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Abstract: Model complexity, dataset size and optimizer choice critically influence machine learning model performance, especially in 

complex architectures like Transformers. This study aims to analyze the impact of seven optimizers —Adam, AdamW, AdaBelief, 

RMSprop, Nadam, Adagrad and SGD—across two Transformer configurations and three dataset sizes. Results show adaptive 

optimizers generally outperform non-adaptive ones like SGD, particularly as dataset size grows. For smaller datasets (20K, 50K), 

Adam, AdamW, Nadam and RMSprop perform best on low-complexity models, while AdaBelief, Adagrad and SGD excel with higher 

complexity. On the largest dataset (∼140K samples), Nadam and RMSprop lead in low-complexity models, whereas Adam, AdaBelief, 

Adagrad, SGD and AdamW do so in high-complexity models. Notably, low-complexity models train more than twice as fast and, in some 

cases, achieve better accuracy and lower loss than their high-complexity counterparts. This result highlighting the importance of 

balancing optimizer choice, dataset size and model complexity for efficiency and accuracy. These results emphasize the trade-offs 

associated with optimizing model efficiency and accuracy through the interplay of optimizer selection, dataset size and model 

complexity. 
 

Keywords: Transformer architecture, Optimizer comparison, Model complexity, Dataset size, Optimizers, Training efficiency 

*Corresponding author: Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Department of Computer Engineering, 58000, Sivas, Türkiye 

E mail: hilalcelik@sivas.edu.tr (H. ÇELİK) 

Hilal ÇELİK  https://orcid.org/0000-0001-5428-3411 Received: July 11, 2025 

Accepted: November 22, 2025 

Published: January 15, 2026 

Ramazan KATIRCI  https://orcid.org/0000-0003-2448-011X 

Cite as: Çelik, H., Katırcı, R. (2026). The impact of optimizer selection on transformer performance: Analyzing the role of model complexity and dataset 

size. Black Sea Journal of Engineering and Science, 9(1), xx–xx. 

 

1. Introduction 
Natural language processing (NLP) is a subfield of 

artificial intelligence that focuses on enabling machines 

to comprehend and process human language (Rithika, 

2024). The importance of Natural Language Processing 

(NLP) lies in its ability to enable the implementation of 

applications such as machine translation (Abdulmumin et 

al., 2021), question-answering systems (Shoeybi et al., 

2020; Çelik et al., 2024; İşlek et al., 2024), text 

summarization (Sun and Platoš, 2024), sentiment 

analysis (Mahadevaswamy and Swathi, 2022), speech 

recognition (Sarvepalli et al., 2015; Jurafsky and Martin, 

2023), and others. Over time, however, it became clear 

that these techniques were inadequate. These techniques 

struggled to handle complex linguistic patterns, capture 

long-range dependencies, and process diverse language 

structures effectively. To overcome these challenges, 

Transformer-based models (Vaswani et al., 2017), 

particularly Generative Pre-Training (GPT) models 

(Radford et al., 2019; Yan and Shao, 2024), have emerged 

as a powerful solution. Unlike conventional models, the 

Transformer architecture distinguishes itself by 

employing attention mechanisms that allow for non-

sequential, parallel processing of input data. This enables 

the model to efficiently capture long-range dependencies 

and contextual relationships across the entire sequence 

(Vaswani et al., 2017; Katırcı and Çelik, 2024). In addition 

to its ability to model long-range dependencies through 

parallel attention mechanisms, the Transformer 

architecture incorporates multiple components—such as 

multi-head self-attention, positional encoding and 

feedforward layers—that significantly enhance its 

representational capacity (Katırcı and Çelik, 2025a). 

However, the increased number of hyperparameters and 

architectural complexity also raise the challenges of 

model configuration, optimization and training time, 

often demanding substantial computational resources 

(Vaswani et al., 2017; Katırcı and Çelik, 2025b). Despite 

these challenges, the Transformer architecture remains a 

strong candidate for a wide range of NLP tasks due to its 

high representational capacity. Its performance, 

however, is highly sensitive to architectural choices and 

hyperparameter tuning. Although primar ily recognized 

for its attention mechanism, further research has 

enhanced other components, including positional 

encoding (Zheng et al., 2022; Su et al., 2024), layered 

structure (Razzhigaev et al., 2024) and parallel 

processing capabilities (Lan et al., 2020; Shoeybi et al., 
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2020). Building on these developments, subsequent 

studies have focused on how various hyperparameters—

such as model size (Zhao et al., 2024), optimizer selection 

(Chen et al., 2022) and dataset size variations (Zaheer 

and Shaziya, 2019), highlighting their impact on the 

efficiency and effectiveness of transformer models. For 

instance, Yehudai et al. (Yehudai et al., 2024) aim to 

calculate the frequency of each element in the input 

sequence by identifying its type (such as numbers or 

words) using the Transformer architecture. They 

demonstrate that while large models handle this 

effectively, smaller and single-layer models fail to achieve 

the same level of performance. Similarly, Fang et al. 

(2023) analyzed the impact of model depth and width on 

BERT and found that narrower, deeper models generally 

perform better on complex tasks such as question 

answering (QA) (Fang et al., 2023). However, 

performance decreases more sharply when depth is 

reduced than when width is decreased. 

