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Abstract

In this study, parameter estimation and hypotheses testing in the bal-
anced factorial analysis of covariance (ANCOVA) model, when the dis-
tribution of error terms is long-tailed symmetric (LTS) are considered.
The unknown model parameters are estimated using the methodology
known as modified maximum likelihood (MML). New test statistics
based on these estimators are also proposed for testing the main ef-
fects, interaction effect and slope parameter. Assuming LTS distribu-
tions for the error term, a Monte-Carlo simulation study is conducted
to compare the efficiencies of MML estimators with corresponding least
squares (LS) estimators. Power and the robustness properties of the
proposed test statistics are also compared with traditional normal the-
ory test statistics. The results of the simulation study show that MML
estimators are more efficient than corresponding LS estimators. Fur-
thermore, proposed test statistics are shown to be more powerful and
robust than normal theory test statistics. In the application part, a
data set, taken from the literature, is analyzed to show the implemen-
tation of the methodology presented in the study.
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1. Introduction
Factorial designs, introduced by Fisher [8] and Yates [36], have a wide range of appli-

cations, i.e. they are used for the evaluation of equipment and materials, product design,
performance testing, process development and so on. The reason why factorial designs
draw attention of practitioners is that they provide the investigation of the effects of
multiple factors simultaneously. Therefore, they are more efficient than the traditional
one-factor-at-a time approach in terms of time and cost. Furthermore, they allow for the
estimation and detection interactions between factors, see [20] for details.

In experimental design, analysis of covariance (ANCOVA) is another important model
which is defined as a combination of regression analysis and analysis of variance (ANOVA).
The ANCOVA model reduces the variability of the random error that is associated with
covariates. This leads to obtain more precise estimates and more powerful tests [21, 22].

In spite of the fact that the one-way ANCOVA is mostly considered in the literature,
there are limited number of papers considering factorial designs with covariates, see i.e.
[33]. Therefore, in this study, we consider the following factorial ANCOVA model:

yijk = µ+ τi + γj + (τγ)ij + β(xijk − x̄···) + εijk,
i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n.(1.1)

where yijk, µ, τi, γj , (τγ)ij have the usual interpretations. In addition, β, xijk and x̄···
denote the slope parameter, the covariate term and the overall mean of the covariate
terms, respectively. Without loss of generality, we assume that (i) Model (1.1) is fixed
effect, i.e.

∑a

i=1 τi = 0,
∑b

j=1 γj = 0 and
∑

i
(τγ)ij = 0 ∀j,

∑
j
(τγ)ij = 0 ∀i, (ii) The

slopes for each treatment are homogeneous and (iii) Covariate term x is non-stochastic.
The motivation for this paper comes from the fact that the distribution of error

terms is often assumed to be independently and identically distributed (i.i.d.) normal
in Model (1.1). However, nonnormality is more prevalent in practice as Geary [9] in-
dicates, “Normality is a myth, there never was and never will be, a normal distribu-
tion”. Furthermore, least squares (LS) estimators lose efficiency and the power of the
tests based on LS estimators are adversely affected in the presence of the nonnormal-
ity. Therefore, there is great interest in solving the problems that nonnormality causes
[7, 10, 11, 12, 18, 19, 20, 21, 23, 32].

The originality of this paper is assumption of long-tailed (LTS) symmetric error distri-
bution in Model (1.1). LTS distribution is used symmetric alternative of normal distribu-
tion. It also provides superiority to normal distribution for modeling outlier(s) occurred
in the direction of the long tail(s) [12, 28]. Since maximum likelihood (ML) estimators
cannot be obtained explicitly, we therefore derive modified maximum likelihood (MML)
estimators of the model parameters [26, 27]. We also propose new test statistics based
on these MML estimators for testing the main effects, the interaction effect and the
significance of the slope parameter [1, 2].

It should also be noted that in the rest of the paper we consider the situation where
a = 2 and b = 2 in Model (1.1) for illustration. Thus, Model (1.1) reduces to 22 factorial
design with a covariate, i.e. we have two factors named as A and B. This reduction is
made because of the fact that the results obtained for 22 factorial design can easily be
extended to more complicated factorial designs such as 2k [20].

The rest of the paper is organized as follows. Section 2 considers LTS distribution and
its properties. In Section 3, MML estimators of the model parameters are obtained and
the performances of these estimators are compared with corresponding LS estimators
via a Monte-Carlo simulation study. Section 4 includes the proposed test statistics for
testing the main effects, interaction effect and slope parameter. The robustness of the
proposed test statistics and the normal theory test statistics are considered in Section 5.
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Section 6 is reserved for an application to show the implementation of the methodology
presented in the study. The paper ends with a conclusion section.

