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Abstract

Extraction of as much information as possible from huge data is a burn-
ing issue in the modern statistics due to more variables as compared to
observations therefore penalization has been employed to resolve that
kind of issues. Many achievements have already been made by such
penalization techniques. Due to the large number of variables in many
research areas declare it a high dimensional problem and with this the
sample correlation becomes very large. In this paper, we studied the
maximum likelihood estimation of variable selection under smoothly
clipped absolute deviation (SCAD) and Ridge penalties with ultra-high
dimension settings to solve this problem. We established the oracle
property of the proposed model under some conditions by following the
theoretical method of Kown and Kim (2012) [19]. These result can
greatly broaden the application scope of high-dimension data. Numer-
ical studies are discussed to assess the performance of the proposed
method. The SCAD-Ridge given better results than the Lasso, Enet
and SCAD.
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1. Introduction

Extraction of as much information as possible from huge data is becoming a burning
issue in the modern statistics due to more variables as compared to observations. There-
fore, penalization has been employed to resolve such problems. A lot of achievements
have already been made through penalized variable selection techniques such as the L1

penalty in Donoho and Johnstone (1994) [5] that yields the soft threshold rule and leads
to the least absolute shrinkage and selection operator (Lasso) discussed by Tibshirani
(1996) [23], and was further studied by Efron et al.(2004)[6]. The L2 penalty that results
in Hoerl and Kennard's (1970) [7], was further discussed by Segerstedt (1992) [22]. It
performs well when the predictors are highly correlated. Fu (1998) [15] proposed the Lq
penalty for the bridge regression. The hard thresholding penalty function which results
in the hard thresholding rule was studied by Antoniadis (1997) [2] and Fan (1997) [8].
Fan and Li (2001) [9] proposed the smoothly clipped absolute deviation (SCAD) penalty
that enjoys the oracle property. The SCAD estimator performs like the oracle estimator
obtained under the true model. These methods had been proposed for variable selection
and estimation simultaneously.

It is obvious that ridge regression provides better results in case of highly correlated
group variables. Zou and Hastie (2005) [26] proposed the elastic net (Enet), which is the
the combination of L1 and L2 penalties. But the Enet estimator is asymptotically biased
because of the L1 component in the penalty. So Zou and Zhang (2009) [27] proposed the
adaptive Enet (AEnet) estimator and proved that it is oracle under su�cient conditions.
The nonconcave penalized thresholding estimators may enjoy the nice oracle property
therefore Wang et al.(2010) [24] proposed a new combined-penalization (abbreviated as
CP, combined SCAD with ridge) in linear regression. Dong et al.(2014) [4] extended
the results of Wang et al.(2010) [24] to the general models and the general nonconcave
penalization with a diverging number of parameters. Their results include the case of
highly correlated predictors and are applicable to the situations when p > n. Amin et al.
(2015)[1] also studied the similar idea of combined penalization with quantile regression
settings for high dimensional models. Recent years the high dimensional data analysis
has gained too much importance, therefore, there is a need to develop methods that are
applicable to p ≥ n regression problems with highly correlated predictors and having the
oracle property. Zhao and Yu (2006) [25], Meishausen and Buhlmann (2006) [20] proved
the sign consistency of the Lasso when the number of parameters exceeds the sample size.
The sure independence screening method (a type of correlation learning) was proposed
by Fan and Lv (2008) [11] for ultra high-dimension model selection problems. For a
detailed introduction of recent developments in high-dimensional variable selection was
given in Fan and Lv (2010) [12]. Huang et al.(2010) [17] proposed the Mnet penalty
method, which is combined by MCP and ridge. This penalty uses the MCP instead of
the L1 penalty for selection as compared to Enet.

Inspired by these methods, we propose the maximum likelihood estimation of variable
selection under the SCAD-Ridge penalty in the ultra-high dimension. Following the
theoretical method of Kown and Kim (2012) [19] we can get the nice property of our
model. The SCAD-Ridge penalty can encourage a grouping e�ect in selection meaning
that it selects or drops highly correlated predictors together. These result can greatly
broaden the application scope of high-dimension data.