The performance of Transformer models heavily 

depends on the selected optimizer, as it controls learning 

dynamics by adjusting parameters such as weights and 

biases (Babaeianjelodar et al., 2020). These factors 

significantly impact how well a model learns and 

converges during training (You et al., 2020). The effect of 

the optimizer on Transformer performance, which is a 

major focus of this study, has been analyzed either 

individually or in limited combinations in previous 

research. Studies on the Transformer architecture have 

employed a variety of optimizers, including Adaptive 

Moment Estimation (Adam) (Vaswani et al., 2017), 

Adaptive Factorization Optimizer (Adafactor) (Shazeer 

and Stern, 2018), Stochastic Gradient Descent (SGD) 

(Jelassi and Li, 2022), Layerwise Adaptive Large Batch 

Optimization (LAMB) (You et al., 2020), Adaptive 

Moment Estimation with Weight Decay (AdamW) (Wang 

and Aitchison, 2024), Generalized AdaGrad (G-

AdaGrad)(Chakrabarti and Chopra, 2021) and Adaptive 

Belief Optimization (AdaBelief) (Zhuang et al., 2020). To 

better understand the impact of these optimizers on 

transformer performance, several studies have assessed 

their effects in various contexts, with some specifically 

focusing on the performance of individual optimizers. For 

instance, the Adafactor optimizer was introduced by 

Shazeer and Stern (2018) to address memory limitations 

in large-scale models like Transformers. Their method 

significantly reduces memory usage by maintaining only 

per-row and per-column sums of the exponential moving 

averages of squared gradients. This achieves 

performance comparable to Adam with much less 

memory consumption. This approach has been widely 

adopted for optimizing large-scale Transformer models, 

particularly when working with resource-constrained 

environments (Shazeer and Stern, 2018). Jelassi and Li 

(2022) show that stochastic gradient descent (SGD) with 

momentum improves convergence and generalization by 

reducing training noise. They further demonstrate that 

Gradient Descent with Momentum (GD+M) outperforms 

Standard Gradient Descent (GD) in certain deep learning 

tasks. This is especially true when examples share 

features but show variations in classification confidence 
(Jelassi and Li, 2022). You et al. (2020) introduced the 

Layerwise Adaptive Large Batch (LAMB) optimization 

algorithm to enable adaptive learning rates in SGD. LAMB 

employs layerwise adaptive learning rates, enhancing 

training efficiency with large mini-batches. This method 

is particularly effective in reducing training time for 

models like BERT, without sacrificing performance (You 

et al., 2020). Wang and Aitchison used AdamW to relate 

weight decay to the exponential moving average (EMA) 

and enable hyperparameter tuning based on this 

relationship. AdamW provides critical insights on how to 

adjust optimal weight decay values depending on the 

model and dataset size (Wang and Aitchison, 2024). 

Chakrabarti and Chopra proposed a new fast optimizer, 

Generalized AdaGrad (G-AdaGrad), for accelerating the 

solution of potentially non-convex machine learning 

problems. Specifically, they adopt a state-space 

perspective for analyzing the convergence of gradient 

acceleration algorithms, namely G-AdaGrad and Adam, in 

machine learning. The state space models studied are 

governed by ordinary differential equations (Chakrabarti 

and Chopra, 2021). Samiksha (2025) introduced ZetA, a 

novel optimizer that integrates Adam’s adaptive gradient 

updates with Riemann zeta–based dynamic scaling. Using 

a fully connected neural network trained on SVHN, 

CIFAR-10, CIFAR-100, STL-10, and noisy CIFAR-10, the 

study demonstrated that ZetA improves accuracy, 

robustness, and computational efficiency, providing a 

stable alternative to Adam, particularly in noisy or 

complex classification tasks. Vaidhyanathan et al. 

introduced Velocity-Regularized Adam (VRAdam), a 

physics-inspired optimizer that adds a velocity-based 

regularization term to stabilize training and prevent 

oscillations. Tested on CNN, Transformer, and GFlowNet 

architectures, VRAdam outperformed AdamW, showing 

improved stability and faster convergence (Vradam, 

2025). 

Comprehensive studies that evaluate a wide range of 

optimizers under diverse conditions remain scarce. Most 

existing research focuses on individual optimizers or a 

limited subset, often without considering their 

performance across varying scenarios. This gap 

highlights the need for a more extensive analysis that 

analyzes multiple optimizers under different conditions 

to gain deeper insights into their effectiveness. In this 

context, Zaheer et al. (2020) systematically evaluated a 

range of optimizers, including SGD, Nesterov Momentum, 

RMSProp, Adam, AdaGrad and AdaDelta, across several 

benchmark datasets, namely MNIST, FashionMNIST, 

CIFAR-10 and CIFAR-100, focusing on traditional deep 

learning models (Zaheer and Shaziya, 2019). In a similar 

study, Chen et al. (2024) utilized a physics-informed 

neural network (PINN) model and employed the 

optimizers PIDAO (AdSI), Adam, RMSprop, AdamW75, 

and AdaHB to solve partial differential equations, aiming 
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to evaluate and compare their performance in terms of 

convergence speed, numerical stability, and optimization 

accuracy in complex computational scenarios. Guan 

(2024) also introduces AdaPlus, an optimizer combining 

AdamW, Nadam, and AdaBelief with Nesterov 

momentum and no extra hyperparameters. Experiments 

using LSTM for language modeling and VGG-11, ResNet-

34, and DenseNet-121 for image classification show it 

matches or slightly outperforms SGD with momentum 

and surpasses other adaptive optimizers, also 

demonstrating stability in GAN training (Guan, 2024). In 

another study, Saray and Çavdar applied various 

optimizers—including Nadam, Adadelta, Adamax, Adam, 

Adagrad, SGD, and RMSprop—to CNN models trained on 

the Fashion MNIST dataset. They found that Nadam and 

Adadelta achieved the highest accuracy, while RMSprop 

performed worse, showing that optimizer choice 

significantly affects deep learning classification 

performance (Saray and Çavdar, 2024). In contrast, this 

study uses Transformer architectures at two levels, 

applies the same datasets with varying sizes and 

evaluates total training time for each optimizer, offering a 

more comprehensive analysis. In addition, a study by 

Zhao et al. (2024) compares optimization algorithms 

(SGD, Adafactor, Adam, Lion and Signum) across model 

sizes (150M, 300M, 600M parameters) and two 

Transformer architectures, primarily focusing on final 

validation loss performance (Zhao et al., 2024). While 

similar in structure, this study differs by analyzing 

training efficiency and convergence behavior, evaluating 

both accuracy and loss, considering optimizer 

convergence and total training time for every optimizer 

and including a broader set of optimizers.  

