. After applying PCA for 
dimensionality reduction, the K-Means algorithm was 
used to classify the soils into three categories. These 
clusters showed clear differences in physical structure, 
moisture, salinity, and mineral content, providing 
important insights into regional soil fertility. 
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The clustering results offer practical implications for 
farmers. Green areas, with high mineral content and 
balanced moisture, are suitable for cereals, vegetables, 
and fruits, with relatively low fertilizer requirements. Red 
areas, characterized by high moisture and salinity but low 
mineral levels, are suitable for water-tolerant crops such 
as rice and can also support vegetable production with 
fertilizer supplementation. Blue areas, which are drier 
and less fertile, are more appropriate for dry farming, 
grazing, or soil rehabilitation. This classification supports 
farmers in making scientifically informed decisions on 
crop selection and resource management. 

For policymakers, the findings emphasize the importance 
of region-specific strategies. In green areas, crop 
diversification and improvements in marketing 
infrastructure can be encouraged. In red areas, fertilizer 
subsidies, the expansion of drip irrigation systems, and 
the promotion of organic soil improvement practices 
should be prioritized. In blue areas, rather than intensive 
agricultural activities, long-term land rehabilitation 
projects, erosion control, and pasture management 
policies should be implemented. This approach would 
shift agricultural support from a uniform model to region-
specific strategies, leading to more efficient resource use, 
stronger food security, and sustainable soil fertility 
management at the national level. 

These findings make significant contributions to precision 
agriculture by guiding practices such as fertilization, 
irrigation, and crop selection. Providing farmers with 
evidence-based recommendations supports efficient 
resource use while strengthening environmental 
sustainability. 

Future research can expand these findings in several 
directions. Larger and multi-regional datasets would 
enhance the generalizability of results. Multi-season and 
time-series data could more accurately capture the 
seasonal variability of soils. The integration of climate 
data (e.g., rainfall, temperature, drought indices) would 
improve predictive accuracy and provide insights into the 
impacts of climate change on soil fertility. Furthermore, 
the application of deep learning models (CNNs, RNNs, 
hybrid architectures) could increase classification 
accuracy and strengthen crop recommendation systems. 
In addition, the proposed approach could be practically 
implemented by integrating it with farm decision support 
tools and mobile applications, allowing farmers to make 
real-time, data-driven decisions. When combined with 
real-time soil monitoring systems, operations such as 
irrigation, fertilization, and crop selection can be 
managed more quickly and precisely. Transforming these 
models into user-friendly mobile and web-based decision 

support systems would further facilitate informed 
decision-making and accelerate the adoption of smart 
agriculture practices. Consequently, these findings can 
serve as a strong reference for future soil fertility 
research conducted in different regions. 
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