2. LTS distribution
The probability density function (pdf) of LTS distribution is given by:

fLTS(e; p, σ) ∝ 1
σ

(
1 + e2

qσ2

)−p

, q = 2p− 3, −∞ < e <∞(2.1)

where p and σ are the shape and the scale parameters, respectively. Here, shape param-
eter p is assumed to be greater than 2. The density plots of LTS distribution are given
in Figure 1 for different values of the shape parameter p.

Figure 1. The density plots of LTS distribution for different values of
the shape parameter p.

Since LTS is a symmetric distribution, only kurtosis values of LTS distribution are
tabulated in Table 1 for some representative values of p. It is clear from Table 1 that the
kurtosis of the LTS distribution is greater than 3, but it approaches 3 when p tends to
∞.

Table 1. The kurtosis values of LTS distribution for different values
of the shape parameter p.

p 2.5 3.5 5 10 ∞
Kurtosis ∞ 9 4.2 3.4 3

It should be noted that the shape parameter p is assumed to be known in
order to find the estimators of the model parameters in the rest of the paper. The
reason for this assumption is that simultaneous estimation of the shape parameter,
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along with other parameters results in unreliable estimate of the shape parameter
for small sample sizes [4, 13]. However, we estimate shape parameter using the
methodology known as profile likelihood, see Section 6 for details.

3. MML estimators
The loglikelihood function (lnL) for Model (1.1) with εijk following a LTS

distribution is obtained as follows:

lnL ∝ −22n ln σ − p
2∑
i=1

2∑
j=1

n∑
k=1

ln
(

1 +
z2
ijk

q

)
,(3.1)

where

zijk = yijk − µ− τi − γj − (τγ)ij − β(xijk − x̄···)
σ

i, j = 1, 2; k = 1, 2, . . . , n.

It is well-known that ML estimators of the parameters are the point where
loglikelihood function attains its maximum. Therefore, in order to find ML esti-
mators, the partial derivatives of the lnL function should be taken with respect
to the parameters of interest and set them equal to zero as follows:

(3.2) ∂ lnL
∂µ

= 0, ∂ lnL
∂τi

= 0, ∂ lnL
∂γj

= 0, ∂ lnL
∂(τγ)ij

= 0, ∂ lnL
∂β

= 0 and ∂ lnL
∂σ

= 0.

Since these equations contain a nonlinear

g(zijk) = zijk

1 + 1
q
z2
ijk

(3.3)

function, ML estimators of the model parameters cannot be obtained explicitly.
Therefore, numerical or iterative methods should be performed. However, using
numerical or iterative methods are known to have a number of drawbacks, such
as; (i) wrong convergency, (ii) non-convergency, and (iii) multiple roots problems
[16, 30, 35]. To avoid these difficulties, we use Tiku’s [26, 27] MML methodology.

The steps of the MML method are explained as follows. First, order the zijk
observations from the smallest to largest, i.e. zij(1) ≤ zij(2) ≤ . . . ≤ zij(n). Second,
linearize the g(·) function using the first two terms of the Taylor series, which is
expanded around the expected values of the order statistics, i.e. t(k) = E(zij(k)),
k = 1, 2, . . . , n. This results in:

g(zijk) ∼= αk + δkzijk(3.4)
where

αk =
(2/q)t3(k)

(1 + (1/q)t2(k))2 , δk =
1− (1/q)t2(k)

(1 + (1/q)t2(k))2 , k = 1, 2, . . . , n.(3.5)

It should be noted that the exact values of t(k) are obtained from Tiku & Kumra
[29]. Alternatively, approximate values of t(k) values can be obtained in the fol-
lowing way

FLTS(t(k)) =

t(k)∫
−∞

fLTS(z)dz = k

n+ 1 , k = 1, 2, . . . , n
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where FLTS(·) is the cumulative distribution function (cdf) of the LTS distribution.
Using approximate values of t(k) values instead of the exact values does not alter
the efficiencies of the estimators adversely.

Finally, we incorporate (3.4) in (3.2) to obtain modified likelihood equtions, i.e.
∂ lnL∗

∂µ
= 0, ∂ lnL∗

∂τi
= 0, ∂ lnL∗

∂γj
= 0, ∂ lnL

∂(τγ)ij
= 0, ∂ lnL∗

∂β
= 0 and ∂ lnL∗

∂σ
= 0.