This study differs from previous research by 

systematically evaluating the impact of optimizer 

selection on transformer performance across two model 

configurations and three dataset sizes. Unlike most 

existing studies, which focus on individual optimizers or 

a limited subset without considering their performance 

across different scenarios, this study evaluates the 

combined effects of optimization algorithms across these 

model configurations and dataset scales. By 

incorporating training time as a key performance metric, 

alongside accuracy and efficiency measures, this study 

provides valuable insights into model effectiveness, 

contributing to a more comprehensive understanding of 

optimization strategies in Transformer architectures. 

1.1. Impact of Optimizer Selection on Accuracy and 

Loss 

This study demonstrates that optimizer selection 

significantly influences accuracy and loss, particularly as 

dataset size increases. For smaller datasets, complex 

models tend to perform worse, but this performance gap 

narrows with larger datasets. For some optimizers, 

complex models provide only marginally better results 

compared to simpler models. 

 

 

1.2. Training Time Trends Relative to Model 

Complexity 

This study shows that training time increases with both 

dataset size and model complexity across different 

optimizers. While training times are generally similar for 

smaller datasets, differences among optimizers become 

more apparent as dataset size and model complexity 

grow. Some optimizers achieve better performance with 

less training time when used with lower-complexity 

models. 

1.3. Convergence Behavior Across Optimizers and 

Models 

This study finds that in low-complexity models, all 

optimizers exhibit similar convergence behavior. With 

increasing dataset size, optimizers stabilize earlier 

during training. In more complex models, convergence 

occurs faster overall. Notably, NAdam and RMSprop 

show slightly more aggressive convergence, whereas SGD 

suffers from slower convergence and higher loss, 

reflecting known challenges in Transformer optimization. 

This study indicates that optimizer selection is the key 

factor influencing model performance, with dataset size 

and model complexity playing secondary but important 

roles. Increasing complexity alone does not ensure better 

results, especially with limited data or poor optimizer 

choices, whereas a well-chosen optimizer combined with 

a simpler model can achieve high performance more 

efficiently. 

The structure of the paper is as follows: Section II details 

the methodology, including dataset selection, model 

architecture, hyperparameter configurations, training 

procedures, parallel computing techniques and model 

evaluation metrics. Section III presents the results and 

explains the reasons for comparing optimizers, model 

configurations, dataset sizes and training times. It 

discusses how these factors contribute to the 

performance results and how they interact with each 

other. Section IV provides the conclusion, summarizing 

the key findings. Section V presents the discussion and 

limitations, addressing the study's limitations and 

suggesting directions for future research. 

 

2. Materials and Methods 
In this study, the Transformer architecture was designed 

with two hyperparameter combinations, as shown in 

Table 1, to analyze the effects of embedding size, feed-

forward layers, number of heads, number of layers and 

especially the optimization algorithm on learning ability 

and performance. The embedding size (128) and feed-

forward units (256), along with the number of attention 

heads (4-8) and layers (3-6), were adjusted to modify the 

model's complexity. Other hyperparameters, including 

the dropout rate (0.1), ReLU activation function, batch 

size (32) and position coding value (10,000), were kept 

constant across both configurations to ensure a 

controlled comparison. Additionally, the study 

incorporated multiple optimization algorithms, including 

Adam, AdamW, AdaBelief, RMSprop, Nadam, Adagrad 
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and SGD, to systematically assess their impact on model 

training dynamics and performance. All optimizers 

employed in this study utilized the default 

hyperparameter configurations provided by the PyTorch 

implementation to ensure stability, reproducibility, and 

fair comparison. Specifically, parameters such as 

momentum, weight decay, epsilon (ε), and betas were 

retained at their default values for each optimizer, as 

these configurations have been extensively validated to 

yield reliable convergence and robust generalization 

performance across diverse neural architectures. 

 

Table 1. Model hyperparameters and values 

Hyperparameters 

Low 

Complexity 

High 

Complexity 

Embedding Dimension 128 256 

Feed Forward Units 128 256 

Number of Heads 4 8 

Number of Layers 3 6 

Dropout Rate 0,1 0,1 

Activation Function ReLU ReLU 

Batch Size 32 32 

learning_rate 0.0001 0.0001 

Positional Encoding 10000 10000 

Optimizer 

Adam, AdamW, AdaBelief, 

RMSprop, Nadam, Adagrad, 

SGD 

 

Model training was performed in parallel on four GPUs 

using the CUDA parallel computing platform and the 

PyTorch library, significantly reducing training time on 

large datasets. CUDA enabled efficient GPU utilization for 

deep learning workloads and PyTorch's dynamic 

computation graph provided flexibility for experimenting 

with different hyperparameter configurations 

(Developer, 2025). Parallel computing with CUDA 

ensured scalable performance, optimizing resource 

utilization and improving training efficiency (Li, 2019). 

The dataset used for this study comprises 140,873 

Turkish-English sentence pairs. Given Turkish’s 

morphological complexity and agglutinative structure, it 

represents a challenging low-resource language pair (Pan 

et al., 2020). To evaluate model performance across 

different dataset scales, the dataset was partitioned into 

three subsets: small (20K), medium (50K) and large 

(140,873). This partitioning enabled a comprehensive 

assessment of the effects of different optimizers and 

Transformer configurations on learning dynamics. 

In this study, the data were randomly selected, and 

reproducibility was ensured by setting random_state to 

42. This value is commonly adopted in the literature to 

maintain consistency and enable reproducibility of 

experimental results. The resulting dataset was divided 

into two subsets: 80% was used for training, and 20% 

was used for validation. This division facilitated model 

training and performance evaluation. 