The contents of this article are organized as follows. In Section 2, we introduce the
SCAD-Ridge penalized likelihood estimators for ultra-high dimensional models. Section
3 presents some regularized conditions and asymptotic results for the proposed model.
Numerical studies are discussed in Section 4 to assess the performance of the proposed
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method. In Section 5, we discuss conclusions and give some recommendations for future
work. Theoretical proofs are provided in the Appendix A.

2. The model of SCAD-Ridge penalized likelihood for ultra-high

dimension

For any n, let Zni = (X ni, Yi) (i = 1, . . . , n), be independent and identically dis-
tributed random variables with the probability density fn(Zni,θn), where θn ∈ Θn and
Θn is an open subset of <n.

The maximum likelihood estimator of SCAD-Ridge penalty θn is the maximum points
of Qn(θn).

Qn(θn) = Ln(θn)− n
pn∑
j=1

Jλn,γn(|θnj |),(2.1)

where Ln(θn) =
n∑
i=1

log fn(Zni,θn), Jλn,γn(|θnj |) = γn
2
θ2
nj+Pλn(|θnj |). The λn ≥ 0, γn ≥

0, they are the tuning parameters. Pλn(·) is the SCAD penalty which proposed by Fan
and Li(2001) [9], the concrete form of Pλn(·) is

Pλn(θ) =



λn|θ|, where 0 ≤ |θ| < λn,

aλn|θ| − (θ2 + λ2)/2

(a− 1)
, where λn ≤ |θ| < aλn,

(a+ 1)λ2
n

2
, where |θ| ≥ aλn.

where a > 2. The �rst derivative of Pλn(·) is

P
′
λn

(θ) =


λnsgn(θ), where 0 ≤ θ < λn,

aλnsgn(θ)− θ
a− 1

, where λn ≤ θ < aλn.

The SCAD-Ridge penalty Jλn,γn(| · |) of (2.1) is the combination of ridge with SCAD.
Obviously, the ridge and Pλn(·) techniques are special cases of a combined penalty, with
λn = 0 and γn = 0, respectively. Let θ∗n ∈ Θn is the true parameter. Without loss of
generality, we suppose sn is the number of non-zero coe�cients and pn − sn is the zero
vector with zero components.

We adopted the method of Kown and Kim(2012)[19] to discuss the asymptotic prop-
erty of our model, in the simulation of pn = O(nk), k ≥ 1, where k depends on the
derivative order of log-likelihood function.

3. The asymptotic properties of model selection

The following regularity conditions are imposed to discuss the theoretical property,
where M1,M2, . . . are some positive constants.

3.1. Regularity conditions.

(C1). For any constants c1 and c2 satisfying 0 < 5c1 < c2 ≤ 1,

sn = O(nc1), min
1≤j≤sn

n(1−c2)/2|θ∗nj | ≥M1.

(C2). The �rst and second derivatives of the log-likelihood log fn(Zn1,θ
∗
n) satisfy

Eθ∗n

{
∂ log fn(Zn1,θ

∗
n)

∂θnj

}
= 0, for j = 1, 2, . . . , pn
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and

Eθ∗n

{
∂ log fn(Zn1,θ

∗
n)

∂θnj

∂ log fn(Zn1,θ
∗
n)

∂θnk

}
= −Eθ∗n

{
∂2 log fn(Zn1,θ

∗
n)

∂θnj∂θnk

}
,

for j, k = 1, 2, . . . , pn; n ≥ 1.

(C3). The �rst sn × sn submatrix I
(1)
n (θ∗n) of the Fisher information matrix

In(θ∗n) = Eθ∗n

[{
∂ log fn(Zn1,θ

∗
n)

∂θn

}{
∂ log fn(Zn1,θ

∗
n)

∂θn

}T]
is positive de�nite, such that for all n ≥ 1,

0 < M2 < λmin{I(1)
n (θ∗n)} ≤ λmax{I(1)

n (θ∗n)} < M3 <∞,
where, λmin(D) and λmax(D) denote the smallest and largest eigenvalues of the given
matrix D, respectively.
(C4). There exists a su�ciently large open subset ωn contains the true parameter θ∗n in
Θn ∈ Rpn . For almost all Zni (i = 1, . . . , n), the density admits a third derivatives for all
θn ∈ ωn. Furthermore, there are functions Vnjtl, such that ∂3fn(Zni,θn)/∂θnj∂θnt∂θnl
satis�es ∣∣∣∣∂3 log fn(Zni,θn)

∂θnj∂θnt∂θnl

∣∣∣∣ ≤ Vnjtl(Zni),

for j, t, l = 1, 2, . . . , pn; n ≥ 1. There exists an integer m ≥ 1 such that

Eθn
(Vnjtl(Zni))

2m < M4 <∞.

