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An existence and uniqueness result for linear
fractional impulsive boundary value problems as

an application of Lyapunov type inequality

Zeynep Kayar∗

Abstract

A new and di�erent approach to the investigation of the existence and
uniqueness of solution of nonhomogenous impulsive boundary value
problems involving the Caputo fractional derivative of order α (1 <
α ≤ 2) is brought by using Lyapunov type inequality. To express and
to analyze the unique solution, Green's function and its bounds are es-
tablished, respectively. As far as we know, this approach based on the
link between fractional boundary value problems and Lyapunov type
inequality, has not been revealed even in the absence of impulse e�ect.
Besides, the novel Lyapunov type inequality generalizes the related ones
in the literature.
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1. Introduction

In this paper we will give a su�cient condition for the existence and uniqueness of the
solution in PLC1[a, b] = {y : [a, b]→ R : y′ ∈ PLC[a, b]} , where
PLC[a, b] = {y : [a, b] → R is continuous on each interval (τi, τi+1), the limits y(τ±i )

exist and y(τ−i ) = y(τi) for i = 1, 2, . . . , p}, for the linear impulsive nonhomogenous
fractional boundary value problem
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(CaD
αy)(t) + f(t)y(t) = g(t), t 6= τi, a < t < b, 1 < α ≤ 2,(1.1a)

∆y|t=τi = ai, i = 1, 2, . . . , p,(1.1b)

∆y′|t=τi = −γi
βi
y(τ−i ) + bi, i = 1, 2, . . . , p,(1.1c)

y(a) = A, y(b) = B,(1.1d)

by showing nonexistence of nontrivial solution of the corresponding impulsive homoge-
nous fractional boundary value problem

(CaD
αy)(t) + f(t)y(t) = 0, t 6= τi, a < t < b, 1 < α ≤ 2,(1.2a)

∆y|t=τi = 0, i = 1, 2, . . . , p,(1.2b)

∆y′|t=τi = −γi
βi
y(τ−i ), i = 1, 2, . . . , p,(1.2c)

y(a) = 0, y(b) = 0,(1.2d)

where C
aD

α is Caputo fractional derivative of order α (1 < α ≤ 2),
f, g : PLC[a, b] → R are given functions and a, b, A,B are given real cons-
tants. The impulse condition is given by delta operator which is de�ned as
∆y|t=τi = y(τ+i ) − y(τ−i ) = y(τ+i ) − y(τi). For convention let us choose
a = τ0 < τ1 < . . . < τp < τp+1 = b.

It should be noted that since ∆y|t=τi = 0, homogenous boundary value problem
(1.2a)-(1.2d) has continuos solutions. On the other hand, the main theorem of this paper
can also be applicable to the following impulsive homogenous fractional boundary value
problem

(CaD
αu)(t) + f(t)u(t) = 0, t 6= τi, a < t < b, 1 < α ≤ 2,(1.3a)

u(τ+i ) = βiu(τ−i ), i = 1, 2, . . . , p,(1.3b)

u′(τ+i ) = βiu
′(τ−i )− γiu(τ−i ), i = 1, 2, . . . , p,(1.3c)

u(a) = 0, u(b) = 0,(1.3d)

with discontinuos solution. Indeed, if we de�ne

y(t) =
u(t)

β1β2 . . . βi
, t ∈ (τi, τi+1), y(τi) = y(τ−i ), then (1.3a)-(1.3d) becomes as ho-

mogenous boundary value problem (1.2a)-(1.2d).
Mathematical description and modelling of many engineering and scienti�c problems,

which have memory and hereditary properties, by using fractional di�erential equations is
more adequate than by using ordinary di�erential equations due to the fact that there are
more degrees of freedom in the fractional-order models. Therefore fractional-order models
become more natural and useful than the classical integer-order models. For this reason
fractional di�erential equations arise in many engineering and scienti�c disciplines such
as physics, chemistry, biology, economics, control theory, signal and image processing,
biophysics, blood �ow phenomena, aerodynamics, �tting of experimental data, see [26, 28,
22, 30] and the references therein. Investigation of the theory of integer order di�erential
equations under impulse e�ect has developed rapidly in the last three decades [23, 8,
31, 7] because they are not only one of the fundamental problems in most branches of
applied mathematics, science and technology but also used to describe the dynamics of
processes in which sudden, discontinuous jumps occur, such as harvesting, earthquakes,
diseases, and so forth. Since boundary value problems involving the Caputo fractional
derivative of order α (1 < α ≤ 2) play an important role in theory and applications,
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there are many papers on nonimpulsive case [37, 2, 4, 5, 35] and on the impulsive case
[6, 32, 3, 38, 34, 39, 36, 40, 41, 42] based on di�erent �xed point theorems. However,
showing the existence and uniqueness of solution to the fractional impulsive boundary
value problems by using Lyapunov type inequality has not been considered till now. The
method given for the �rst time in [21] arised from the connection of nonhomogenous
boundary value problems and Lyapunov type inequality. To the best of our knowledge,
this connection appears for fractional impulsive boundary value problems for the �rst
time and has not been noticed even for the nonimpulsive case.