The solutions of these modified likelihood equations are the following MML esti-
mators:

µ̂ = µ̂··[·] − β̂µ̂x··[·], τ̂i = µ̂i·[·] − µ̂··[·] − β̂(µ̂xi·[·] − µ̂x··[·]),(3.6)

γ̂j = µ̂·j[·] − µ̂··[·] − β̂(µ̂x·j[·] − µ̂x··[·]),(3.7)

(̂τγ)ij = µ̂ij[·] − µ̂i·[·] − µ̂·j[·] + µ̂··[·] −

β̂(µ̂xij[·] − µ̂xi·[·] − µ̂x·j[·] + µ̂x··[·]),(3.8)

β̂ = K + Lσ̂ and σ̂ = B +
√
B2 + 4NC

2
√
N(N − 22 − 1)

(3.9)

where

µ̂··[·] =

2∑
i=1

2∑
j=1

µ̂ij[·]

22 , µ̂i·[·] =

2∑
j=1

µ̂ij[·]

2 , µ̂·j[·] =

2∑
i=1

µ̂ij[·]

2 , µ̂ij[·] =

n∑
k=1

δkyij[k]

m
,

µ̂x··[·] =

2∑
i=1

2∑
j=1

µ̂xij[·]

22 , µ̂xi·[·] =

2∑
j=1

µ̂xij[·]

2 , µ̂x·j[·] =

2∑
i=1

µ̂xij[·]

2 ,

µ̂xij[·] =

n∑
k=1

δk(xij[k] − x̄··[·])

m
, m =

n∑
k=1

δk,

S∗xy =
2∑
i=1

2∑
j=1

n∑
k=1

δkyij[k](xij[k] − x̄··[·]), S∗xx =
2∑
i=1

2∑
j=1

n∑
k=1

δk(xij[k] − x̄··[·])2,

T ∗xy = m

2∑
i=1

2∑
j=1

µ̂ij[·]µ̂xij[·], T ∗xx = m

2∑
i=1

2∑
j=1

µ̂2
xij[·], E∗xy = S∗xy − T ∗xy,

E∗xx = S∗xx − T ∗xx, K =
E∗xy
E∗xx

, L =

n∑
k=1

αk(xij[k] − x̄··[·])

E∗xx
, N = 22n,
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B = 2p
q

2∑
i=1

2∑
j=1

n∑
k=1

αk
{
yij[k] − µ̂ij[·] +K

[
µ̂xij[·] − (xij[k] − x̄··[·])

]}
,

C = 2p
q

2∑
i=1

2∑
j=1

n∑
k=1

δk
{
yij[k] − µ̂ij[·] +K

[
µ̂xij[·] − (xij[k] − x̄··[·])

]}2
.

It is clear that MML estimators are easy to compute since they are expressed as
the functions of sample observations. In MML methodology, small δk (1, 2, . . . , n)
weights are given to outlying observation(s), occurred in the direction of long
tail(s). This depletes the dominant effects of outliers and makes them robust.

Remarks
(i) 2N is replaced by 2

√
N(N − 22 − 1) in the denominator of σ̂ for bias

correction.
(ii) (yij[k], xij[k]) are called concomitants corresponding to ordered zij(k) ob-

servations, for further information see Islam & Tiku [12]. It should also
be noted that x̄··[·] =

∑2
i=1
∑2
j=1

∑n
k=1 xij[k]

/
N .

(iii) MML estimators are asymptotically fully efficient under some mild reg-
ularity conditions and they are as efficient as ML estimators for small
sample sizes, see [3, 18, 19, 20, 31, 34, 35].

(iv) When the shape parameter p is small and the sample size is large, some
of the δk (k = 1, 2, . . . , n) values may be negative. This may cause non-
real or negative estimates of σ̂. To avoid this problem, Islam & Tiku [12]
suggest taking the following versions of the αk and δk:

α∗k =
(1/q)t3(k)

(1 + (1/q)t2(k))2 , δ∗k = 1
(1 + (1/q)t2(k))2 , k = 1, 2, . . . , n,

respectively. Islam & Tiku [12] indicate that this modification does not
alter the asymptotic properties of the MML estimators.

It can be shown that the difference g(zij(k))− (αk + βkzij(k)) converges to zero
as n tends to ∞ for all p ≥ 2. As a consequence,

lim
n→∞

1
n

∣∣∣∣∂ lnL
∂θ

− ∂ lnL∗

∂θ

∣∣∣∣ = 0(3.10)

for all the parameters in Model (1.1) and σ. This has been proven for simple
linear regression model by Tiku et al. [32] and the one-way ANOVA model by
Senoglu [17] for different types of error distributions. Since the proof for factorial
ANCOVA can be made by following the same lines in the mentioned papers, we
do not reproduce for the brevity.

Equation (3.10) shows that MML estimators are asymptotically equivalent to
corresponding ML estimators. They are also asymptotically minimum variance
bound (MVB) estimators, see Bhattacharrya [3] and Vaughan and Tiku [34] for
further information.

The asymptotic properties of the MML estimators of parameters in Model (1.1)
are given in the following theorems.
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3.1. Theorem. µ̂i, µ̂j and µ̂ij (i, j = 1, 2) are asymptotically normally dis-
tributed, i.e.