(C5). There also exists an integer m ≥ 1 such that

Eθ∗n

{
∂ log fn(Zn1,θ

∗
n)

∂θnj

}2m

< M5 <∞, Eθ∗n

{
∂2 log fn(Zn1,θ

∗
n)

∂θnj∂θnk

}2m

< M6 <∞,

for all j, k = 1, 2, . . . , pn; n ≥ 1.
(C6). There exists a convex open subset Ωn ⊂ Θn, which contains θ∗n, for a su�ciently
large n, satis�es

min
θn∈Bn

λmin(θn) > M7,

where λmin(θn) is the smallest eigenvalue of the second derivatives of the negative log-
likelihood (Hessian matrix)

− 1

2n

n∑
i=1

∂2 log fn(Zn1,θn)

∂θ2
n

at θn.
All the conditions are similar with Kown and Kim (2012) [19]. Condition (C1) allows

the number of parameters to diverge into in�nite, and allows their value to converge
to zero. The conditions (C2) − (C4) are the standard assumptions for the maximum
likelihood estimation. In the case of linear regression, Condition (C3) has the design
matrix corresponding to the relevant covariates as nonsingular. Conditions (C4), (C5)
determine the order of pn with respect to some integer m ≥ 1. To the model of logistic
regression

Pr (y = 1|x ) =
exp(xTβ∗n)

1 + exp(xTβ∗n)
,

we will use in the numerical studies. Suppose that the covariate x is bounded, such that
max

1≤j≤pn
|Xj | ≤ b, for some constant b > 0. Since

∂logfn(y,β∗n|x )

∂β∗n
=

(
y − exp(xTβ∗n)

1 + exp(xTβ∗n)

)
x ,
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it is easy to see that

max
1≤j≤pn

Eβ∗n

{
∂ log fn(yn1,β

∗
n)|x

∂βnj

}2k

≤ max
1≤j≤pn

x2k
j ≤ b2k <∞,

the other two inequalities can be checked similarly in (C5). (C6) is necessary in the proof
of the following theorem.

3.2. Theoretical properties.

In order to state the CP penalized MLE (the global maximizer of the CP-penalized
log-likelihood) is exactly the same as the oracle MLE asymptotically, we have to de�ne

the Oracle ridge estimator θ̂
0

n at �rst (See from Appendix A ). Under the Lemma 1
and Lemma 2 of Appendix A, we only need to proof the SCAD-Ridge penalty likelihood

estimation θ̂n is asymptotic equal to the Oracle ridge MLE θ̂
0

n. Then we can get the
main theorem of our study.

3.1. Theorem. Under the conditions (C1)− (C6), let Bn(λn) denote the set of all local

maximizers of (2.1), then the maximizer θ̂n of (2.1) in Ωn satis�es

Pr(θ̂n ∈ Bn(λn))→ 1,

as n→∞, provided λn = o(n−(1−c2+c1)), γn = o(λn) and pn/(
√
nλn)2k → 0.

The detail proof of the theorem can be seen in the Appendix.