In a celebrated paper of 1893, Lyapunov [25] prove the following result.

1.1. Theorem ([25]). If the boundary value problem

(1.4)
y′′ + q(t)y = 0, a < t < b,
y(a) = y(b) = 0

has a nontrivial solution, where q is a real and continuous function with
q(t) ≥ 0, q(t) 6≡ 0, then the so-called Lyapunov inequality

(1.5)

∫ b

a

q(t)dt >
4

b− a
holds.

After the initiated work of Lyapunov [25], many authors have paid a considerable at-
tention to Lyapunov type inequalities and various proofs and generalizations or improve-
ments have appeared in the literature. For a comprehensive exibition of these results
we refer two surveys [10, 33] and references therein. The result for (1.4) in [9] is worth
mentioning due to its contribution to this subject. Borg [9] changed the nonnegativity
condition of q(t) by nonnegative integral of q(t) and improved inequality (1.5).

1.2. Theorem ([9]). If the boundary value problem (1.4) has a nontrivial solution, where
q is a real and continuous function with q(t) 6≡ 0, then we have the Lyapunov type
inequality

(1.6)

∫ b

a

|q(t)|dt > 4

b− a .

The second-order di�erential equations under impulse e�ect

(1.7)
(p(t)y′)′ + q(t)y = 0, t 6= τi

y(τ+i ) = βiy(τ−i ), (py′)(τ+i ) = −γiy(τ−i ) + βi(py
′)(τ−i ), i ∈ N.

was considered �rst in [15] and the extended Lyapunov-type inequality is given therein
by using modi�ed de�nition of zero of a function. For piecewise de�ned functions, the
concept of a zero of a function is replaced by a so-called generalized zero.

1.3. De�nition ([17, 15, 21]). A real number c is called a zero (generalized zero) of a
function f if and only if f(c−) = 0 or f(c+) = 0. If f is continuous function at c, then c
becomes a real zero.

1.4. Theorem ([15]). Let p(t) > 0 and βi 6= 0 for i ∈ N. If y(t) is a nontrivial solution
of (1.7) with y(a+) = 0 = y(b−), where a, b ∈ R with a < b and y(t) 6= 0 for t ∈ (a, b),
then we have the Lyapunov type inequality

(1.8)

[∫ b

a

1

p(t)
dt

]∫ b

a

q+(t)dt+
∑

τi∈[a,b)

(
γi
βi

)+
 > 4,

where q+(t) = max {q(t), 0} and

(
γi
βi

)+

= max

{
γi
βi
, 0

}
.
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For α ∈ (1, 2], the fractional counterparts of Lyapunov type inequlity is obtained in
[13, 14, 29, 18, 19, 20].

The theory of disconjugacy is well developed for ordinary di�erential equations, the
history of which starts with [16, 17, 24, 11, 27]. However, generalization of this theory
to the fractional case is not considered much, see [1, 12].

Motivated by the aforementioned works we have discussed the existence and unique-
ness of solutions of fractional impulsive boundary value problems. In Section 2 we recall
some preliminary facts that we will use in the sequel. Section 3 contains auxiliary tools,
which are Green's function and its properties, Lyapunov type inequality and disconju-
gacy criterion, used to prove the main result. Section 4 is devoted to the main result,
which is the existence and uniqueness theorem for fractional impulsive nonhomogenous
boundary value problem (1.1a)-(1.1d). To the best of our knowledge although many
results have been obtained for impulsive fractional boundary value problems by using
di�erent techniques, there is little known about the connection of fractional boundary
value problems and Lyapunov type inequality even for nonimpulsive case.

2. Preliminaries

Before going further, let us start with basic de�nitions and some facts about Riemann-
Liouville fractional integral, Riemann-Liouville fractional derivative and Caputo frac-
tional derivative and give de�nition of disconjugacy for fractional di�erential equations.

2.1. De�nition. [26, 28, 22] Let α ≥ 0 and φ be a continuous function de�ned on [a, b].
The Riemann Lioville fractional integral of order α is de�ned by

(aI
αφ)(t) =

1

Γ(α)

∫ t

a

(t− s)α−1φ(s)ds for α > 0

and aI
0φ(t) = φ(t) for α = 0.