µ̂i
asym∼ N

(
µi,

q

22mp
σ2
)
,(3.11)

µ̂j
asym∼ N

(
µj ,

q

22mp
σ2
)

(3.12)

and

µ̂ij
asym∼ N

(
µij ,

q

2mpσ
2
)

(3.13)

where µ̂i, µ̂j and µ̂ij have the usual interpretations.

3.2. Theorem. β̂ estimator is asymptotically normally distributed with mean β

and variance σ2
/(

2p
q E
∗
xx

)
.

3.3. Theorem. The asymptotic distribution of (N −22−1)σ̂2/σ2 is a Chi-square
with degrees of freedom ν = N − 22 − 1, N = 22n.

Reader is referred to Kendall and Stuart [14], Senoglu & Tiku [18] and Senoglu
[20] for the proof of the these theorems.

Simulations
We conduct a Monte-Carlo simulation in this part of the study to compare

the performances of the traditional LS estimators with the corresponding MML
estimators, In the simulation study, we take µ = τi = γj = (τγ)ij = 0 (i, j = 1, 2),
β = 1 and σ = 1 in Model (1.1) without loss of generality. The error terms are
generated from LTS distribution for different values of the shape parameter, i.e.
p = 2, 2.5, 3.5 and 5. The covariate terms x are generated from standard normal
distribution. All simulations are replicated 10,000 times in which the sample size
is taken to be n = 10 and 20. MATLAB software is used for all computations.

The efficiencies of the LS and the MML estimators of the model parameters are
compared in terms of their means, variances and mean squared errors (MSE), see
Table 2. RE values (REs) are calculated using the following formula:

RE = MSEMML

MSELS
× 100.(3.14)

MML estimators are said to be more efficient than LS estimators when the REs
are smaller than 100.

It should also be noted that we use µ̃, τ̃i, (̃τγ)ij , β̃ and σ̃ notations for the
corresponding LS estimators of the model parameters in (1.1). The formulas of
the LS estimators are not given here for the sake of brevity. However, they can be
found in Senoglu and Acitas [24].

It is clear from Table 2 that the MML estimators are more efficient than the
corresponding LS estimators in general. As shape parameter p increases from 2 to
5, the MSE values of the MML and the LS estimators are very close to each other
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Table 2. Simulated means, variances (n × V ar), MSEs (n ×MSE)
and RE values of the LS and the MML estimators of the parameters
µ, τ1, γ1, (τγ)11, β and σ.

Parameter Mean n× V ar n×MSE RE

LS MML LS MML LS MML
n = 10, p = 2

µ 0.0018 0.0018 0.2493 0.1471 0.2493 0.1471 59
τ1 0.0000 -0.0006 0.2617 0.1572 0.2617 0.1572 60
γ1 -0.0010 0.0009 0.2571 0.1535 0.2571 0.1535 60

(τγ)11 0.0040 0.0028 0.2570 0.1526 0.2572 0.1526 59
β 1.0002 0.9996 0.2894 0.2066 0.2894 0.2066 71
σ 0.9355 1.1608 12.454 0.9464 12.870 12.048 94

n = 10, p = 2.5
µ -0.0006 -0.0001 0.2504 0.1899 0.2504 0.1899 76
τ1 -0.0023 -0.0020 0.2572 0.1943 0.2573 0.1943 76
γ1 -0.0023 -0.0014 0.2593 0.1951 0.2593 0.1952 75

(τγ)11 0.0005 -0.0009 0.2580 0.1968 0.2580 0.1968 76
β 1.0014 1.0013 0.3000 0.2319 0.3000 0.2319 77
σ 0.9697 1.0739 0.5182 0.3788 0.5273 0.4334 82

n = 10, p = 3.5
µ -0.0014 -0.0012 0.2575 0.2301 0.2576 0.2301 89
τ1 0.0015 0.0013 0.2521 0.2259 0.2522 0.2259 90
γ1 -0.0019 -0.0023 0.2590 0.2343 0.2591 0.2344 90

(τγ)11 -0.0021 -0.0015 0.2577 0.2331 0.2578 0.2331 90
β 0.9996 0.9996 0.2871 0.2632 0.2871 0.2632 92
σ 0.9808 1.0535 0.2655 0.2467 0.2692 0.2753 102

n = 10, p = 5
µ 0.0007 0.0007 0.2452 0.2346 0.2452 0.2346 96
τ1 -0.0022 -0.0023 0.2645 0.2519 0.2646 0.2519 95
γ1 0.0014 0.0019 0.2548 0.2452 0.2549 0.2453 96