4. Numerical studies

4.1. Simulations.

In this section, we illustrate the �nite sample performance of the SCAD-Ridge penal-
ized likelihood estimators and focus on the case when pn > n. Through the numerical
studies, we generate 100 data sets, each of which consists of n observations from the
Logist regression model:

Pr (Yi = 1|x i) =
exp(xTi β0)

1 + exp(xTi β0)
,

where β0 is a pn × 1 vector, the �rst 15 components are all 3, and the remaining
pn − 15 components are all 0. Here we take pn = 600, n = 100. The covariate x i
is generated from a pn-dimensional multivariate normal distribution N(0 ,Σ0), where

Σ0 = (r|i−j|)i,j=1,...,pn .
We consider four penalization functions except for Oracle, including Lasso, Enet,

SCAD and SCAD-Ridge. All estimates are computed by the CDA (coordinate descent
algorithm) [3,13,14]. Because of pn > n, the over�tting damaged the information crite-
rion, so the tuning parameters are selected by the V-fold cross validation with V = 5.
To evaluate the performances of every estimates, we give four summary statistics: � C
",� IC", � l2 loss " and � Mpmse ". � C " is the average number of choose zero coe�cient
correctly, � IC" stands the average number of non-zero coe�cient is estimated to zero
coe�cient incorrectly, � l2 loss " is the median of ‖β−β0‖ and � Mpmse " is the median
of the prediction mean squared error, for the Logist regression model, that is

1

tn

tn∑
i=1

{
Yi −

exp(xTi β0)

1 + exp(xTi β0)

}2

,

this is calculated by independent test sample size for tn = 1000. We discuss the situations
of r = 0.5 and r = 0.9, the simulated results are given in Table 1 and Table 2. The �gures
in parentheses of Table 1 and Table 2 are the corresponding standard deviation.
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Table 1. The simulation results for r=0.5

(n, pn) Method C IC l2 loss Mpmse

(100,600) Lasso 564.77(1.783) 6.21(1.665) 1.074(0.021) 0.211(0.006)
Enet 555.13(2.804) 5.56(1.986) 1.094(0.021) 0.210(0.005)
SCAD 574.51(0.890) 4.57(1.671) 1.054(0.029) 0.212(0.008)

SCAD-Ridge 557.97(2.213) 5.10(2.600) 1.068(0.028) 0.211(0.007)
Oracle 585.00(0.000) 0.00(0.000) 0.946(0.041) 0.189(0.009)

Table 2. The simulation results for r=0.9

(n, pn) Method C IC l2 loss Mpmse

(100,600) Lasso 575.92(0.875) 8.50(1.314) 2.078(0.013) 0.195(0.005)
Enet 568.70(1.933) 6.49(2.908) 2.078(0.012) 0.195(0.004)
SCAD 580.94(0.724) 1.13(0.793) 2.069(0.021) 0.193(0.009)

SCAD-Ridge 582.45(0.932) 0.67(1.075) 2.057(0.016) 0.193(0.006)
Oracle 585.00(0.000) 0.00(0.000) 2.011(0.040) 0.187(0.009)

It can be seen from the result that the SCAD is better than the Lasso in both the
situations, because the Lasso hasn't the Oracle property. When r = 0.5, we can see that
the SCAD is the best choice except for Oracle. When r = 0.9, with high correlation,
combination form of Enet and SCAD - Ridge are performing well than Lasso and SCAD
which are not combined. The results of the four aspects of SCAD - Ridge are a little
better than the results of the Enet. Obviously, under the situation of high correlation,
SCAD-Ridge and Enet have more advantages.

4.2. Data analysis.

In our study, we use the Boston housing data to discuss the usefulness of our pro-
posed method. This data set will examine the correlation between 'clean air' and hous-
ing prices in Harrison and Rubinfeld(1978)[16]. There are 506 observations, 13 inde-
pendent factors, and a response variable LMV (the logarithm of the median value)
of the owner-occupied homes. For more information, the reader can refer to 'http :
//lib.stat.cmu.edu/datasets/bostoncorrected.txt.' We split 506 observations into the �rst
400 observations as a training data set to select and �t the model, and the rest as a testing
data set to evaluate the prediction ability of the selected model. We calculate the median
absolute prediction error (MAPE) (median{|yi − ŷi|, i = 1, . . . , 106}) using the testing
data. The performance of penalized likelihood with di�erent penalties are summarized
in Table 3. The results indicate that SCAD-Ridge and SCAD selects the simplest model,
while Lasso and Enet includes extra variables. In addition to the MAPE, the SCAD-
Ridge gets the smallest value. So it is easy to see that SCAD-Ridge penalty obtains the
best performance.