The model’s performance was evaluated using five key 

metrics: training accuracy, training loss, validation 

accuracy, validation loss and training time. Training 

accuracy and loss were used to analyze the learning 

process, while validation accuracy and loss assessed 

generalization to unseen data. Additionally, training time 

was recorded to measure the computational efficiency of 

each optimizer across different dataset sizes and model 

configurations. 

The high-performance computing (HPC) system used in 

this study runs on Rocky Linux 8.5 (based on Red Hat 

8.5) and is powered by AMD EPYC 7543 processors. The 

system includes 8 compute nodes, each with 64 cores and 

1024 GB of memory. For high-speed data transfer, it 

features HDR InfiniBand with 200 Gbps connectivity. 

 

3. Results 
This section summarizes the experimental findings, 

highlighting how dataset size, model complexity and 

optimizer choice influence Transformer performance and 

training efficiency. 

Table 2 presents a comparative analysis of optimizer 

performance across different dataset sizes and model 

complexities. The low-complexity model configuration 

consists of an embedding dimension of 128, 128 feed-

forward units, 4 attention heads and 3 layers, whereas 

the high-complexity model employs an embedding 

dimension of 256, 256 feed-forward units, 8 attention 

heads and 6 layers. Both models share the same dropout 

rate, activation function, batch size, positional encoding 

and a diverse set of optimizers. Notably, the most 

significant findings are highlighted in bold to emphasize 

key performance differences across various settings. The 

results demonstrate how optimization choices influence 

learning efficiency, with distinct patterns emerging 

across different complexity levels and dataset sizes. The 

analysis highlights how optimizer effectiveness shifts 

with increasing dataset size, emphasizing the trade-offs 

between accuracy, computational cost and 

generalization. These insights contribute to identifying 

optimal optimizer choices for different model 

complexities, facilitating efficient training and guiding 

hyperparameter tuning strategies. 

For both the 20K and 50K sample datasets, the 

experimental results demonstrated similar performance 

trends across optimizers. Adam, AdamW, AdaBelief, 

RMSprop and Nadam achieved the best balance of 

accuracy, generalization and training efficiency. These 

optimizers consistently outperformed SGD and Adagrad, 

with SGD exhibiting the weakest performance, even 

lower than Adagrad. Notably, for both small and large 

datasets, low-complexity models using Adam, AdamW, 

RMSprop and Nadam showed higher accuracy and lower 

loss compared to high-complexity models. Similarly, 

high-complexity models using AdaBelief, Adagrad and 

SGD also showed higher accuracy and lower loss 

compared to their low-complexity counterparts. For the 

full dataset, unlike the 20K and 50K samples where low-

complexity models with Adam, AdamW, RMSprop and 
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Nadam performed better, only RMSprop and Nadam 

maintained higher accuracy and lower loss. Similarly, 

high-complexity models using AdaBelief, Adagrad and 

SGD continued to outperform their low-complexity 

counterparts. Moreover, in the full dataset, all optimizers 

demonstrated higher accuracy and lower loss in high-

complexity models compared to low-complexity models. 

In addition, as dataset size and model complexity 

increased, training time also increased. The results 

emphasize the importance of selecting appropriate 

optimizer and model configurations while considering 

the increasing computational costs associated with larger 

datasets.  

For small datasets (20K samples), the experimental 

results in this study indicated that trend where low-

complexity models tended to outperform their high-

complexity counterparts in terms of both validation 

accuracy and loss. Among the evaluated optimizers, 

Nadam achieved the highest validation accuracy of 

91.79% with the lowest validation loss of 0.1561, 

indicating its robust performance in small-data regimes. 

AdamW and AdaBelief also yielded strong results, with 

validation accuracies of 91.47% and 91.62% and 

validation losses of 0.1643 and 0.1592, respectively. 

These optimizers appear to balance model training and 

generalization effectively in environments where data is 

limited. On the other hand, SGD performed poorly, 

achieving only 83.52% validation accuracy and exhibited 

the highest loss, underscoring its ineffectiveness in small-

data contexts. 

 

Table 2. Performance comparison of seven optimization algorithms (Adam, AdamW, AdaBelief, RMSprop, Nadam, 

Adagrad and SGD) across different dataset sizes (20K, 50K, and ~140K samples) and model complexities (low vs. high) 
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Adam 91.81 0.1581 0.1634 91.52 0.06.16 89.40 0.1894 0.1882 89.49 0.15.16 

AdamW 91.87 0.1578 0.1643 91.47 0.06.11 89.42 0.1871 0.1850 89.34 0.15.12 

AdaBelief 91.53 0.1589 0.1592 91.62 0.06.40 93.38 0.1170 0.1173 93.44 0.16.41 

RMSprop 91.69 0.1586 0.1562 91.75 0.06.10 89.99 0.1791 0.1805 89.95 0.15.45 

Nadam 91.87 0.1555 0.1561 91.79 0.06.03 83.37 0.3796 0.3837 83.27 0.15.42 

Adagrad 87.61 0.5564 0.5479 87.87 0.05.27 88.21 0.2829 0.2840 88.22 0.15.17 

SGD 83.30 0.4791 0.4735 83.52 0.06.10 83.90 0.3853 0.3914 83.59 0.14.27 

5
0

K
 d

at
a 

sa
m

p
le

s 
 

Adam 93.73 0.1115 0.1138 93.63 0.14.38 92.79 0.1108 0.1103 92.79 0.37.40 

AdamW 93.88 0.1090 0.1085 93.78 0.15.05 92.14 0.1210 0.1238 91.96 0.38.02 

AdaBelief 94.05 0.0978 0.1005 93.87 0.15.33 96.37 0.0513 0.0513 96.40 0.40.13 

RMSprop 93.56 0.1206 0.1211 93.43 0.14.28 92.95 0.1357 0.1328 93.07 0.39.40 

Nadam 93.79 0.1088 0.1074 93.94 0.13.52 86.97 0.2657 0.2625 87.10 0.37.38 

Adagrad 87.66 0.4382 0.4362 87.67 0.14.06 88.79 0.2594 0.2605 88.72 0.36.22 

SGD 83.35 0.4449 0.4492 83.27 0.14.18 86.94 0.3669 0.3729 86.77 0.35.42 

∼
1

4
0

K
d

at
a 

sa
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p
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s 
 