(τγ)11 -0.0002 -0.0002 0.2598 0.2485 0.2598 0.2485 96
β 0.9998 1.0000 0.2978 0.2860 0.2978 0.2860 96
σ 0.9883 1.0370 0.2094 0.2147 0.2107 0.2284 108

n = 20, p = 2
µ -0.0004 0.0003 0.2558 0.1383 0.2558 0.1383 54
τ1 -0.0016 -0.0013 0.2540 0.1392 0.2541 0.1392 55
γ1 0.0014 0.0007 0.2609 0.1424 0.2609 0.1424 55

(τγ)11 -0.0010 -0.0012 0.2607 0.1424 0.2607 0.1424 55
β 1.0008 1.0005 0.2584 0.1520 0.2584 0.1520 59
σ 0.9556 1.0927 21.482 0.7126 21.876 0.8844 40

n = 20, p = 2.5
µ 0.0002 -0.0006 0.2499 0.1799 0.2499 0.1799 72
τ1 -0.0013 -0.0005 0.2544 0.1870 0.2544 0.1870 74
γ1 -0.0010 -0.0001 0.2522 0.1859 0.2522 0.1859 74

(τγ)11 -0.0005 -0.0004 0.2545 0.1845 0.2545 0.1845 72
β 0.9992 0.9993 0.2728 0.1997 0.2728 0.1997 73
σ 0.9858 1.0415 0.6542 0.3528 0.6583 0.3873 59

n = 20, p = 3.5
µ -0.0009 -0.0011 0.2462 0.2152 0.2462 0.2152 87
τ1 0.0011 0.0006 0.2583 0.2262 0.2583 0.2262 88
γ1 -0.0001 0.0004 0.2439 0.2144 0.2439 0.2144 88

(τγ)11 0.0002 -0.0008 0.2497 0.2174 0.2497 0.2174 87
β 0.9992 0.9995 0.2733 0.2392 0.2733 0.2392 88
σ 0.9929 1.0319 0.2842 0.2211 0.2852 0.2415 85

n = 20, p = 5
µ -0.0007 -0.0005 0.2552 0.2399 0.2552 0.2399 94
τ1 -0.0010 -0.0011 0.2617 0.2475 0.2618 0.2476 95
γ1 0.0012 0.0011 0.2550 0.2395 0.2550 0.2395 94

(τγ)11 -0.0015 -0.0013 0.2559 0.2411 0.2560 0.2411 94
β 0.9998 1.0001 0.2671 0.2543 0.2671 0.2543 95
σ 0.9962 1.0247 0.2030 0.1908 0.2033 0.2029 100
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as expected. For certain cases, the MSE of σ̃ is better than σ̂, see i.e. n = 10,
p = 3.5 and p = 5. However, when sample size increases, σ̂ gains efficiency. It
should also be noted that we just reproduce the results for τ1, γ1 and (τγ)11 for
the brevity.

4. Hypotheses testing

The null hypotheses are given for testing the main effects, interaction effect and
the slope parameter as follows:
H01 : ∀τi = 0, i = 1, 2 (for testing main effect of factor A)
H02 : ∀γj = 0, j = 1, 2 (for testing main effect of factor B)
H03 : ∀(τγ)ij = 0, i = 1, 2; j = 1, 2 (for testing interaction effect AB)
H04 : β = 0 (for testing slope parameter β).
We propose following test statistics

F ∗A =

(
22mp

q

) 2∑
i=1

(µ̂i − µ̄i)2

σ̂2 , F ∗B =

(
22mp

q

) 2∑
j=1

(µ̂j − µ̄j)2

σ̂2 ,(4.1)

F ∗AB =

(
2mp
q

) 2∑
i=1

2∑
j=1

(µ̂ij − µ̄ij)2

σ̂2 and F ∗β = 2p
q
E∗xx

β̂2

σ̂2 ,(4.2)

for testing the null hypotheses H01, H02, H03, and H04, respectively.
As a result of Theorem 3.1, Theorem 3.2 and Theorem 3.3 for large n, the null

distribution of all the test statistics F ∗A, F ∗B , F ∗AB and F ∗β statistics are central F
with degrees of freedom ν1 = 1 and ν2 = 22n− 22 − 1 .