5. Conclusion and discussion

This paper studies the maximum likelihood estimation of variable selection under the
SCAD-Ridge penalty in the ultra-high dimension. Following the theoretical method of
Kown and Kim (2012)[19] and under some conditions, we proposed the model with a
nice oracle property. The established model includes all the regression model (such as
Logistic and poisson regression). These results can greatly widen the application range
of high-dimensional data. Numerical studies are discussed to assess the performance of
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Table 3. Results of the Boston House Price data

Methods No. zeros MAPE

Lasso 5 4.7238
Enet 5 4.2124
SCAD 10 4.3086

SCAD-Ridge 10 4.0118

the proposed method. As long as the loss function is a smooth enough (there is a third
derivative), the results can be extended to the M estimation of general penalization. But
if the loss function is not smooth enough under the conditions, such as the hinge loss
function of support vector machines (SVM) and Huber robust regression loss function,
it is not so easy to explain. To extend our results to the non-smooth loss functions will
be very meaningful in future.
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Appendix A

In order to prove Theorem 3.1, we need to de�ne the Oracle ridge estimation. Under
the support of some relevant lemmas, we can get our property. Following the opinion of
Huang(2010) [17], we can denote the model of (2.1)

Qn(θn) = Ln(θn)− n
pn∑
j=1

Jλn,γn(|θnj |) = Ln(θn, γn)− n
pn∑
j=1

Pλn(|θnj |),(A.1)

where Ln(θn, γn) =
n∑
i=1

log fn(Zni,θn)− γn
pn∑
i=1

θnj
2/2, Pλn(·) is the SCAD penalty.

We de�ne θ̂
0

n is the maximum likelihood Oracle ridge estimation of this model, which
subject to θnj = 0, for (sn < j ≤ pn), combined Ln(θn) with ridge to estimate the
parameters. Its estimated coe�cients of the irrelevant parameters are set to be exactly
zero. Under the conditions (C1) − (C5), γn = o(λn) and the conclusion of Fan and

Peng(2004) [10], we can get that the Oracle ridge MLE θ̂
0

n is asymptotically and
√
sn/n-

consistency estimator, that is

‖θ̂
0

n − θ∗n‖ = Op(
√
sn/n).(A.2)

Here we assume that the Oracle Oracle ridge estimator θ̂
0

n is in the set of Ωn.
Next, in order to simplify the proof we de�ne some notation. let

Snj(θn, γn) be the j − th element of ∇Ln(θn, γn) = ∂Ln(θn,γn)

∂θn
, for all (j = 1, . . . , pn).

Unjl(θn, γn) is the (j, l) − th element of ∇2Ln(θn, γn) = ∂2Ln(θn,γn)

∂θ2
n

, for all (j, l =

1, . . . , pn).
Similarly, ∇1 denotes some partial derivatives of Snj(θn, γn) with respect to θn1 =

(θn1, θn2, . . . , θnsn)T , so that∇1Snj(θn, γn) =
∂Snj(θn,γn)

∂θn1
and∇2

1Snj(θn, γn) =
∂2Snj(θn,γn)

∂θ2
n1

,

for all (j = 1, . . . , pn).

Lemma1 : If C2, C4, C5 hold, for any constants α > 0, for any j ≤ pn and θn ∈ Bn(λn),
we have

Pr
(
|Snj(θ∗n, γn)| >

√
nα
)

= O(α−2k),(A.3)

Pr (‖∇1Snj(θ
∗
n, γn)− E(∇1Snj(θ

∗
n, γn))‖ >

√
nsnα) = O(α−2k),(A.4)

Pr
(
‖∇2

1Snj(θn, γn)‖ > nsnα
)

= O(α−2k).(A.5)

Proof. Under the conditions C2 and C5 and the Rosenthal inequality, we have

E

{
∂ log fn(Zn1,θ

∗
n)

∂θnj

}2k

= O(nk), (j ≤ pn).
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Because of λn = o(n−(1−c2+c1)), γn = o(λn), using the Markov inequality, it is easy
to check

Pr
(
|Snj(θ∗n, γn)| >

√
nα
)
≤ E (|Snj(θ∗n, γn)|)2k

(
√
nα)2k

=
E
{
∂ log fn(Zn1,θ

∗
n)

∂θnj
− γnθnj

}2k

(
√
nα)2k

=
E
{
∂ log fn(Zn1,θ

∗
n)

∂θnj

}2k

(
√
nα)2k

(1 + op(1))

= O(α−2k).