Adam 98.71 0.0188 0.0186 98.74 0.51.51 98.91 0.0133 0.0133 98.90 2.58.48 

AdamW 98.70 0.0189 0.0187 98.73 0.50.26 98.98 0.0126 0.0126 98.96 2.59.53 

AdaBelief 98.78 0.0165 0.0159 98.81 0.54.01 99.47 0.0061 0.0061 99.46 3.17.49 

RMSprop 98.56 0.0267 0.0261 98.59 0.51.07 98.41 0.0361 0.0360 98.41 3.00.53 

Nadam 98.73 0.0179 0.0181 98.72 0.50.54 98.37 0.0212 0.0208 98.39 3.21.32 

Adagrad 96.28 0.1318 0.1315 96.28 0.49.59 96.75 0.0772 0.0776 96.72 2.52.26 

SGD 95.00 0.1415 0.1419 94.99 0.51.39 96.02 0.1182 0.1182 96.05 2.51.18 

Adam = adaptive moment estimation, AdamW = adam with weight decay, AdaBelief = adaptive belief optimizer, RMSprop = root mean 

square propagation, Nadam = nesterov-accelerated, Adagrad = adaptive gradient algorithm, SGD = stochastic gradient descent.  

 

For medium-sized datasets (50K samples), the results 

show that low-complexity models tend to perform better 

with optimizers like Adam, AdamW, RMSprop and 

Nadam, while higher complexity models benefit from 

optimizers like AdaBelief, Adagrad and SGD. Adam, 

AdamW, RMSprop and Nadam demonstrate better 

performance in simpler models, achieving relatively good 

validation accuracy with moderate loss values. However, 

in high-complexity settings, models trained with 

AdaBelief, Adagrad and SGD outperform the others, as 
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they can handle the increased model complexity more 

effectively. Specifically, AdaBelief achieves a high train 

accuracy of 94.05%, outperforming Adam and AdamW, 

which have train accuracies of 93.74% and 93.88%, 

respectively, demonstrating the effectiveness of the 

optimizer even with a low-complexity model. Meanwhile, 

Nadam performs well in low-complexity scenarios, but it 

faces challenges with larger models, showing a drop in 

validation accuracy and an increase in validation loss. 

Adagrad and SGD exhibit lower performance on medium-

sized datasets, achieving poorer accuracy and higher loss 

when compared to other optimizers, which perform 

significantly better across both low and high-complexity 

models. These results emphasize that optimizers like 

AdaBelief, Adagrad and SGD are more effective in high-

complexity models, while Adam, AdamW RMSprop and 

Nadam perform better with simpler models on smaller 

datasets. These findings highlight the importance of 

aligning optimizer selection with both dataset size and 

model complexity, as adaptive optimizers like Adam and 

AdamW excel in less complex models, whereas AdaBelief 

and SGD manage larger parameter spaces effectively in 

more complex models. 

For large datasets (140,873 samples), high-complexity 

models consistently outperform low-complexity models, 

achieving the highest validation accuracy, which 

highlights the benefits of increased model complexity. 

Among the optimizers, AdaBelief achieved the best 

performance, with a validation accuracy of 99.46% and 

the lowest validation loss of 0.0061, closely followed by 

AdamW with 98.96% accuracy and a loss of 0.0126. In 

contrast, SGD performed poorly, reaching only 96.05% 

accuracy and exhibiting the highest loss, making it less 

suitable for large datasets. These results demonstrate 

that pairing high-complexity models with advanced 

optimizers such as AdaBelief, Adam, or AdamW is most 

effective for achieving superior accuracy and 

generalization. The advantage of these optimizers can be 

attributed to their adaptive learning mechanisms, which 

enable efficient gradient updates and better convergence. 

Conversely, the weaker performance of SGD, likely due to 

its inability to dynamically adapt learning rates, 

underscores the importance of selecting optimizers that 

fully leverage model capacity for optimal results. 

The relationship between model complexity and dataset 

size significantly influences optimizer performance in 

this study. When trained on smaller datasets (20K and 

50K samples), models utilizing Adam, AdamW, RMSprop 

and Nadam show a decline in both training and 

validation accuracy as model complexity increases. This 

pattern is consistent with the general understanding that 

higher model complexity worsens performance problems 

in data-limited scenarios, making these optimizers less 

effective. However, AdaBelief, Adagrad and SGD 

demonstrate robustness with smaller datasets, achieving 

higher accuracy and lower loss as model complexity 

increases. In contrast, when the dataset size increases to 

140,000 samples, Adam, AdamW, AdaBelief, Adagrad and 

SGD benefit from larger model architectures, achieving 

higher performance, while RMSprop and Nadam 

experience a decline in accuracy. These results can be 

explained by the optimizers' inherent characteristics. 

Adaptive optimizers like Adam and AdamW tend to 

overfit on smaller datasets due to aggressive learning 

rate adjustments, while SGD and Adagrad generalize 

better by avoiding excessive updates. AdaBelief's stability 

makes it effective across all dataset sizes. RMSprop and 

Nadam's decline in performance, even with larger 

datasets, may stem from their sensitivity to 

hyperparameters and difficulty in scaling with model 

complexity. This highlights the need to match optimizer 

choice with dataset size and model architecture. 

AdaBelief consistently excelled with high-complexity 

models and large datasets because its belief-based 

adaptive mechanism dynamically adjusts learning rates 

based on gradient reliability rather than magnitude. This 

enables more stable and efficient convergence in deep 

architectures with large parameter spaces, reducing 

gradient noise and improving generalization ( Zhuang et 

al., 2020; Zhang et al., 2022). 

RMSprop and Nadam perform better as model 

complexity increases. In large deep learning models, the 

accumulation of gradient variance can destabilize 

exponential moving averages, leading to overcorrection 

in adaptive updates and reduced training 

stability.(Tomihari and Sato, 2025). 

SGD demonstrated consistent weakness across all dataset 

scales, as its fixed learning rate and non-adaptive nature 

make it prone to slow convergence and difficulty 

escaping local minima. This limitation becomes more 

pronounced in high-dimensional Transformer 

architectures, where adaptive optimizers can better 

adjust to complex gradient dynamics ( Choi et al., 2019; 

Pan and Li, 2023; Zhang et al., 2024; Tomihari and Sato, 

2025). 

This study primarily focuses on the impact of dataset size 

and model complexity on accuracy and loss across 

various optimization algorithms, while also providing a 

comprehensive assessment of their influence on training 

time. Consequently, as dataset size and model complexity 

increase, training times rise significantly, further 

emphasizing the need to balance performance and 

computational efficiency. For instance, with 20K data 

points, Adam achieves 91.81% training accuracy in 6.16 

minutes for a low-complexity model, whereas the same 

dataset requires 15.16 minutes for a high-complexity 

model, with accuracy dropping to 89.40%. Similarly, for 

50K data points, Adam attains 93.73% accuracy in 14.38 

minutes for a low-complexity model, whereas it takes 

37.40 minutes to reach 92.79% accuracy in a high-

complexity model. This trend becomes even more 

pronounced with the full dataset (140K), where Adam 

achieves 98.71% accuracy in 51.51 minutes for a low-

complexity model, while the high-complexity model 

requires 2 hours, 58 minutes and 48 seconds to reach 

98.91% accuracy. Among the optimization algorithms, 
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AdaBelief achieves the highest accuracy (99.47%) in 

high-complexity models with the full dataset but requires 

an extended training time of 3.17 hours. In contrast, 

optimizers such as Nadam and Adagrad yield faster 

results in low-complexity models (e.g., ~6 minutes for 

20K data). High-complexity models generally yield better 

performance but require significantly longer training 

times, especially for larger datasets. For example, 

training a high-complexity model on the full dataset takes 

over three hours, compared to just six minutes for a low-

complexity model on a smaller dataset. This highlights 

the need for efficient optimization strategies that can 

balance performance and computational cost. While 

time-intensive algorithms are preferable for achieving 

higher accuracy, faster optimizers may be more suitable 

for time-constrained applications. Additionally, the 

findings underscore the direct impact of dataset size and 

model complexity on computational cost. Furthermore, 

specific optimization techniques or hyperparameter 

adjustments might enable higher accuracy within shorter 

training durations. This study also emphasizes the trade-

off between model complexity and training efficiency. 

3.1. Evaluation of Loss Across Models, Optimizers and 

Data Size 

The effectiveness of an optimization algorithm is closely 

linked to how efficiently it minimizes both training and 

validation loss during training. Understanding the loss 

dynamics across different model complexities and 

dataset sizes provides valuable insights into optimizer 

performance. For this reason, this section assesses how 

various optimizers influence the reduction of training 

and validation loss, shedding light on their convergence 

behavior and effectiveness in different scenarios. Figure 

1 display the training and validation loss for different 

optimizers across epoch values, using Transformer 

architecture with hyperparameters tailored for both low 

and high complexity models. The graphs on the left 

(Figures a, c and e) show the low-complexity model with 

128 embedding dimensions, 4 attention heads and 3 

layers, while the graphs on the right (Figures b, c and d) 

illustrate the high-complexity model with 256 

embedding dimensions, 8 attention heads and 6 layers. A 

key factor in model training is how optimization 

algorithms impact the reduction of both training and 

validation loss over time. In both sets of graphs, the 

training and validation losses generally decrease as the 

number of epochs increases, suggesting that the model 

continues to learn from the data. While the loss decreases 

for all cases, the rate of reduction varies across 

optimizers, with some showing faster decreases, 

indicating distinct convergence behaviors. The varying 

rates of loss reduction across optimizers suggest 

differences in their efficiency and adaptability, with some 

achieving faster convergence, which could imply better 

generalization. 

The results presented in Figure 1a and Figure 1b 

illustrate the training and validation losses across 

different optimization algorithms for a dataset 

comprising 20K samples, evaluated under two distinct 

model architectures. Among the evaluated optimizers, 

Adam, AdamW, Nadam and RMSprop exhibit rapid 

convergence and maintain low loss values, particularly in 

high-complexity models. While AdaBelief initially shows 

higher loss, it quickly adapts and achieves comparable or 

superior final performance within the same number of 

epochs. This effect is especially pronounced in more 

complex architectures, where AdaBelief’s adaptive 

mechanism enhances stability and generalization. By 

dynamically adjusting learning rates based on gradient 

predictability, AdaBelief effectively mitigates sharp loss 

fluctuations, leading to improved optimization efficiency 

in deeper models with larger parameter spaces 

(Chakrabarti and Chopra, 2021). Additionally, SGD and 

Adagrad exhibit distinctive performance characteristics 

compared to the other optimizers considered in this 

study. SGD demonstrates slower convergence, resulting 

in higher final loss values across nearly all experimental 

conditions. In contrast, Adagrad starts with loss values 

similar to those of Adam, AdamW, Nadam and RMSprop 

but gradually aligns more with SGD's performance, 

ultimately resulting in higher loss values. The 

performance disparity between SGD and Adagrad is 

influenced by factors such as model complexity and 

dataset size, suggesting that their effectiveness depends 

on these variables. The slower convergence and higher 

final loss values of SGD, as observed in this study, can be 

attributed to its sensitivity to the learning rate and the 

absence of adaptive adjustments. SGD typically requires 

careful tuning of the learning rate and hyperparameters 

like momentum to prevent slow convergence and local 

minima issues. When these factors are not optimally set, 

SGD struggles to converge efficiently, particularly with 

complex models or large datasets (Fehrman and Gess, 

2020). On the other hand, Adagrad starts with 

comparable loss values to Adam and other optimizers but 

eventually suffers from diminishing updates. While its 

adaptive learning rate initially provides an advantage, 

over time, the accumulated sum of squared gradients 

leads to excessively small updates, resulting in slower 

convergence and higher final loss values (Luo, 2019). 

As illustrated in Figure 1 (subplots a–f), this analysis 

focuses on the training and validation losses across 

different dataset sizes and model complexities. The 

results presented in Figure 1c and 1d illustrate the 

training and validation losses for a dataset size of 50K 

samples across two model architectures. Similar to the 

20K dataset (Figure 1a and 1b), Adam, Adam-W and 

Nadam demonstrate rapid convergence and maintain low 

loss values, with Adam-W showing the most stable 

performance. RMSprop also converges quickly but 

exhibits minor fluctuations in validation loss, indicating 

slight instability. Adagrad and SGD show slower 

convergence and higher loss values, with SGD performing 

the worst. As model complexity increases, Adam-based 

optimizers remain the most effective, while RMSprop, 

despite starting with a very low loss, may require careful 
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tuning due to the possibility of progressing too quickly 

without sufficient learning. These observations 

emphasize the critical role of optimizer selection in 

balancing convergence speed, stability and performance, 

particularly as model architectures grow in complexity. 

Compared to the 20K-sample case, the simpler model 

(low complexity) trained with 50K samples exhibits 

higher initial loss but achieves lower final loss, 

suggesting that larger datasets introduce variability in 

early optimization but improve generalization. For the 

more complex model, increasing dataset size leads to 

lower initial and final loss, indicating that larger datasets 

allow complex models to utilize their capacity more 

effectively. This effect is particularly pronounced in 

complex models, where increased data availability helps 

maximize representational capacity. In contrast to 20K 

and 50K samples, Figure 1e and Figure 1f (140,873 

samples) show that models trained on larger datasets 

start with lower initial loss and achieve even lower final 

loss, highlighting the benefits of larger datasets for 

providing a richer learning signal, improving 

generalization and enhancing stability across all 

optimizers. These results underscore the importance of 

selecting the right optimizer, particularly as architectural 

complexity increases. 

 

(a) 20K samples and low complexity model (b) 20K samples and high complexity model 

(c) 50K samples and low complexity model 
 

(d) 50K samples and high complexity model 

(e) 140,873 samples and low complexity model 
 

(f) 140,873 samples and high complexity model 
 

       
 

Figure 1. Training and validation loss per epoch for different optimizers across dataset sizes (20K, 50K, 140,873) and 

model complexities (low and high). 

 

The superior performance of Adam-based optimizers can 

be attributed to their adaptive learning rate mechanisms, 

which efficiently navigate complex loss landscapes, 

especially with smaller datasets. In contrast, SGD and 

Adagrad face difficulties with sparse or noisy gradients, 

leading to slower convergence and higher final loss 

values, particularly with larger or more complex models. 

This suggests that for smaller datasets, adaptive 
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optimizers are not only preferable but essential for stable 

and efficient training. Additionally, combining adaptive 

optimizers with regularization techniques, such as 

dropout or weight decay, could further improve 

performance by preventing overfitting and enhancing 

generalization. 

3.2. Evaluation of Accuracy Across Models, 

Optimizers and Data Size 

This subsection assesses the impact of optimization 

algorithms on accuracy across different model 

complexities and dataset sizes, focusing on learning 

stability, convergence speed and generalization 

performance. Figure 2 illustrates the accuracy of various 

optimizers during training for both low-complexity 

(smaller) and high-complexity (larger) models. The left-

side graphs (Figures 2a, 2c and 2e) correspond to the 

smaller model, while the right-side graphs (Figures 2b, 

2d and 2f) represent the larger model. Figures 2a–2b, 2c–

2d and 2e–2f correspond to datasets containing 20K, 50K 

and 140,873 samples, respectively. These plots show 

accuracy trends, emphasizing the effects of model 

complexity and dataset size on optimization efficiency 

and generalization. 

 

(a) 20K samples and low complexity model 
 

(b) 20K samples and high complexity model 

(c) 50K samples and low complexity model 

 
(d) 50K samples and high complexity model 

             
(e) 140,873 samples and low complexity model 

 
    (f) 140,873 samples and high complexity model 

      
 

Figure 2. Training and validation accuracy per epoch for different optimizers across dataset sizes (20K, 50K, 140,873) 

and model complexities (low and high). 

 

As model complexity and dataset size increase, the 

accuracy values of the optimization algorithms show 

higher initial and final performance levels, with the 

differences in accuracy across optimizers becoming more 

pronounced. These disparities are further accentuated 

with larger data size, highlighting the greater impact of 

dataset size on optimization performance. This could be 

due to the increased availability of data allowing the 
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model to better generalize, which in turn enables the 

optimization algorithms to perform more effectively. 

Additionally, larger models with more parameters tend 

to benefit more from larger datasets, as they require 

more data to fully capture the underlying patterns and 

avoid overfitting. 

In this study, among the optimization algorithms, Adam, 

AdamW, AdaBelief, Nadam and RMSprop achieve high 

accuracy with minimal loss between training and 

validation values, demonstrating strong generalization 

and robust performance across different dataset sizes 

and model complexities. In contrast, SGD performs the 

worst, with the lowest accuracy and highest loss between 

training and validation results, while Adagrad follows, 

showing slightly better performance than SGD. This may 

suggest that hyperparameter optimization, particularly 

adjusting learning rate, momentum and weight decay, 

could help improve the performance of both SGD and 

Adagrad, as these algorithms may struggle with 

convergence and generalization compared to more 

adaptive optimizers. Nadam, on the other hand, may 

struggle with stabilizing more complex models due to the 

increased number of parameters and layers, which make 

it harder to adapt learning rates effectively. The presence 

of gradient noise in these models may further complicate 

training, potentially leading to slower convergence and 

poorer generalization. 

When the model complexity was low, the optimization 

algorithms exhibited similar convergence behavior, 

suggesting that simpler models allowed all optimizers to 

perform effectively. However, as model complexity 

increased, particularly with larger dataset sizes, notable 

differences in convergence patterns emerged. This 

observation aligns with prior research, which analyzed 

the computational cost of deep learning models and 

demonstrated that as model complexity grows, 

convergence rates among different optimizers begin to 

diverge, highlighting the necessity of adaptive 

optimization methods for training deeper networks 

efficiently (Ahmad and Al-ramahi, 2023; Baskakov, 

2023). 

Adam, Adagrad, AdamW, RMSprop and Nadam, exhibited 

similar convergence rates, indicating their efficiency in 

adapting to increased model complexity, while Adagrad 

remained slightly behind toward the final stages. On the 

other hand, Nadam, Adam, AdamW and RMSprop, despite 

similar convergence trends, initially struggled to 

stabilize, suggesting that complex models challenge their 

learning rate adaptation in early training stages. 

Meanwhile, SGD and AdaBelief started with lower 

accuracy values and converged more quickly, with SGD 

starting from an even lower value but achieving a faster 

convergence. SGD's poor performance is likely due to its 

fixed learning rate, making it highly sensitive to 

hyperparameter tuning and potentially prone to slow 

convergence in complex models. This behavior could be 

attributed to the differences in how these optimizers 

handle gradient updates and learning rate adjustments. 

Adam, AdaBelief and Adagrad use adaptive learning 

rates, allowing them to adjust more effectively to varying 

gradient magnitudes, leading to more stable 

convergence. Nadam, AdamW and RMSprop, while also 

adaptive, may experience instability due to aggressive 

updates early in training (Zhou et al., 2021; Guan, 2024). 

 

4. Discussion 
The results demonstrate that optimizer selection plays a 

decisive role in performance-efficiency trade-offs across 

varying model complexities and dataset sizes. AdaBelief, 

Adagrad, and SGD performed notably better with high-

complexity models, particularly as the dataset size 

increased. In our experiments, AdaBelief stood out by 

achieving promising results, including a validation 

accuracy of 99.46% on the full dataset with the high-

complexity model. However, this performance gain came 

with a significant increase in training time, especially for 

more complex models and larger datasets. These findings 

highlight that while certain optimizers can better 

leverage increased capacity and data volume, they also 

introduce higher computational costs.  

Interestingly, low-complexity models trained with 

effective optimizers such as AdaBelief or RMSprop on 

large datasets achieved accuracy levels comparable to 

those of high-complexity models. This indicates that 

increasing model depth does not always yield better 

outcomes, especially when optimizer selection or data 

volume is suboptimal. On smaller datasets (20K and 

50K), Adam, AdamW, RMSprop, and Nadam provided 

better performance with low-complexity models while 

requiring significantly less training time. On the full 

dataset, Adam and AdamW showed slightly better 

performance on high-complexity models, whereas 

RMSprop and Nadam achieved marginally better results 

on low-complexity models. Considering that training time 

nearly doubles when model complexity increases within 

the same dataset size, these results emphasize that the 

trade-off between model depth and efficiency becomes 

especially relevant in large-scale applications. Therefore, 

under resource constraints, pairing effective optimizers 

with less complex models can offer a more practical and 

time-efficient solution without substantial performance 

loss. 

 

5. Conclusion 
In general, the findings of this study indicate that the 

choice of optimizer should be aligned with both dataset 

size and model complexity. For smaller datasets or low-

complexity models, optimizers such as SGD, Nadam, 

RMSprop, Adam, and AdamW are more effective due to 

their fast convergence and lower computational cost. In 

contrast, Adagrad and AdaBelief are better suited for 

high-complexity models trained on limited data, as their 

adaptive mechanisms help stabilize learning. When large 

datasets are available, all optimizers yield higher 

accuracy with complex models, demonstrating that 
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sufficient data enables these architectures to fully exploit 

their representational capacity.  

The findings from this study suggest that optimizer 

selection is a key factor influencing model performance, 

with dataset size and model complexity playing 

secondary but important roles. Increasing complexity 

alone does not ensure better results, especially with 

limited data or poor optimizer choices, whereas a well-

chosen optimizer combined with a simpler model can 

achieve high performance more efficiently. Moreover, 

shorter training times can be achieved with certain 

optimizers on low-complexity models when dataset sizes 

are large, highlighting that the right combination of 

optimizer, dataset size and model hyperparameters 

enables both time efficiency and high accuracy. This 

emphasizes that the optimal combination of optimizer, 

dataset size and model hyperparameters is crucial for 

balancing training time and performance. 

Future research could examine more optimizers and a 

wider range of dataset sizes to better understand their 

effects on model performance. Analyzing various 

Transformer complexity levels may offer deeper insights 

into efficiency-accuracy trade-offs. Additionally, 

exploring techniques such as model pruning or 

knowledge distillation could help reduce computational 

costs without sacrificing accuracy. Extending the study to 

larger datasets and real-world scenarios would further 

improve the generalizability of the results. Furthermore, 

a key limitation of this study is that each configuration 

was executed only once, preventing statistical validation 

of performance differences. Future studies should 

conduct multiple runs with different random seeds and 

apply statistical tests to ensure robustness. 
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