Simulations
To evaluate the accuracy of the central F distribution, we simulate the Type I

error probabilities of F ∗A, F ∗B , F ∗AB and F ∗β test statistics. Type I error probabilities
are found by computing the following probabilities:

P1 = Prob(F ∗A ≥ Fν1,ν2 |H01), P2 = Prob(F ∗B ≥ Fν1,ν2 |H02),

P3 = Prob(F ∗AB ≥ Fν1,ν2 |H03), and P4 = Prob(F ∗β ≥ Fν1,ν2 |H04)

where Fν1,ν2 is the table value for the F distribution for α = 0.05, ν1 = 1 and
ν2 = 22n− 22 − 1. In Table 3, the values of type I error for the test statistics F ∗A,
F ∗B , F ∗AB and F ∗β are given.
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Table 3. Simulated values of the Type I error probabilities: α = 0.05.

n = 10 n = 20
p = 2 p = 2.5 p = 3.5 p = 5 p = 2 p = 2.5 p = 3.5 p = 5

F ∗
A 0.050 0.041 0.046 0.047 0.054 0.046 0.045 0.047
F ∗
B 0.048 0.043 0.046 0.051 0.055 0.048 0.047 0.046

F ∗
AB 0.051 0.047 0.045 0.048 0.051 0.047 0.045 0.048
F ∗
β 0.043 0.039 0.042 0.045 0.050 0.050 0.044 0.046

It is clear from Table 3 that F ∗A, F ∗B , F ∗AB and F ∗β tests exhibit good approxi-
mation to the pre-assumed α = 0.05 value for small n. This indicates that they
have F distribution even for small n.

It should be noted that here and in the rest of the paper, we present results
only for the testing of the main effect of factor A and the slope parameter β, since
the results for the main effect of factor B and the interaction effect AB are similar
to those given for factor A.

The power of normal theory test statistics and the proposed test statistics are
also compared via the Monte-Carlo simulation study. The simulation setup is
taken as given in the previous section.

Corresponding normal theory test statistics for testing the null hypotheses H01,
H02, H03, and H04 are given below:

FA = Ayyadj
σ̃2 , FB = Byyadj

σ̃2 ,

FAB = AByyadj
σ̃2 and Fβ = Eyy − Eyyadj

σ̃2 ,

(4.3)

respectively, for further information see Senoglu and Acitas [24].
Power values of the test statistics for testing the main effect of factor A and the

slope parameter β are given in Table 4. It should be noted that the power values
of FA and F ∗A tests are obtained by adding and subtracting a constant d to the
observations in the low level and the high level of factor A, respectively. Similarly,
the power values of Fβ and F ∗β tests are obtained adding a constant d to the true
vale of β.

It is obvious from Table 4 that proposed tests are more powerful than classical
normal theory tests. It should also be noted that the lines corresponding to d = 0
give the type I error.
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Table 4. Power values of the FA and F ∗
A; Fβ and F ∗

β tests: α = 0.05.

p = 2 p = 2.5 p = 3.5 p = 5
FA F ∗

A FA F ∗
A FA F ∗

A FA F ∗
A

d n = 10
0.00 0.045 0.050 0.044 0.041 0.048 0.046 0.048 0.047
0.15 0.17 0.22 0.16 0.17 0.15 0.16 0.15 0.15
0.30 0.49 0.66 0.45 0.54 0.42 0.47 0.41 0.46
0.45 0.77 0.93 0.74 0.86 0.72 0.81 0.71 0.79
0.60 0.92 0.99 0.91 0.98 0.9 0.96 0.90 0.95

n = 20
0.00 0.043 0.054 0.046 0.046 0.049 0.045 0.050 0.047
0.10 0.16 0.24 0.14 0.17 0.14 0.14 0.14 0.14
0.20 0.47 0.68 0.43 0.54 0.41 0.46 0.40 0.42
0.30 0.76 0.94 0.74 0.87 0.73 0.80 0.72 0.77
0.40 0.92 0.99 0.91 0.98 0.91 0.96 0.92 0.95

p = 2 p = 2.5 p = 3.5 p = 5
Fβ F ∗

β Fβ F ∗
β Fβ F ∗

β Fβ F ∗
β

d n = 10
0.00 0.050 0.043 0.049 0.039 0.046 0.042 0.048 0.045
0.15 0.18 0.2 0.16 0.15 0.15 0.13 0.14 0.14
0.30 0.51 0.59 0.45 0.47 0.43 0.43 0.43 0.42
0.45 0.79 0.88 0.76 0.8 0.74 0.75 0.74 0.74
0.60 0.92 0.97 0.91 0.94 0.91 0.92 0.91 0.92

n = 20
0.00 0.053 0.050 0.053 0.050 0.047 0.044 0.050 0.046
0.10 0.16 0.22 0.16 0.22 0.14 0.14 0.14 0.14
0.20 0.47 0.64 0.47 0.64 0.41 0.43 0.41 0.41
0.30 0.78 0.92 0.78 0.92 0.73 0.76 0.73 0.74
0.40 0.92 0.99 0.92 0.99 0.92 0.94 0.92 0.93

5. Robustness

In practice, the true distribution cannot be determined exactly or uniquely. The
shape parameter may be misspecified or the data may contain outliers, or it may
be contaminated. In this case, a question arises: How do the deviations from an
assumed model affect the type I error and power of the proposed and the normal
theory tests? In other words, how robust they are to departures from an assumed
distribution, see i.e. [20, 25]. Therefore, this section is devoted to exploring the
robustness of the proposed and the normal theory tests.