Hence, (A.3)holds.
Let ∆njl(θ

∗
n, γn) = Unjl(θ

∗
n, γn)−E (Unjl(θ

∗
n, γn)). Then, from C2, C5 and the Rosen-

thal inequality, we get

E

(
∂2 log fn(Zn1,θ

∗
n)

∂θnj∂θnk
− E

(
∂2 log fn(Zn1,θ

∗
n)

∂θnj∂θnk

))2k

= O(nk), (j, l ≤ pn).

Using the triangular inequality, we have

E
(
‖∇1Snj(θ

∗
n, γn)− E(∇1Snj(θ

∗
n, γn))‖2k

)
= E

{
sn∑
j=1

(∆njl(θ
∗
n, γn))

2

}k

≤

[
sn∑
j=1

{
E(∆njl(θ

∗
n, γn))2k

}1/k
]k

=

 sn∑
j=1

{
E

(
∂2 log fn(Zn1,θ

∗
n)

∂θnj∂θnk
− E

(
∂2 log fn(Zn1,θ

∗
n)

∂θnj∂θnk

))2k
}1/k

k

= O(nskn), (j ≤ pn).

Furthermore, using the Markov inequality again, we get

Pr (‖∇1Snj(θ
∗
n, γn)− E(∇1Snj(θ

∗
n, γn))‖ >

√
nsnα)

≤ E (‖∇1Snj(θ
∗
n, γn)− E(∇1Snj(θ

∗
n, γn))‖)2k

(
√
nsnα)2k

=
O(nkskn)

(nsn)kα2k
= O(α−2k),

So (A.4)holds.
Similarly, under the conditions C4 and C5, we have

E

(
n∑
i=1

Vnjtl(Zni)

)2k

= O(n2k),

hence we have

E
(
‖∇2

1Snj(θn, γn)‖
)2k ≤ O((nsn)2k).

By Markov inequality, we also can get

Pr
(
‖∇2

1Snj(θn, γn)‖ > nsnα
)
≤ O((nsn)2k)

(nsnα)2k
= O(α−2k).
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Hence, (A.5) follows.
This completes the proof of lemma 1. �

Lemma2 : If conditions (C1)− (C5) hold, when λn = o(n−(1−c2+c1)), γn = o(λn) and
pn/(
√
nλn)2k → 0 (n→∞), we have

Pr(θ̂
0

n ∈ Bn(λn))→ 1.

Proof. Because SCAD penalty is not derivative at the origin, refer to Kwon and Kim
(2012) [19], we establish a new objective function to ensure that can be derivative every-
where,

Un(θn, λn, γn) = Ln(θn, γn)− n
pn∑
i=1

(Pλn(|θnj |)− λn|θnj |) ,

whereLn(θn, γn) are the same as (A.1), it is the likelihood function with ridge. Obviously,
Un(·) is continuous and derivative, we have

∂Un(θn, λn, γn)

∂θnj
=


Snj(θn, γn), 0 ≤ |θnj | < λn,

Snj(θn, γn)− n
(
λn − |θnj |
a− 1

)
sgn(θnj), λn ≤ |θnj | < aλn,

Snj(θn, γn) + nλnsgn(θnj), |θnj | ≥ aλn,

where a > 2, λn ≥ 0 are tuning parameters, j ≤ pn.
Since

Qn(θn, λn, γn) = Un(θn, λn, γn)− nλn
pn∑
i=1

|θnj |,

as j ≤ pn, the corresponding Karush-Kuhn-Tucker (KKT) conditions ( see, for example,
Rosset and Zhu (2007)[21]) are

∂Un(θn, λn, γn)

∂θnj
= nλnsgn(θnj), θnj 6= 0,(A.6) ∣∣∣∣∂Un(θn, λn, γn)

∂θnj

∣∣∣∣ ≤ nλn, θnj = 0.(A.7)

Because θ̂
0

n is the Oracle ridge MLE of (2.1). By the de�nition of θ̂
0

n,{
Snj(θ̂

0
nj , γn) = 0, j ≤ sn,

θ̂0
nj = 0, sn < j ≤ pn.