2.2. De�nition. [26, 28, 22] The Riemann Liouville fractional derivative of order α ≥ 0
is de�ned by

(aD
αφ)(t) =

{
(aD

m
aI
m−αφ)(t), α > 0

φ(t), α = 0

where m is the smallest integer greater or equal than α.

2.3. De�nition. [26, 28, 22] The Caputo fractional derivative of order α ≥ 0 is de�ned
by

(CaD
αφ)(t) =

{
(aI

m−α
aD

mφ)(t), α > 0
φ(t), α = 0

where m is the smallest integer greater or equal than α.

2.4. Lemma. [22] If y(t) ∈ ACm[a, b] or y(t) ∈ Cm[a, b], then for some constants
ci, i = 1, 2, . . . ,m, one has

aI
α C
aD

αφ(t) = φ(t) + c1 + c2(t− a) + c2(t− a)2 . . .+ cm(t− a)m−1,

where m is the smallest integer greater or equal than α.

2.5. De�nition. Equation (1.2a)-(1.2c) is called disconjugate on an interval [a, b] if and
only if all solutions of equation (1.2a)-(1.2c) have at most one zero on the interval [a, b].
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3. Preparatory Theorems

To obtain an existence uniqueness criterion, we need to establish some auxiliary results
in a series of theorems. The �rst two theorems provide Green's function and its properties,
the last two yield Lyapunov type inequality and disconjugacy criterion.

3.1. Green's function and its properties. In this section we will �nd Green's func-
tion to write the integral equation of the solution of the nonhomogenous problem (1.1a)-
(1.1d) .

3.1. Theorem. y ∈ PLC1[a, b] is a solution of the boundary value problem (1.1a)-(1.1d)
if and only if y satis�es the following integral equation

(3.1)

y(t) = A+
(t− a)(B −A)

b− a +

∫ b

a

G(t, s) [g(s)− f(s)y(s)]

+
∑

a≤τi<b

H(t, τi)

[
bi −

γi
βi
y(τi)

]
+

∑
a≤τi<b

K(t, τi)ai,

where

G(t, s) =
1

Γ(α)


a− t
b− a (b− s)α−1 + (t− s)α−1, a ≤ s < t ≤ b
a− t
b− a (b− s)α−1, a ≤ t ≤ s ≤ b

H(t, τi) =


(a− τi)(b− t)

b− a , a ≤ τi < t ≤ b
a− t
b− a (b− τi), a ≤ t ≤ τi ≤ b

K(t, τi) =


b− t
b− a , a ≤ τi < t ≤ b
a− t
b− a , a ≤ t ≤ τi ≤ b

Proof. The proof is the generalization of the proof given in [14] but for the completeness
of this paper, we will give all the proofs in detail.

It is known for Caputo fractional derivative that if t ∈ [τp, τp+1], then y is a solution
of (1.1a) if and only if

(3.2)

y(t) = c1 + c2t+
1

Γ(α)

∫ t

a

(t− s)α−1 [g(s)− f(s)y(s)] ds

+

p∑
i=1

ai +

p∑
i=1

(t− τi)
[
bi −

γi
βi
y(τi)

]
for some real constants c1, c2. The �rst boundary condition, y(a) = A implies that

(3.3) c1 + c2a = A.

By imposing the second boundary condition, y(b) = B, we have

(3.4)

y(b) = y(τp+1) = c1 + c2b+
1

Γ(α)

∫ b

a

(b− s)α−1 [g(s)− f(s)y(s)] ds

+

p∑
i=1

ai +

p∑
i=1

(b− τi)
[
bi −

γi
βi
y(τi)

]
= B.

Then we obtain
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c2 =
B −A
b− a −

1

Γ(α)(b− a)

∫ b

a

(b− s)α−1 [g(s)− f(s)y(s)] ds

− 1

b− a

p∑
i=1

ai −
1

b− a

p∑
i=1

(b− τi)
[
bi −

γi
βi
y(τi)

]
and

c1 = a
A−B
b− a +

a

Γ(α)(b− a)

∫ b

a

(b− s)α−1 [g(s)− f(s)y(s)] ds

+
a

b− a

p∑
i=1

ai +
a

b− a

p∑
i=1

(b− τi)
[
bi −

γi
βi
y(τi)

]
+A

and hence for t ∈ (τr, τr+1], where a < τ1 < τ2 < . . . < τr < τr+1 < . . . < τp < b,

y(t) = A+
(t− a)(B −A)

b− a +
1

Γ(α)

∫ b

a

a− t
b− a (b− s)α−1 [g(s)− f(s)y(s)] ds

+
1

Γ(α)

∫ t

a

(t− s)α−1 [g(s)− f(s)y(s)] ds+

r∑
i=1

ai +

p∑
i=1

a− t
b− aai

+

p∑
i=1

a− t
b− a (b− τi)

[
bi −

γi
βi
y(τi)

]
+

r∑
i=1

(t− τi)
[
bi −

γi
βi
y(τi)

]
,

which implies the desired result. �

The following theorem provides upper and lower bounds for Green's functions G,H,K
which will be used in the next section.

3.2. Theorem. Green's functons G,H,K satisfy the following properties:

1) |G(t, s)| ≤ 1

Γ(α)

(α− 1)α−1

αα
(b− a)α−1 for all a ≤ t, s ≤ b.

2) H(t, τi) ≤ 0 and |H(t, τi)| ≤
b− a

4
for all a ≤ t, τi ≤ b.

3) |K(t, τi)| ≤ 1 for all a ≤ t, τi ≤ b, i = 1, 2, . . . , p.

Proof. 1) By employing the same tools used in [14, Lemma 2], it can be shown that

|G(t, s)| ≤ 1

Γ(α)

(α− 1)α−1

αα
(b− a)α−1.

2) Let us de�ne two functions

h1(t, τi) =
(a− τi)(b− t)

b− a , a ≤ τi < t ≤ b and

h2(t, τi) =
a− t
b− a (b− τi), a ≤ t ≤ τi ≤ b.

Then

|h1(t, τi)| =
(τi − a)(b− t)

b− a ≤ (t− a)(b− t)
b− a ≤ b− a

4
and

|h2(t, τi)| =
t− a
b− a (b− τi) ≤

τi − a
b− a (b− τi) ≤

b− a
4

,

where we have used the inequality

1

y − x +
1

z − y ≥
4

z − x
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for arbitrary real numbers x, y, z satisfying x < y < z.
3) Since

0 ≤ k1(t, τi) =
b− t
b− a ≤

b− a
b− a = 1

and

−1 =
a− b
b− a ≤ k2(t, τi) =

a− t
b− a ≤ 0, the third Green functionK(t, τi) satis�es

the property that |K(t, τi)| ≤ 1.
�

3.2. Lyapunov type inequality for homogenous problem. In order to show the
uniqueness of the solutions of nonhomogenous boundary value problem (1.1a)-(1.1d) in
the main theorem, Lyapunov type inequality and disconjugacy criterion for the corre-
sponding homogenous boundary value problem (1.2a)-(1.2d) are established.

3.3. Theorem. If homogenous boundary value problem (1.2a)-(1.2d) has a nontrivial
solution y(t) 6= 0 on (a, b), then we have Lyapunov type inequality

(3.5)

∫ b

a

|f(s)|ds+
∑

a≤τi<b

(
γi
βi

)+

> min

{
4

b− a ,
Γ(α)αα

[(α− 1)(b− a)]α−1

}
,

where

(
γi
βi

)+

= max

{
γi
βi
, 0

}
.

Proof. Since Dα is a linear operator, without loss of generality we may assume that
y(t) > 0 on (a, b). Since y(t) is continuos on [a, b], there exist a point c in [a, b] such that
max
t∈[a,b]

y(t) = y(c). Then by using (3.1), we obtain

(3.6)

y(c) = −
∫ b

a

G(c, s)f(s)y(s)−
∑

a≤τi<b

H(c, τi)
γi
βi
y(τi)

≤
∫ b

a

|G(c, s)||f(s)|y(s)−
∑

a≤τi<b

H(c, τi)

(
γi
βi

)+

y(τi),

where

(
γi
βi

)+

= max

{
γi
βi
, 0

}
. Since y(t) ≤ y(c) for all t ∈ [a, b], we have

(3.7) y(c) < y(c)

∫ b

a

|G(c, s)||f(s)|ds− y(c)
∑

a≤τi<b

H(c, τi)

(
γi
βi

)+

.

Employing the properties of Green's function, G and H, inequality (3.7) turns into

1 <

∫ b

a

|G(c, s)||f(s)|ds−
∑

a≤τi<b

H(c, τi)

(
γi
βi

)+

≤ 1

Γ(α)

[(α− 1)(b− a)]α−1

αα

∫ b

a

|f(s)|ds+
b− a

4

∑
a≤τi<b

(
γi
βi

)+

≤ max

{
1

Γ(α)

[(α− 1)(b− a)]α−1

αα
,
b− a

4

}∫ b

a

|f(s)|ds+
∑

a≤τi<b

(
γi
βi

)+


which yields the desired result. � �

3.4. Remark. If α = 2, then fractional impulsive boundary value problem (1.2a)-(1.2d)
becomes as impulsive boundary value problem involving integer order derivative consid-
ered in [15] with p(t) = 1. Then inequality (3.5) reduces to inequality (1.8).
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3.5. Remark. If there is no impulse e�ect, then Theorem 2.3 reduces to [14, Theorem
1]. Therefore inequality (3.5) is the impulsive generalization of inequality in [14].

3.6. Remark. If α = 2, and βi = 1, γi = 0 for all i = 1, 2, . . . , p, then homogenous
fractional boundary value problem (1.2a)-(1.2b) reduces to boundary value problem (1.4)
involving integer order derivative considered in [25] and [9]. Hence inequality (3.5) is the
fractional generalization of inequality (1.6) and it is an extension and improvement of
inequality (1.5) to the fractional case.

3.3. Disconjugacy criterion for homogenous problem. Since the su�cient condi-
tion for the uniqueness of solution of the boundary value problem (1.1a)-(1.1d) is obtained
by disconjugacy criterion, in this section this criterion is established by using Lyapunov
type inequality. Since Lyapunov inequality implies disconjugacy criterion directly, it can
be considered as an application of Lyapunov type inequality.

3.7. Theorem. If

(3.8)

∫ b

a

|f(s)|ds+
∑

a≤τi<b

(
γi
βi

)+

≤ min

{
4

b− a ,
Γ(α)αα

[(α− 1)(b− a)]α−1

}
,

where

(
γi
βi

)+

= max

{
γi
βi
, 0

}
, then equation (1.2a)-(1.2c) is disconjugate on [a, b].

Proof. Suppose on the contrary that equation (1.2a)-(1.2c) is not disconjugate on [a, b].
Then there exist a nontrivial solution y of equation (1.2a)-(1.2c) and at least two points
t1, t2 ∈ [a, b] such that y(t1) = y(t2) = 0 for t ∈ [a, b] and y(t) 6= 0 for t ∈ [a, b]. Then by
using Lyapunov type inequality on the inerval [t1, t2], we have∫ t2

t1

|f(s)|ds+
∑

t1≤τi<t2

(
γi
βi

)+

> min

{
4

t2 − t1
,

Γ(α)αα

[(α− 1)(t2 − t1)]α−1

}
and hence∫ b

a

|f(s)|ds+
∑

a≤τi<b

(
γi
βi

)+

≥
∫ t2

t1

|f(s)|ds+
∑

t1≤τi<t2

(
γi
βi

)+

> min

{
4

t2 − t1
,

Γ(α)αα

[(α− 1)(t2 − t1)]α−1

}
≥ min

{
4

b− a ,
Γ(α)αα

[(α− 1)(b− a)]α−1

}
which contradicts inequality (3.8). � �

4. Main Result

Existence and uniqueness result for the nonhomogenous boundary problem (1.1a)-
(1.1d) is given in the following theorem.

4.1. Theorem. If

(4.1)

∫ b

a

|f(s)|ds+
∑

a≤τi<b

(
γi
βi

)+

≤ min

{
4

b− a ,
Γ(α)αα

[(α− 1)(b− a)]α−1

}

where

(
γi
βi

)+

= max

{
γi
βi
, 0

}
, then nonhomogenous boundary problem (1.1a)-(1.1d) has

a unique solution which is also a unique solution of integral equation (3.1).
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Proof. The proof is based on the arguments developed in [21]. It is shown in the proof of
Theorem 3.1 that y is the solution of nonhomogenous boundary problem (1.1) if and only
if it is a solution of integral equation (3.1). To prove the uniqueness, it is su�cient to
show that the homogenous boundary value problem (1.2a)-(1.2d) has only trivial solution.
Assume on the contrary that y(t) 6≡ 0 is a solution of the homogenous boundary value
problem (1.2a)-(1.2d). Then by using Lyapunov type inequality, we have

(4.2)

∫ b

a

|f(s)|ds+
∑

a≤τi<b

(
γi
βi

)+

> min

{
4

b− a ,
Γ(α)αα

[(α− 1)(b− a)]α−1

}
which gives a contradiction to (4.1). Therefore the homogenous boundary value problem
(1.2a)-(1.2d) has only trivial solution. Due to the theory of linear fractional bound-
ary value problems, the nonhomogenous boundary problem (1.1a)-(1.1d) has a unique
solution. �
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