We assume that the underlying distribution for the error terms is LTS(p =
3.5, σ = 1). We consider the following plausible alternatives:

Model I: LTS(p = 2, σ)
Model II: LTS(p = 2.5, σ)
Model III: (Dixon’s outlier model)

(n− r)LTS(p = 3.5, σ) + rLTS(p = 3.5, 4σ), r = 1, 2.
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Table 5. Power values of the FA and F ∗
A; Fβ and F ∗

β tests for alter-
natives to LTS(p = 3.5, σ): α = 0.05.

True Model Model I Model II Model III Model IV Model V
FA F∗A FA F∗A FA F∗A FA F∗A FA F∗A FA F∗A

d n = 10
0.00 0.048 0.046 0.046 0.034 0.051 0.045 0.044 0.039 0.043 0.037 0.049 0.044
0.15 0.15 0.16 0.18 0.18 0.15 0.15 0.12 0.12 0.13 0.13 0.17 0.17
0.30 0.42 0.47 0.49 0.58 0.43 0.50 0.35 0.40 0.36 0.40 0.46 0.52
0.45 0.72 0.81 0.77 0.89 0.74 0.85 0.62 0.72 0.63 0.74 0.75 0.85
0.60 0.90 0.96 0.91 0.98 0.91 0.97 0.83 0.92 0.83 0.92 0.92 0.97

n = 20
0.00 0.049 0.045 0.050 0.035 0.046 0.038 0.050 0.041 0.049 0.042 0.047 0.040
0.10 0.14 0.14 0.16 0.17 0.14 0.15 0.12 0.12 0.12 0.13 0.16 0.16
0.20 0.41 0.46 0.47 0.59 0.43 0.50 0.34 0.39 0.34 0.39 0.45 0.51
0.30 0.73 0.80 0.77 0.91 0.74 0.84 0.62 0.71 0.62 0.72 0.76 0.84
0.40 0.91 0.96 0.92 0.99 0.91 0.98 0.84 0.92 0.84 0.92 0.93 0.98

True Model Model I Model II Model III Model IV Model V
Fβ F∗

β
Fβ F∗

β
Fβ F∗

β
Fβ F∗

β
Fβ F∗

β
Fβ F∗

β

d n = 10
0.00 0.046 0.042 0.051 0.032 0.045 0.037 0.049 0.036 0.053 0.040 0.052 0.044
0.15 0.15 0.13 0.17 0.16 0.16 0.15 0.13 0.12 0.13 0.11 0.16 0.15
0.30 0.43 0.43 0.50 0.53 0.45 0.46 0.36 0.36 0.36 0.36 0.46 0.47
0.45 0.74 0.75 0.79 0.84 0.76 0.78 0.65 0.66 0.65 0.67 0.78 0.80
0.60 0.91 0.92 0.92 0.96 0.92 0.94 0.84 0.87 0.85 0.87 0.94 0.95

n = 20
0.00 0.047 0.044 0.050 0.032 0.053 0.040 0.051 0.041 0.047 0.038 0.048 0.039
0.10 0.14 0.14 0.16 0.16 0.14 0.14 0.12 0.11 0.12 0.12 0.15 0.15
0.20 0.41 0.43 0.47 0.56 0.42 0.46 0.34 0.37 0.34 0.37 0.44 0.48
0.30 0.73 0.76 0.78 0.88 0.74 0.81 0.63 0.68 0.64 0.69 0.77 0.82
0.40 0.92 0.94 0.92 0.98 0.92 0.96 0.84 0.89 0.85 0.90 0.94 0.96

Here n is the number of replications for each combination of levels of
factors A and B.

Model IV: (Mixture model)

0.90LTS(p = 3.5, σ) + 0.10LTS(p = 3.5, 4σ).

Model V: (Contaminated model)

0.90LTS(p = 3.5, σ) + 0.10Uniform(−0.5, 0.5).

In this study, following definitions of robustness definitions are used, see Box
[5] and Box & Tiao [6]:

Criterion Robustness: A hypothesis testing procedure is said to have crite-
rion robustness if its type I error is never substantially higher than a pre-assigned
value for plausible alternatives to an assumed model.

Inference Robustness: A hypothesis testing procedure is said to have infer-
ence robustness if its power is high, at any rate for plausible alternatives.

Given in Table 5 are the power values of the FA, F ∗A and Fβ , F ∗β tests under
the true and alternative models. We see that all tests have criterion robustness
since the simulated value of the Type I error is about pre-assigned value α = 0.05.
However, F ∗A and F ∗β tests are more preferable than the traditional FA and Fβ tests
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in terms of inference robustness, since they have higher power under the plausible
alternatives.

The results of the Monte-Carlo simulation studies show that the MML esti-
mators and the test statistics based on them are more preferable than the cor-
responding normal theory estimators and test statistics when the distribution of
error terms is LTS. If we increase p further and end up with normal distribution,
the performances of the proposed estimators and test statistics are exactly the
same as their LS counterparts.

6. Application

Montgomery [15] considers an example in the context of factorial experiments
with covariates. The experiment contains A and B factors having two levels (-1
and 1) and a covariate term x. The data set is given in Table 6.

Table 6. Data set for the application.

A B x y

-1 -1 4.05 -30.73
-1 -1 3.58 -26.46
-1 -1 5.38 -26.39
-1 -1 2.48 -8.94
-1 1 5.03 39.72
-1 1 15.53 103.01
-1 1 -0.67 15.89
-1 1 4.10 44.54
1 -1 1.06 10.94
1 -1 0.36 9.07
1 -1 8.63 54.58
1 -1 13.64 73.72
1 1 11.44 66.2
1 1 5.13 38.57
1 1 1.96 16.3
1 1 2.92 20.44

Montgomery [15] assumes that error terms are normally distributed and ana-
lyzes the data using traditional LS estimators and normal theory test statistics, see
page 621 in [15]. However, the Shapiro-Wilk test rejects the normality assumption
of the error terms calculated from LS estimators at a significance level α = 0.05.
We also provide a Q-Q plot of the error terms, see Figure 2. It is clear from this
figure that there is an outlying observation. Both the result of the Shapiro-Wilk
test and the Q-Q plot lead us to assume a non-normal error distribution.

Therefore, we here use LTS as an alternative error distribution. However, before
starting to analyze the data we should identify the plausible value of the shape
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Figure 2. Normal Q-Q plot of the error terms.

parameter p. In this study, we use a method called as the profile likelihood to
identify the plausible value of the shape parameter p. The steps of the method
are given as follows:

(i) Calculate the MML estimators of the model parameters µ̂, τ̂i, γ̂j , (̂τγ)ij ,
β̂ and σ̂ (i, j = 1, 2) for given p.

(ii) Calculate the log-likelihood value using the following equation:

(6.1) lnL(µ̂, τ̂i, γ̂j , (̂τγ)ij , β̂, σ̂) ≈ −22n ln σ̂ − p
2∑
i=1

2∑
j=1

n∑
k=1

ln
(

1 +
ẑ2
ijk

q

)

where

ẑijk =
(
yijk−µ̂−τ̂i−γ̂j−(̂τγ)ij−β̂(xijk−x̄···)

)
/σ̂ (i, j = 1, 2; k = 1, 2, ..., n).

(iii) Repeat steps (i) and (ii) for a serious values of p.
(iv) p value maximizing the log-likelihood function among the others is chosen

as a plausible value of the shape parameter.

See [12] for more detailed information. After following these steps, we see that
the plausible value of the shape parameter p is 2. MML estimates of the model
parameters and the tests based on them are computed for p = 2, see Table 7 and
Table 8.

Table 7. The LS and the MML estimates of the model parameters.

µ τ1 γ1 (τγ)11 β σ

LS 25.03 −9.40 −16.06 −15.49 5.09 8.33
MML 26.93 −11.19 −16.30 −15.48 8.03 9.29
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Table 8 shows that the test statistics FA, FB , FAB , Fβ and F ∗A, F ∗B , F ∗AB , F ∗β
tests are in agreement rejecting all the null hypotheses given in Section 4. In other
words, main effects, interaction effect and the slope parameter are significant at
the α = 0.05 level according to the results of the proposed and normal theory
tests. However, the calculated values of the proposed test statistics are much
more greater than the corresponding values of normal theory test statistics. This
is another indication of the superiority of proposed test statistics. It should be
noted that this conclusion is in accordance with the results given in Table 4.

Table 8. Calculated values of the proposed and normal theory tests
statistics.

A B AB β

F 20.24 59.05 54.10 119.43
F ∗ 43.83 93.09 83.92 159.45

7. Conclusion

In this study, we consider a factorial ANCOVA model in which error terms
are i.i.d. LTS. We derive MML estimators of the model parameters using Tiku’s
[26, 27] methodology. We also propose new test statistics based on these estima-
tors for testing the main effects, the interaction effect and slope parameter. In
the simulation study, MML estimators are shown to be more efficient than LS
estimators. The results of the simulation study also demonstrate that proposed
test statistics are more powerful and robust than corresponding normal theory test
statistics even for small sample sizes.

It should be noted that we assume a balanced design in this study. However,
the proposed method cannot easily be transferred to an unbalanced design, see for
example [15] in the context of factorial design.
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