Hence, it su�ces to show that as n→∞, θ̂
0

n satis�es,

Pr

(
min

1≤j≤sn
|θ̂0
nj | ≥ aλn

)
→ 1,(A.8)

Pr

(
max

sn<j≤pn
|Snj(θ̂0

nj , γn)| ≤ nλn
)
→ 1.(A.9)

From the regularity condition C1 and (A.2), we have

min
1≤j≤sn

|θ̂0
nj | ≥ min

1≤j≤sn
|θ∗nj | − max

1≤j≤sn
|θ̂0
nj − θ∗nj | = Op(n

−(1−c2)/2),

Hence, follows λn = o(n−(1−c2+c1)) , (A.9) holds.
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Next, we prove (A.9). From Taylor expansion and the de�nition of θ̂
0

n and θ∗n, we
have

Snj(θ̂
0

n, γn) = Snj(θ
∗
n, γn) +∇1Snj(θ

∗
n, γn)T (θ̂

0

n − θ∗n)

+
(
ˆθ
0

n−θ
∗
n)T∇2

1Snj(ηn,γn)(
ˆθ
0

n−θ
∗
n)

2
,

for all sn < j ≤ pn, for some ηn lies between θ̂
0

n and θ∗n. From Cauchy-Schwarz inequality,
it follows that

Pr

(
max

sn<j≤pn
|Snj(θ̂

0

n, γn)| > nλn

)
≤ Pr

(
max

sn<j≤pn
|Snj(θ∗n, γn)| > nλn

4

)
+ Pr

(
max

sn<j≤pn
‖∇1Snj(θ

∗
n, γn)− E(∇1Snj(θ

∗
n, γn))‖ · ‖θ̂

0

n − θ∗n‖ >
nλn

4

)
+ Pr

(
max

sn<j≤pn
‖E(∇1Snj(θ

∗
n, γn))‖ · ‖θ̂

0

n − θ∗n‖ >
nλn

4

)
+ Pr

(
max

sn<j≤pn
‖∇2

1Snj(ηn, γn)‖ · ‖θ̂
0

n − θ∗n‖ >
nλn

2

)
, L1 + L2 + L3 + L4

To discuss L1 at �rst, when n→∞, we have

L1 = Pr

(
max

sn<j≤pn
|Snj(θ∗n, γn)| > nλn

4

)
≤

∑
sn<j≤pn

Pr

(
|Snj(θ∗n, γn)| > nλn

4

)
= O

(
pn/(
√
nλn)2k

)
→ 0.

Then we discuss L2, by (A.2) and (A.4), as n→∞, we have

L2 ≤ Pr
(
‖θ̂

0

n − θ∗n‖ > sn/
√
n
)

+ Pr

(
max

sn<j≤pn
‖∇1Snj(θ

∗
n, γn)− E(∇1Snj(θ

∗
n, γn))‖ > n

√
nλn

4sn

)
= o(1) +O

(
pn/(nλn/sn

√
sn)2k

)
→ 0.

For the term of L3, by C5, when n→∞, we get

L3 = Pr

(
max

sn<j≤pn
‖E(∇1Snj(θ

∗
n, γn))‖ · ‖θ̂

0

n − θ∗n‖ >
nλn

4

)
≤ Pr

(
‖θ̂

0

n − θ∗n‖ > nλn/4M5
√
sn
)
→ 0.

For the last term L4, from (A.5), when n→∞,

L4 ≤ Pr
(
‖θ̂

0

n − θ∗n‖ > sn
√
sn/n

)
+ Pr

(
max

sn<j≤pn
‖∇2

1Snj(ηn, γn)‖ > n2λn/2sn
√
sn

)
= o(1) +O

(
pn/(nλn/sn

√
sn)2k

)
→ 0.
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In conclusion,

Pr

(
max

sn<j≤pn
|Snj(θ̂

0

n, γn)| > nλn

)
→ 0,

hence, (A.9) follows.

It follows that, the Oracle ridge estimation θ̂
0

n of (2.1) satis�es the corresponding KKT
conditions (even as pn ≥ n), it consist in the set of Bn(λn), which is the set of all local
maximizers of Qn(θn).

This complete the proof of lemma 2. �

This lemma holds when pn = o(n(c2−c1)k) with su�ciently large k, even when pn � n.
If the distributions of the corresponding random variables( the �rst, second, and the
third derivatives of the log-likelihood) have exponentially decaying tails, we can show

that the lemma2 holds when c3 > 0 and pn = O(exp(n(c3))), see reference Kim, Choi
and Oh(2008) [18].

Because the log-likelihood function is the strictly concave on Ωn, by the de�nition of

θ̂
0

n and the contents of lemma2, in order to proof 3.1, we only need to proof the SCAD-

Ridge penalty likelihood estimation θ̂n is asymptotic equal to the Oracle ridge MLE θ̂
0

n,
that is

Pr(θ̂n = θ̂
0

n)→ 1.(A.10)

Appendix B. Proof of Theorem 3.1

Proof. To ensure (A.10), it su�ces to show that, as n→∞

Pr

(
max
θn∈Ωn

Qn(θn) ≤ Qn(θ̂
0

n)

)
→ 1.(B.1)

From Taylor expansion, we get

Ln(θn, γn)− Ln(θ̂
0

n, γn) = ∇Ln(θ0
n, γn)T (θn − θ̂

0

n)

+
(θn−

ˆθ
0

n)T∇2Ln(η∗n,γn)(θn−
ˆθ
0

n)

2
,

where η∗n lies between θn and θ̂
0

n.

The de�nition of θ̂
0

n and the (A.9) imply that

∇Ln(θ̂
0

n, γn)T (θn − θ̂
0

n) =

pn∑
j=1

Snj(θ̂
0

n, γn)(θnj − θ̂0
nj)

≤
pn∑

j=sn+1

op(nλn)|θnj |,

and from (C6) and the Cauchy- Schwarz inequality,

(θn − θ̂
0

n)T∇2Ln(η∗n, γn)(θn − θ̂
0

n)

2
≤ −nM7‖θnj − θ̂0

nj‖2

= −nM7

pn∑
j=1

(θnj − θ̂0
nj)

2
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holds. Hence, we have

Qn(θn)−Qn(θ̂
0

n)

= Ln(θn, γn) + Pλn(|θn|)− Ln(θ̂
0

n, γn|)− Pλn(|θ0
n|)

= (Ln(θn, γn)− Ln(θ̂
0

n, γn)) + (Pλn(|θn|)− Pλn(|θ0
n|))

≤
pn∑

j=sn+1

op(nλn)|θnj | − nM7

pn∑
j=1

(θnj − θ̂0
nj)

2 +

pn∑
j=1

Pλn(|θ0
nj |)− Pλn(|θnj |)

≤
pn∑
j=1

nωnj ,

where ωnj = op(λn)|θnj |I(j>sn) −M7(θnj − θ̂0
nj)

2 + Pλn(|θ0
nj |)− Pλn(|θnj |).

If |θnj | ≥ aλn ( for all j ≤ sn), we have

sn∑
j=1

ωnj ≤ −
sn∑
j=1

M7(θnj − θ̂0
nj)

2 ≤ 0.

If there exists a j ≤ sn such that |θnj | < aλn, then

|θnj − θ̂0
nj | ≥ min

1≤j≤sn
|θ∗nj | − max

1≤j≤sn
|θ̂0
nj − θ∗nj | − aλn = Op(n

−(1−c2)/2).

Hence, we have, for the su�ciently large n, we get
sn∑
j=1

ωnj ≤ −Op(n−(1−c2)) ≤ 0.

On the other hand, for each j > sn, if |θnj | ≥ λn, we have
ωnj ≤ |θnj |(op(λn)−M7|θnj |),

and if |θnj | ≤ λn, then
ωnj ≤ op(λn)|θnj | − Pλn(|θnj |) = (op(λn)− λn)|θnj |.

Hence, for all the su�ciently large n, we have
pn∑

j=sn+1

ωnj ≤ 0. As a consequence, (B.1)

holds, that is (A.10) holds.
This complete the proof of Theorem 3.1. �


