
Black Sea Journal of Engineering and Science
doi: 10.34248/bsengineering.1739598

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 1

This work is licensed (CC BY-NC 4.0) under Creative Commons Attribution 4.0 International License

Open Access Journal

e-ISSN: 2619 – 8991

THE IMPACT OF OPTIMIZER SELECTION ON

TRANSFORMER PERFORMANCE: ANALYZING THE ROLE

OF MODEL COMPLEXITY AND DATASET SIZE

Hilal ÇELİK1*, Ramazan KATIRCI1

1Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Department of Computer Engineering,

58000, Sivas, Türkiye

Abstract: Model complexity, dataset size and optimizer choice critically influence machine learning model performance, especially in

complex architectures like Transformers. This study aims to analyze the impact of seven optimizers —Adam, AdamW, AdaBelief,

RMSprop, Nadam, Adagrad and SGD—across two Transformer configurations and three dataset sizes. Results show adaptive

optimizers generally outperform non-adaptive ones like SGD, particularly as dataset size grows. For smaller datasets (20K, 50K),

Adam, AdamW, Nadam and RMSprop perform best on low-complexity models, while AdaBelief, Adagrad and SGD excel with higher

complexity. On the largest dataset (∼140K samples), Nadam and RMSprop lead in low-complexity models, whereas Adam, AdaBelief,

Adagrad, SGD and AdamW do so in high-complexity models. Notably, low-complexity models train more than twice as fast and, in some

cases, achieve better accuracy and lower loss than their high-complexity counterparts. This result highlighting the importance of

balancing optimizer choice, dataset size and model complexity for efficiency and accuracy. These results emphasize the trade-offs

associated with optimizing model efficiency and accuracy through the interplay of optimizer selection, dataset size and model

complexity.

Keywords: Transformer architecture, Optimizer comparison, Model complexity, Dataset size, Optimizers, Training efficiency

*Corresponding author: Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Department of Computer Engineering, 58000, Sivas, Türkiye

E mail: hilalcelik@sivas.edu.tr (H. ÇELİK)

Hilal ÇELİK https://orcid.org/0000-0001-5428-3411 Received: July 11, 2025

Accepted: November 22, 2025

Published: January 15, 2026

Ramazan KATIRCI https://orcid.org/0000-0003-2448-011X

Cite as: Çelik, H., Katırcı, R. (2026). The impact of optimizer selection on transformer performance: Analyzing the role of model complexity and dataset

size. Black Sea Journal of Engineering and Science, 9(1), xx–xx.

1. Introduction
Natural language processing (NLP) is a subfield of

artificial intelligence that focuses on enabling machines

to comprehend and process human language (Rithika,

2024). The importance of Natural Language Processing

(NLP) lies in its ability to enable the implementation of

applications such as machine translation (Abdulmumin et

al., 2021), question-answering systems (Shoeybi et al.,

2020; Çelik et al., 2024; İşlek et al., 2024), text

summarization (Sun and Platoš, 2024), sentiment

analysis (Mahadevaswamy and Swathi, 2022), speech

recognition (Sarvepalli et al., 2015; Jurafsky and Martin,

2023), and others. Over time, however, it became clear

that these techniques were inadequate. These techniques

struggled to handle complex linguistic patterns, capture

long-range dependencies, and process diverse language

structures effectively. To overcome these challenges,

Transformer-based models (Vaswani et al., 2017),

particularly Generative Pre-Training (GPT) models

(Radford et al., 2019; Yan and Shao, 2024), have emerged

as a powerful solution. Unlike conventional models, the

Transformer architecture distinguishes itself by

employing attention mechanisms that allow for non-

sequential, parallel processing of input data. This enables

the model to efficiently capture long-range dependencies

and contextual relationships across the entire sequence

(Vaswani et al., 2017; Katırcı and Çelik, 2024). In addition

to its ability to model long-range dependencies through

parallel attention mechanisms, the Transformer

architecture incorporates multiple components—such as

multi-head self-attention, positional encoding and

feedforward layers—that significantly enhance its

representational capacity (Katırcı and Çelik, 2025a).

However, the increased number of hyperparameters and

architectural complexity also raise the challenges of

model configuration, optimization and training time,

often demanding substantial computational resources

(Vaswani et al., 2017; Katırcı and Çelik, 2025b). Despite

these challenges, the Transformer architecture remains a

strong candidate for a wide range of NLP tasks due to its

high representational capacity. Its performance,

however, is highly sensitive to architectural choices and

hyperparameter tuning. Although primar ily recognized

for its attention mechanism, further research has

enhanced other components, including positional

encoding (Zheng et al., 2022; Su et al., 2024), layered

structure (Razzhigaev et al., 2024) and parallel

processing capabilities (Lan et al., 2020; Shoeybi et al.,

Research Article
Volume 9 - Issue 1: XX-XX / January 2026

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 2

2020). Building on these developments, subsequent

studies have focused on how various hyperparameters—

such as model size (Zhao et al., 2024), optimizer selection

(Chen et al., 2022) and dataset size variations (Zaheer

and Shaziya, 2019), highlighting their impact on the

efficiency and effectiveness of transformer models. For

instance, Yehudai et al. (Yehudai et al., 2024) aim to

calculate the frequency of each element in the input

sequence by identifying its type (such as numbers or

words) using the Transformer architecture. They

demonstrate that while large models handle this

effectively, smaller and single-layer models fail to achieve

the same level of performance. Similarly, Fang et al.

(2023) analyzed the impact of model depth and width on

BERT and found that narrower, deeper models generally

perform better on complex tasks such as question

answering (QA) (Fang et al., 2023). However,

performance decreases more sharply when depth is

reduced than when width is decreased.

The performance of Transformer models heavily

depends on the selected optimizer, as it controls learning

dynamics by adjusting parameters such as weights and

biases (Babaeianjelodar et al., 2020). These factors

significantly impact how well a model learns and

converges during training (You et al., 2020). The effect of

the optimizer on Transformer performance, which is a

major focus of this study, has been analyzed either

individually or in limited combinations in previous

research. Studies on the Transformer architecture have

employed a variety of optimizers, including Adaptive

Moment Estimation (Adam) (Vaswani et al., 2017),

Adaptive Factorization Optimizer (Adafactor) (Shazeer

and Stern, 2018), Stochastic Gradient Descent (SGD)

(Jelassi and Li, 2022), Layerwise Adaptive Large Batch

Optimization (LAMB) (You et al., 2020), Adaptive

Moment Estimation with Weight Decay (AdamW) (Wang

and Aitchison, 2024), Generalized AdaGrad (G-

AdaGrad)(Chakrabarti and Chopra, 2021) and Adaptive

Belief Optimization (AdaBelief) (Zhuang et al., 2020). To

better understand the impact of these optimizers on

transformer performance, several studies have assessed

their effects in various contexts, with some specifically

focusing on the performance of individual optimizers. For

instance, the Adafactor optimizer was introduced by

Shazeer and Stern (2018) to address memory limitations

in large-scale models like Transformers. Their method

significantly reduces memory usage by maintaining only

per-row and per-column sums of the exponential moving

averages of squared gradients. This achieves

performance comparable to Adam with much less

memory consumption. This approach has been widely

adopted for optimizing large-scale Transformer models,

particularly when working with resource-constrained

environments (Shazeer and Stern, 2018). Jelassi and Li

(2022) show that stochastic gradient descent (SGD) with

momentum improves convergence and generalization by

reducing training noise. They further demonstrate that

Gradient Descent with Momentum (GD+M) outperforms

Standard Gradient Descent (GD) in certain deep learning

tasks. This is especially true when examples share

features but show variations in classification confidence
(Jelassi and Li, 2022). You et al. (2020) introduced the

Layerwise Adaptive Large Batch (LAMB) optimization

algorithm to enable adaptive learning rates in SGD. LAMB

employs layerwise adaptive learning rates, enhancing

training efficiency with large mini-batches. This method

is particularly effective in reducing training time for

models like BERT, without sacrificing performance (You

et al., 2020). Wang and Aitchison used AdamW to relate

weight decay to the exponential moving average (EMA)

and enable hyperparameter tuning based on this

relationship. AdamW provides critical insights on how to

adjust optimal weight decay values depending on the

model and dataset size (Wang and Aitchison, 2024).

Chakrabarti and Chopra proposed a new fast optimizer,

Generalized AdaGrad (G-AdaGrad), for accelerating the

solution of potentially non-convex machine learning

problems. Specifically, they adopt a state-space

perspective for analyzing the convergence of gradient

acceleration algorithms, namely G-AdaGrad and Adam, in

machine learning. The state space models studied are

governed by ordinary differential equations (Chakrabarti

and Chopra, 2021). Samiksha (2025) introduced ZetA, a

novel optimizer that integrates Adam’s adaptive gradient

updates with Riemann zeta–based dynamic scaling. Using

a fully connected neural network trained on SVHN,

CIFAR-10, CIFAR-100, STL-10, and noisy CIFAR-10, the

study demonstrated that ZetA improves accuracy,

robustness, and computational efficiency, providing a

stable alternative to Adam, particularly in noisy or

complex classification tasks. Vaidhyanathan et al.

introduced Velocity-Regularized Adam (VRAdam), a

physics-inspired optimizer that adds a velocity-based

regularization term to stabilize training and prevent

oscillations. Tested on CNN, Transformer, and GFlowNet

architectures, VRAdam outperformed AdamW, showing

improved stability and faster convergence (Vradam,

2025).

Comprehensive studies that evaluate a wide range of

optimizers under diverse conditions remain scarce. Most

existing research focuses on individual optimizers or a

limited subset, often without considering their

performance across varying scenarios. This gap

highlights the need for a more extensive analysis that

analyzes multiple optimizers under different conditions

to gain deeper insights into their effectiveness. In this

context, Zaheer et al. (2020) systematically evaluated a

range of optimizers, including SGD, Nesterov Momentum,

RMSProp, Adam, AdaGrad and AdaDelta, across several

benchmark datasets, namely MNIST, FashionMNIST,

CIFAR-10 and CIFAR-100, focusing on traditional deep

learning models (Zaheer and Shaziya, 2019). In a similar

study, Chen et al. (2024) utilized a physics-informed

neural network (PINN) model and employed the

optimizers PIDAO (AdSI), Adam, RMSprop, AdamW75,

and AdaHB to solve partial differential equations, aiming

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 3

to evaluate and compare their performance in terms of

convergence speed, numerical stability, and optimization

accuracy in complex computational scenarios. Guan

(2024) also introduces AdaPlus, an optimizer combining

AdamW, Nadam, and AdaBelief with Nesterov

momentum and no extra hyperparameters. Experiments

using LSTM for language modeling and VGG-11, ResNet-

34, and DenseNet-121 for image classification show it

matches or slightly outperforms SGD with momentum

and surpasses other adaptive optimizers, also

demonstrating stability in GAN training (Guan, 2024). In

another study, Saray and Çavdar applied various

optimizers—including Nadam, Adadelta, Adamax, Adam,

Adagrad, SGD, and RMSprop—to CNN models trained on

the Fashion MNIST dataset. They found that Nadam and

Adadelta achieved the highest accuracy, while RMSprop

performed worse, showing that optimizer choice

significantly affects deep learning classification

performance (Saray and Çavdar, 2024). In contrast, this

study uses Transformer architectures at two levels,

applies the same datasets with varying sizes and

evaluates total training time for each optimizer, offering a

more comprehensive analysis. In addition, a study by

Zhao et al. (2024) compares optimization algorithms

(SGD, Adafactor, Adam, Lion and Signum) across model

sizes (150M, 300M, 600M parameters) and two

Transformer architectures, primarily focusing on final

validation loss performance (Zhao et al., 2024). While

similar in structure, this study differs by analyzing

training efficiency and convergence behavior, evaluating

both accuracy and loss, considering optimizer

convergence and total training time for every optimizer

and including a broader set of optimizers.

This study differs from previous research by

systematically evaluating the impact of optimizer

selection on transformer performance across two model

configurations and three dataset sizes. Unlike most

existing studies, which focus on individual optimizers or

a limited subset without considering their performance

across different scenarios, this study evaluates the

combined effects of optimization algorithms across these

model configurations and dataset scales. By

incorporating training time as a key performance metric,

alongside accuracy and efficiency measures, this study

provides valuable insights into model effectiveness,

contributing to a more comprehensive understanding of

optimization strategies in Transformer architectures.

1.1. Impact of Optimizer Selection on Accuracy and

Loss

This study demonstrates that optimizer selection

significantly influences accuracy and loss, particularly as

dataset size increases. For smaller datasets, complex

models tend to perform worse, but this performance gap

narrows with larger datasets. For some optimizers,

complex models provide only marginally better results

compared to simpler models.

1.2. Training Time Trends Relative to Model

Complexity

This study shows that training time increases with both

dataset size and model complexity across different

optimizers. While training times are generally similar for

smaller datasets, differences among optimizers become

more apparent as dataset size and model complexity

grow. Some optimizers achieve better performance with

less training time when used with lower-complexity

models.

1.3. Convergence Behavior Across Optimizers and

Models

This study finds that in low-complexity models, all

optimizers exhibit similar convergence behavior. With

increasing dataset size, optimizers stabilize earlier

during training. In more complex models, convergence

occurs faster overall. Notably, NAdam and RMSprop

show slightly more aggressive convergence, whereas SGD

suffers from slower convergence and higher loss,

reflecting known challenges in Transformer optimization.

This study indicates that optimizer selection is the key

factor influencing model performance, with dataset size

and model complexity playing secondary but important

roles. Increasing complexity alone does not ensure better

results, especially with limited data or poor optimizer

choices, whereas a well-chosen optimizer combined with

a simpler model can achieve high performance more

efficiently.

The structure of the paper is as follows: Section II details

the methodology, including dataset selection, model

architecture, hyperparameter configurations, training

procedures, parallel computing techniques and model

evaluation metrics. Section III presents the results and

explains the reasons for comparing optimizers, model

configurations, dataset sizes and training times. It

discusses how these factors contribute to the

performance results and how they interact with each

other. Section IV provides the conclusion, summarizing

the key findings. Section V presents the discussion and

limitations, addressing the study's limitations and

suggesting directions for future research.

2. Materials and Methods
In this study, the Transformer architecture was designed

with two hyperparameter combinations, as shown in

Table 1, to analyze the effects of embedding size, feed-

forward layers, number of heads, number of layers and

especially the optimization algorithm on learning ability

and performance. The embedding size (128) and feed-

forward units (256), along with the number of attention

heads (4-8) and layers (3-6), were adjusted to modify the

model's complexity. Other hyperparameters, including

the dropout rate (0.1), ReLU activation function, batch

size (32) and position coding value (10,000), were kept

constant across both configurations to ensure a

controlled comparison. Additionally, the study

incorporated multiple optimization algorithms, including

Adam, AdamW, AdaBelief, RMSprop, Nadam, Adagrad

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 4

and SGD, to systematically assess their impact on model

training dynamics and performance. All optimizers

employed in this study utilized the default

hyperparameter configurations provided by the PyTorch

implementation to ensure stability, reproducibility, and

fair comparison. Specifically, parameters such as

momentum, weight decay, epsilon (ε), and betas were

retained at their default values for each optimizer, as

these configurations have been extensively validated to

yield reliable convergence and robust generalization

performance across diverse neural architectures.

Table 1. Model hyperparameters and values

Hyperparameters

Low

Complexity

High

Complexity

Embedding Dimension 128 256

Feed Forward Units 128 256

Number of Heads 4 8

Number of Layers 3 6

Dropout Rate 0,1 0,1

Activation Function ReLU ReLU

Batch Size 32 32

learning_rate 0.0001 0.0001

Positional Encoding 10000 10000

Optimizer

Adam, AdamW, AdaBelief,

RMSprop, Nadam, Adagrad,

SGD

Model training was performed in parallel on four GPUs

using the CUDA parallel computing platform and the

PyTorch library, significantly reducing training time on

large datasets. CUDA enabled efficient GPU utilization for

deep learning workloads and PyTorch's dynamic

computation graph provided flexibility for experimenting

with different hyperparameter configurations

(Developer, 2025). Parallel computing with CUDA

ensured scalable performance, optimizing resource

utilization and improving training efficiency (Li, 2019).

The dataset used for this study comprises 140,873

Turkish-English sentence pairs. Given Turkish’s

morphological complexity and agglutinative structure, it

represents a challenging low-resource language pair (Pan

et al., 2020). To evaluate model performance across

different dataset scales, the dataset was partitioned into

three subsets: small (20K), medium (50K) and large

(140,873). This partitioning enabled a comprehensive

assessment of the effects of different optimizers and

Transformer configurations on learning dynamics.

In this study, the data were randomly selected, and

reproducibility was ensured by setting random_state to

42. This value is commonly adopted in the literature to

maintain consistency and enable reproducibility of

experimental results. The resulting dataset was divided

into two subsets: 80% was used for training, and 20%

was used for validation. This division facilitated model

training and performance evaluation.

The model’s performance was evaluated using five key

metrics: training accuracy, training loss, validation

accuracy, validation loss and training time. Training

accuracy and loss were used to analyze the learning

process, while validation accuracy and loss assessed

generalization to unseen data. Additionally, training time

was recorded to measure the computational efficiency of

each optimizer across different dataset sizes and model

configurations.

The high-performance computing (HPC) system used in

this study runs on Rocky Linux 8.5 (based on Red Hat

8.5) and is powered by AMD EPYC 7543 processors. The

system includes 8 compute nodes, each with 64 cores and

1024 GB of memory. For high-speed data transfer, it

features HDR InfiniBand with 200 Gbps connectivity.

3. Results
This section summarizes the experimental findings,

highlighting how dataset size, model complexity and

optimizer choice influence Transformer performance and

training efficiency.

Table 2 presents a comparative analysis of optimizer

performance across different dataset sizes and model

complexities. The low-complexity model configuration

consists of an embedding dimension of 128, 128 feed-

forward units, 4 attention heads and 3 layers, whereas

the high-complexity model employs an embedding

dimension of 256, 256 feed-forward units, 8 attention

heads and 6 layers. Both models share the same dropout

rate, activation function, batch size, positional encoding

and a diverse set of optimizers. Notably, the most

significant findings are highlighted in bold to emphasize

key performance differences across various settings. The

results demonstrate how optimization choices influence

learning efficiency, with distinct patterns emerging

across different complexity levels and dataset sizes. The

analysis highlights how optimizer effectiveness shifts

with increasing dataset size, emphasizing the trade-offs

between accuracy, computational cost and

generalization. These insights contribute to identifying

optimal optimizer choices for different model

complexities, facilitating efficient training and guiding

hyperparameter tuning strategies.

For both the 20K and 50K sample datasets, the

experimental results demonstrated similar performance

trends across optimizers. Adam, AdamW, AdaBelief,

RMSprop and Nadam achieved the best balance of

accuracy, generalization and training efficiency. These

optimizers consistently outperformed SGD and Adagrad,

with SGD exhibiting the weakest performance, even

lower than Adagrad. Notably, for both small and large

datasets, low-complexity models using Adam, AdamW,

RMSprop and Nadam showed higher accuracy and lower

loss compared to high-complexity models. Similarly,

high-complexity models using AdaBelief, Adagrad and

SGD also showed higher accuracy and lower loss

compared to their low-complexity counterparts. For the

full dataset, unlike the 20K and 50K samples where low-

complexity models with Adam, AdamW, RMSprop and

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 5

Nadam performed better, only RMSprop and Nadam

maintained higher accuracy and lower loss. Similarly,

high-complexity models using AdaBelief, Adagrad and

SGD continued to outperform their low-complexity

counterparts. Moreover, in the full dataset, all optimizers

demonstrated higher accuracy and lower loss in high-

complexity models compared to low-complexity models.

In addition, as dataset size and model complexity

increased, training time also increased. The results

emphasize the importance of selecting appropriate

optimizer and model configurations while considering

the increasing computational costs associated with larger

datasets.

For small datasets (20K samples), the experimental

results in this study indicated that trend where low-

complexity models tended to outperform their high-

complexity counterparts in terms of both validation

accuracy and loss. Among the evaluated optimizers,

Nadam achieved the highest validation accuracy of

91.79% with the lowest validation loss of 0.1561,

indicating its robust performance in small-data regimes.

AdamW and AdaBelief also yielded strong results, with

validation accuracies of 91.47% and 91.62% and

validation losses of 0.1643 and 0.1592, respectively.

These optimizers appear to balance model training and

generalization effectively in environments where data is

limited. On the other hand, SGD performed poorly,

achieving only 83.52% validation accuracy and exhibited

the highest loss, underscoring its ineffectiveness in small-

data contexts.

Table 2. Performance comparison of seven optimization algorithms (Adam, AdamW, AdaBelief, RMSprop, Nadam,

Adagrad and SGD) across different dataset sizes (20K, 50K, and ~140K samples) and model complexities (low vs. high)

 Low complexity High complexity

D
at

a
Sa

m
p

le
s

O
p

ti
m

iz
er

T
ra

in
 A

cc
u

ra
cy

T
ra

in
 L

o
ss

V
al

id
 L

o
ss

V
al

id
 A

cc
u

ra
cy

T
im

e

T
ra

in

A
cc

u
ra

cy

T
ra

in
 L

o
ss

V
al

id
 L

o
ss

V
al

id
 A

cc
u

ra
cy

T
im

e

2
0

K
 d

at
a

sa
m

p
le

s

Adam 91.81 0.1581 0.1634 91.52 0.06.16 89.40 0.1894 0.1882 89.49 0.15.16

AdamW 91.87 0.1578 0.1643 91.47 0.06.11 89.42 0.1871 0.1850 89.34 0.15.12

AdaBelief 91.53 0.1589 0.1592 91.62 0.06.40 93.38 0.1170 0.1173 93.44 0.16.41

RMSprop 91.69 0.1586 0.1562 91.75 0.06.10 89.99 0.1791 0.1805 89.95 0.15.45

Nadam 91.87 0.1555 0.1561 91.79 0.06.03 83.37 0.3796 0.3837 83.27 0.15.42

Adagrad 87.61 0.5564 0.5479 87.87 0.05.27 88.21 0.2829 0.2840 88.22 0.15.17

SGD 83.30 0.4791 0.4735 83.52 0.06.10 83.90 0.3853 0.3914 83.59 0.14.27

5
0

K
 d

at
a

sa
m

p
le

s

Adam 93.73 0.1115 0.1138 93.63 0.14.38 92.79 0.1108 0.1103 92.79 0.37.40

AdamW 93.88 0.1090 0.1085 93.78 0.15.05 92.14 0.1210 0.1238 91.96 0.38.02

AdaBelief 94.05 0.0978 0.1005 93.87 0.15.33 96.37 0.0513 0.0513 96.40 0.40.13

RMSprop 93.56 0.1206 0.1211 93.43 0.14.28 92.95 0.1357 0.1328 93.07 0.39.40

Nadam 93.79 0.1088 0.1074 93.94 0.13.52 86.97 0.2657 0.2625 87.10 0.37.38

Adagrad 87.66 0.4382 0.4362 87.67 0.14.06 88.79 0.2594 0.2605 88.72 0.36.22

SGD 83.35 0.4449 0.4492 83.27 0.14.18 86.94 0.3669 0.3729 86.77 0.35.42

∼
1

4
0

K
d

at
a

sa
m

p
le

s

Adam 98.71 0.0188 0.0186 98.74 0.51.51 98.91 0.0133 0.0133 98.90 2.58.48

AdamW 98.70 0.0189 0.0187 98.73 0.50.26 98.98 0.0126 0.0126 98.96 2.59.53

AdaBelief 98.78 0.0165 0.0159 98.81 0.54.01 99.47 0.0061 0.0061 99.46 3.17.49

RMSprop 98.56 0.0267 0.0261 98.59 0.51.07 98.41 0.0361 0.0360 98.41 3.00.53

Nadam 98.73 0.0179 0.0181 98.72 0.50.54 98.37 0.0212 0.0208 98.39 3.21.32

Adagrad 96.28 0.1318 0.1315 96.28 0.49.59 96.75 0.0772 0.0776 96.72 2.52.26

SGD 95.00 0.1415 0.1419 94.99 0.51.39 96.02 0.1182 0.1182 96.05 2.51.18

Adam = adaptive moment estimation, AdamW = adam with weight decay, AdaBelief = adaptive belief optimizer, RMSprop = root mean

square propagation, Nadam = nesterov-accelerated, Adagrad = adaptive gradient algorithm, SGD = stochastic gradient descent.

For medium-sized datasets (50K samples), the results

show that low-complexity models tend to perform better

with optimizers like Adam, AdamW, RMSprop and

Nadam, while higher complexity models benefit from

optimizers like AdaBelief, Adagrad and SGD. Adam,

AdamW, RMSprop and Nadam demonstrate better

performance in simpler models, achieving relatively good

validation accuracy with moderate loss values. However,

in high-complexity settings, models trained with

AdaBelief, Adagrad and SGD outperform the others, as

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 6

they can handle the increased model complexity more

effectively. Specifically, AdaBelief achieves a high train

accuracy of 94.05%, outperforming Adam and AdamW,

which have train accuracies of 93.74% and 93.88%,

respectively, demonstrating the effectiveness of the

optimizer even with a low-complexity model. Meanwhile,

Nadam performs well in low-complexity scenarios, but it

faces challenges with larger models, showing a drop in

validation accuracy and an increase in validation loss.

Adagrad and SGD exhibit lower performance on medium-

sized datasets, achieving poorer accuracy and higher loss

when compared to other optimizers, which perform

significantly better across both low and high-complexity

models. These results emphasize that optimizers like

AdaBelief, Adagrad and SGD are more effective in high-

complexity models, while Adam, AdamW RMSprop and

Nadam perform better with simpler models on smaller

datasets. These findings highlight the importance of

aligning optimizer selection with both dataset size and

model complexity, as adaptive optimizers like Adam and

AdamW excel in less complex models, whereas AdaBelief

and SGD manage larger parameter spaces effectively in

more complex models.

For large datasets (140,873 samples), high-complexity

models consistently outperform low-complexity models,

achieving the highest validation accuracy, which

highlights the benefits of increased model complexity.

Among the optimizers, AdaBelief achieved the best

performance, with a validation accuracy of 99.46% and

the lowest validation loss of 0.0061, closely followed by

AdamW with 98.96% accuracy and a loss of 0.0126. In

contrast, SGD performed poorly, reaching only 96.05%

accuracy and exhibiting the highest loss, making it less

suitable for large datasets. These results demonstrate

that pairing high-complexity models with advanced

optimizers such as AdaBelief, Adam, or AdamW is most

effective for achieving superior accuracy and

generalization. The advantage of these optimizers can be

attributed to their adaptive learning mechanisms, which

enable efficient gradient updates and better convergence.

Conversely, the weaker performance of SGD, likely due to

its inability to dynamically adapt learning rates,

underscores the importance of selecting optimizers that

fully leverage model capacity for optimal results.

The relationship between model complexity and dataset

size significantly influences optimizer performance in

this study. When trained on smaller datasets (20K and

50K samples), models utilizing Adam, AdamW, RMSprop

and Nadam show a decline in both training and

validation accuracy as model complexity increases. This

pattern is consistent with the general understanding that

higher model complexity worsens performance problems

in data-limited scenarios, making these optimizers less

effective. However, AdaBelief, Adagrad and SGD

demonstrate robustness with smaller datasets, achieving

higher accuracy and lower loss as model complexity

increases. In contrast, when the dataset size increases to

140,000 samples, Adam, AdamW, AdaBelief, Adagrad and

SGD benefit from larger model architectures, achieving

higher performance, while RMSprop and Nadam

experience a decline in accuracy. These results can be

explained by the optimizers' inherent characteristics.

Adaptive optimizers like Adam and AdamW tend to

overfit on smaller datasets due to aggressive learning

rate adjustments, while SGD and Adagrad generalize

better by avoiding excessive updates. AdaBelief's stability

makes it effective across all dataset sizes. RMSprop and

Nadam's decline in performance, even with larger

datasets, may stem from their sensitivity to

hyperparameters and difficulty in scaling with model

complexity. This highlights the need to match optimizer

choice with dataset size and model architecture.

AdaBelief consistently excelled with high-complexity

models and large datasets because its belief-based

adaptive mechanism dynamically adjusts learning rates

based on gradient reliability rather than magnitude. This

enables more stable and efficient convergence in deep

architectures with large parameter spaces, reducing

gradient noise and improving generalization (Zhuang et

al., 2020; Zhang et al., 2022).

RMSprop and Nadam perform better as model

complexity increases. In large deep learning models, the

accumulation of gradient variance can destabilize

exponential moving averages, leading to overcorrection

in adaptive updates and reduced training

stability.(Tomihari and Sato, 2025).

SGD demonstrated consistent weakness across all dataset

scales, as its fixed learning rate and non-adaptive nature

make it prone to slow convergence and difficulty

escaping local minima. This limitation becomes more

pronounced in high-dimensional Transformer

architectures, where adaptive optimizers can better

adjust to complex gradient dynamics (Choi et al., 2019;

Pan and Li, 2023; Zhang et al., 2024; Tomihari and Sato,

2025).

This study primarily focuses on the impact of dataset size

and model complexity on accuracy and loss across

various optimization algorithms, while also providing a

comprehensive assessment of their influence on training

time. Consequently, as dataset size and model complexity

increase, training times rise significantly, further

emphasizing the need to balance performance and

computational efficiency. For instance, with 20K data

points, Adam achieves 91.81% training accuracy in 6.16

minutes for a low-complexity model, whereas the same

dataset requires 15.16 minutes for a high-complexity

model, with accuracy dropping to 89.40%. Similarly, for

50K data points, Adam attains 93.73% accuracy in 14.38

minutes for a low-complexity model, whereas it takes

37.40 minutes to reach 92.79% accuracy in a high-

complexity model. This trend becomes even more

pronounced with the full dataset (140K), where Adam

achieves 98.71% accuracy in 51.51 minutes for a low-

complexity model, while the high-complexity model

requires 2 hours, 58 minutes and 48 seconds to reach

98.91% accuracy. Among the optimization algorithms,

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 7

AdaBelief achieves the highest accuracy (99.47%) in

high-complexity models with the full dataset but requires

an extended training time of 3.17 hours. In contrast,

optimizers such as Nadam and Adagrad yield faster

results in low-complexity models (e.g., ~6 minutes for

20K data). High-complexity models generally yield better

performance but require significantly longer training

times, especially for larger datasets. For example,

training a high-complexity model on the full dataset takes

over three hours, compared to just six minutes for a low-

complexity model on a smaller dataset. This highlights

the need for efficient optimization strategies that can

balance performance and computational cost. While

time-intensive algorithms are preferable for achieving

higher accuracy, faster optimizers may be more suitable

for time-constrained applications. Additionally, the

findings underscore the direct impact of dataset size and

model complexity on computational cost. Furthermore,

specific optimization techniques or hyperparameter

adjustments might enable higher accuracy within shorter

training durations. This study also emphasizes the trade-

off between model complexity and training efficiency.

3.1. Evaluation of Loss Across Models, Optimizers and

Data Size

The effectiveness of an optimization algorithm is closely

linked to how efficiently it minimizes both training and

validation loss during training. Understanding the loss

dynamics across different model complexities and

dataset sizes provides valuable insights into optimizer

performance. For this reason, this section assesses how

various optimizers influence the reduction of training

and validation loss, shedding light on their convergence

behavior and effectiveness in different scenarios. Figure

1 display the training and validation loss for different

optimizers across epoch values, using Transformer

architecture with hyperparameters tailored for both low

and high complexity models. The graphs on the left

(Figures a, c and e) show the low-complexity model with

128 embedding dimensions, 4 attention heads and 3

layers, while the graphs on the right (Figures b, c and d)

illustrate the high-complexity model with 256

embedding dimensions, 8 attention heads and 6 layers. A

key factor in model training is how optimization

algorithms impact the reduction of both training and

validation loss over time. In both sets of graphs, the

training and validation losses generally decrease as the

number of epochs increases, suggesting that the model

continues to learn from the data. While the loss decreases

for all cases, the rate of reduction varies across

optimizers, with some showing faster decreases,

indicating distinct convergence behaviors. The varying

rates of loss reduction across optimizers suggest

differences in their efficiency and adaptability, with some

achieving faster convergence, which could imply better

generalization.

The results presented in Figure 1a and Figure 1b

illustrate the training and validation losses across

different optimization algorithms for a dataset

comprising 20K samples, evaluated under two distinct

model architectures. Among the evaluated optimizers,

Adam, AdamW, Nadam and RMSprop exhibit rapid

convergence and maintain low loss values, particularly in

high-complexity models. While AdaBelief initially shows

higher loss, it quickly adapts and achieves comparable or

superior final performance within the same number of

epochs. This effect is especially pronounced in more

complex architectures, where AdaBelief’s adaptive

mechanism enhances stability and generalization. By

dynamically adjusting learning rates based on gradient

predictability, AdaBelief effectively mitigates sharp loss

fluctuations, leading to improved optimization efficiency

in deeper models with larger parameter spaces

(Chakrabarti and Chopra, 2021). Additionally, SGD and

Adagrad exhibit distinctive performance characteristics

compared to the other optimizers considered in this

study. SGD demonstrates slower convergence, resulting

in higher final loss values across nearly all experimental

conditions. In contrast, Adagrad starts with loss values

similar to those of Adam, AdamW, Nadam and RMSprop

but gradually aligns more with SGD's performance,

ultimately resulting in higher loss values. The

performance disparity between SGD and Adagrad is

influenced by factors such as model complexity and

dataset size, suggesting that their effectiveness depends

on these variables. The slower convergence and higher

final loss values of SGD, as observed in this study, can be

attributed to its sensitivity to the learning rate and the

absence of adaptive adjustments. SGD typically requires

careful tuning of the learning rate and hyperparameters

like momentum to prevent slow convergence and local

minima issues. When these factors are not optimally set,

SGD struggles to converge efficiently, particularly with

complex models or large datasets (Fehrman and Gess,

2020). On the other hand, Adagrad starts with

comparable loss values to Adam and other optimizers but

eventually suffers from diminishing updates. While its

adaptive learning rate initially provides an advantage,

over time, the accumulated sum of squared gradients

leads to excessively small updates, resulting in slower

convergence and higher final loss values (Luo, 2019).

As illustrated in Figure 1 (subplots a–f), this analysis

focuses on the training and validation losses across

different dataset sizes and model complexities. The

results presented in Figure 1c and 1d illustrate the

training and validation losses for a dataset size of 50K

samples across two model architectures. Similar to the

20K dataset (Figure 1a and 1b), Adam, Adam-W and

Nadam demonstrate rapid convergence and maintain low

loss values, with Adam-W showing the most stable

performance. RMSprop also converges quickly but

exhibits minor fluctuations in validation loss, indicating

slight instability. Adagrad and SGD show slower

convergence and higher loss values, with SGD performing

the worst. As model complexity increases, Adam-based

optimizers remain the most effective, while RMSprop,

despite starting with a very low loss, may require careful

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 8

tuning due to the possibility of progressing too quickly

without sufficient learning. These observations

emphasize the critical role of optimizer selection in

balancing convergence speed, stability and performance,

particularly as model architectures grow in complexity.

Compared to the 20K-sample case, the simpler model

(low complexity) trained with 50K samples exhibits

higher initial loss but achieves lower final loss,

suggesting that larger datasets introduce variability in

early optimization but improve generalization. For the

more complex model, increasing dataset size leads to

lower initial and final loss, indicating that larger datasets

allow complex models to utilize their capacity more

effectively. This effect is particularly pronounced in

complex models, where increased data availability helps

maximize representational capacity. In contrast to 20K

and 50K samples, Figure 1e and Figure 1f (140,873

samples) show that models trained on larger datasets

start with lower initial loss and achieve even lower final

loss, highlighting the benefits of larger datasets for

providing a richer learning signal, improving

generalization and enhancing stability across all

optimizers. These results underscore the importance of

selecting the right optimizer, particularly as architectural

complexity increases.

(a) 20K samples and low complexity model (b) 20K samples and high complexity model

(c) 50K samples and low complexity model

(d) 50K samples and high complexity model

(e) 140,873 samples and low complexity model

(f) 140,873 samples and high complexity model

Figure 1. Training and validation loss per epoch for different optimizers across dataset sizes (20K, 50K, 140,873) and

model complexities (low and high).

The superior performance of Adam-based optimizers can

be attributed to their adaptive learning rate mechanisms,

which efficiently navigate complex loss landscapes,

especially with smaller datasets. In contrast, SGD and

Adagrad face difficulties with sparse or noisy gradients,

leading to slower convergence and higher final loss

values, particularly with larger or more complex models.

This suggests that for smaller datasets, adaptive

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 9

optimizers are not only preferable but essential for stable

and efficient training. Additionally, combining adaptive

optimizers with regularization techniques, such as

dropout or weight decay, could further improve

performance by preventing overfitting and enhancing

generalization.

3.2. Evaluation of Accuracy Across Models,

Optimizers and Data Size

This subsection assesses the impact of optimization

algorithms on accuracy across different model

complexities and dataset sizes, focusing on learning

stability, convergence speed and generalization

performance. Figure 2 illustrates the accuracy of various

optimizers during training for both low-complexity

(smaller) and high-complexity (larger) models. The left-

side graphs (Figures 2a, 2c and 2e) correspond to the

smaller model, while the right-side graphs (Figures 2b,

2d and 2f) represent the larger model. Figures 2a–2b, 2c–

2d and 2e–2f correspond to datasets containing 20K, 50K

and 140,873 samples, respectively. These plots show

accuracy trends, emphasizing the effects of model

complexity and dataset size on optimization efficiency

and generalization.

(a) 20K samples and low complexity model

(b) 20K samples and high complexity model

(c) 50K samples and low complexity model

(d) 50K samples and high complexity model

(e) 140,873 samples and low complexity model

 (f) 140,873 samples and high complexity model

Figure 2. Training and validation accuracy per epoch for different optimizers across dataset sizes (20K, 50K, 140,873)

and model complexities (low and high).

As model complexity and dataset size increase, the

accuracy values of the optimization algorithms show

higher initial and final performance levels, with the

differences in accuracy across optimizers becoming more

pronounced. These disparities are further accentuated

with larger data size, highlighting the greater impact of

dataset size on optimization performance. This could be

due to the increased availability of data allowing the

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 10

model to better generalize, which in turn enables the

optimization algorithms to perform more effectively.

Additionally, larger models with more parameters tend

to benefit more from larger datasets, as they require

more data to fully capture the underlying patterns and

avoid overfitting.

In this study, among the optimization algorithms, Adam,

AdamW, AdaBelief, Nadam and RMSprop achieve high

accuracy with minimal loss between training and

validation values, demonstrating strong generalization

and robust performance across different dataset sizes

and model complexities. In contrast, SGD performs the

worst, with the lowest accuracy and highest loss between

training and validation results, while Adagrad follows,

showing slightly better performance than SGD. This may

suggest that hyperparameter optimization, particularly

adjusting learning rate, momentum and weight decay,

could help improve the performance of both SGD and

Adagrad, as these algorithms may struggle with

convergence and generalization compared to more

adaptive optimizers. Nadam, on the other hand, may

struggle with stabilizing more complex models due to the

increased number of parameters and layers, which make

it harder to adapt learning rates effectively. The presence

of gradient noise in these models may further complicate

training, potentially leading to slower convergence and

poorer generalization.

When the model complexity was low, the optimization

algorithms exhibited similar convergence behavior,

suggesting that simpler models allowed all optimizers to

perform effectively. However, as model complexity

increased, particularly with larger dataset sizes, notable

differences in convergence patterns emerged. This

observation aligns with prior research, which analyzed

the computational cost of deep learning models and

demonstrated that as model complexity grows,

convergence rates among different optimizers begin to

diverge, highlighting the necessity of adaptive

optimization methods for training deeper networks

efficiently (Ahmad and Al-ramahi, 2023; Baskakov,

2023).

Adam, Adagrad, AdamW, RMSprop and Nadam, exhibited

similar convergence rates, indicating their efficiency in

adapting to increased model complexity, while Adagrad

remained slightly behind toward the final stages. On the

other hand, Nadam, Adam, AdamW and RMSprop, despite

similar convergence trends, initially struggled to

stabilize, suggesting that complex models challenge their

learning rate adaptation in early training stages.

Meanwhile, SGD and AdaBelief started with lower

accuracy values and converged more quickly, with SGD

starting from an even lower value but achieving a faster

convergence. SGD's poor performance is likely due to its

fixed learning rate, making it highly sensitive to

hyperparameter tuning and potentially prone to slow

convergence in complex models. This behavior could be

attributed to the differences in how these optimizers

handle gradient updates and learning rate adjustments.

Adam, AdaBelief and Adagrad use adaptive learning

rates, allowing them to adjust more effectively to varying

gradient magnitudes, leading to more stable

convergence. Nadam, AdamW and RMSprop, while also

adaptive, may experience instability due to aggressive

updates early in training (Zhou et al., 2021; Guan, 2024).

4. Discussion
The results demonstrate that optimizer selection plays a

decisive role in performance-efficiency trade-offs across

varying model complexities and dataset sizes. AdaBelief,

Adagrad, and SGD performed notably better with high-

complexity models, particularly as the dataset size

increased. In our experiments, AdaBelief stood out by

achieving promising results, including a validation

accuracy of 99.46% on the full dataset with the high-

complexity model. However, this performance gain came

with a significant increase in training time, especially for

more complex models and larger datasets. These findings

highlight that while certain optimizers can better

leverage increased capacity and data volume, they also

introduce higher computational costs.

Interestingly, low-complexity models trained with

effective optimizers such as AdaBelief or RMSprop on

large datasets achieved accuracy levels comparable to

those of high-complexity models. This indicates that

increasing model depth does not always yield better

outcomes, especially when optimizer selection or data

volume is suboptimal. On smaller datasets (20K and

50K), Adam, AdamW, RMSprop, and Nadam provided

better performance with low-complexity models while

requiring significantly less training time. On the full

dataset, Adam and AdamW showed slightly better

performance on high-complexity models, whereas

RMSprop and Nadam achieved marginally better results

on low-complexity models. Considering that training time

nearly doubles when model complexity increases within

the same dataset size, these results emphasize that the

trade-off between model depth and efficiency becomes

especially relevant in large-scale applications. Therefore,

under resource constraints, pairing effective optimizers

with less complex models can offer a more practical and

time-efficient solution without substantial performance

loss.

5. Conclusion
In general, the findings of this study indicate that the

choice of optimizer should be aligned with both dataset

size and model complexity. For smaller datasets or low-

complexity models, optimizers such as SGD, Nadam,

RMSprop, Adam, and AdamW are more effective due to

their fast convergence and lower computational cost. In

contrast, Adagrad and AdaBelief are better suited for

high-complexity models trained on limited data, as their

adaptive mechanisms help stabilize learning. When large

datasets are available, all optimizers yield higher

accuracy with complex models, demonstrating that

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 11

sufficient data enables these architectures to fully exploit

their representational capacity.

The findings from this study suggest that optimizer

selection is a key factor influencing model performance,

with dataset size and model complexity playing

secondary but important roles. Increasing complexity

alone does not ensure better results, especially with

limited data or poor optimizer choices, whereas a well-

chosen optimizer combined with a simpler model can

achieve high performance more efficiently. Moreover,

shorter training times can be achieved with certain

optimizers on low-complexity models when dataset sizes

are large, highlighting that the right combination of

optimizer, dataset size and model hyperparameters

enables both time efficiency and high accuracy. This

emphasizes that the optimal combination of optimizer,

dataset size and model hyperparameters is crucial for

balancing training time and performance.

Future research could examine more optimizers and a

wider range of dataset sizes to better understand their

effects on model performance. Analyzing various

Transformer complexity levels may offer deeper insights

into efficiency-accuracy trade-offs. Additionally,

exploring techniques such as model pruning or

knowledge distillation could help reduce computational

costs without sacrificing accuracy. Extending the study to

larger datasets and real-world scenarios would further

improve the generalizability of the results. Furthermore,

a key limitation of this study is that each configuration

was executed only once, preventing statistical validation

of performance differences. Future studies should

conduct multiple runs with different random seeds and

apply statistical tests to ensure robustness.

Author Contributions

The percentages of the authors’ contributions are

presented below. All authors reviewed and approved the

final version of the manuscript.

 H.C.A. B.C.

C 50 50

D 50 50

S 100

DCP 80 20

DAI 50 50

L 50 50

W 60 40

CR 10 90

SR 50 50

PM 20 80

C=Concept, D= design, S= supervision, DCP= data collection

and/or processing, DAI= data analysis and/or interpretation, L=

literature search, W= writing, CR= critical review, SR=

submission and revision, PM= project management.

Conflict of Interest

The authors declared that there is no conflict of interest.

Ethical Consideration

Ethics committee approval was not required for this

study because of there was no study on animals or

humans.

Acknowledgements

This work has been supported by the Scientific Research

ProjectsCoordination Unit of the Sivas University of

Science and Technology. ProjectNumber: 2024-DTP-

Müh-0004. Computing resources used in this work were

providedby the National Center for High Performance

Computing of Türkiye (UHeM) undergrant number

5020092024. The research utilized computational

resources providedby the TUBITAK ULAKBIM High

Performance and Grid Computing Center (TRUBA)

andthe Lütfi Albay Artificial Intelligence and Robotics

Laboratory at Sivas Universityof Science and

Technology."

References
Abdulmumin, I., Galadanci, B. S., & Isa, A. (2021). Enhanced back-

translation for low resource neural machine translation using

self-training. Communications in Computer and Information

Science, 1350, 355–371. https://doi.org/10.1007/978-3-030-

69143-1_28

Ahmad, R., & Al-Ramahi, I. A. M. (2023). Optimization of deep

learning models: Benchmark and analysis. Advances in

Computational Intelligence, 3(2), 1–15.

https://doi.org/10.1007/s43674-023-00055-1

Babaeianjelodar, M., Lorenz, S., Gordon, J., Matthews, J., &

Freitag, E. (2020). Quantifying gender bias in different

corpora. Companion Proceedings of the Web Conference 2020,

752–759. https://doi.org/10.1145/3366424.3383559

Baskakov, D. (2023). The computational complexity of machine

learning (Issue January). Springer.

https://doi.org/10.1007/978-981-33-6632-9

Çelik, H., Katırcı, R., & İşlek, B. (2024). Effect of parameters on

performance in question-answer model with simple RNN deep

learning method. International Conference on Scientific and

Innovation Research, 161–169.

Chakrabarti, K., & Chopra, N. (2021). Generalized AdaGrad (G-

AdaGrad) and Adam: A state-space perspective. Proceedings of

the IEEE Conference on Decision and Control (CDC), 1496–

1501. https://doi.org/10.1109/CDC45484.2021.9682994

Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, Q., Dohan, D.,

Kawakami, K., Kochanski, G., Doucet, A., Ranzato, M., Perel, S.,

& de Freitas, N. (2022). Towards learning universal

hyperparameter optimizers with transformers. Advances in

Neural Information Processing Systems, 35, 1–16.

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E.

(2019). On empirical comparisons of optimizers for deep

learning. arXiv. https://arxiv.org/abs/1910.05446

Developer, N. (2025). CUDA zone.

https://developer.nvidia.com/cuda-zone

Fang, H., Lee, J. U., Moosavi, N. S., & Gurevych, I. (2023).

Transformers with learnable activation functions. Findings of

the EACL 2023, 2337–2353.

https://doi.org/10.18653/v1/2023.findings-eacl.181

Fehrman, B., & Gess, B. (2020). Convergence rates for the

https://doi.org/10.1007/978-3-030-69143-1_28
https://doi.org/10.1007/978-3-030-69143-1_28
https://doi.org/10.1007/s43674-023-00055-1
https://doi.org/10.1145/3366424.3383559
https://doi.org/10.1007/978-981-33-6632-9
https://doi.org/10.1109/CDC45484.2021.9682994
https://developer.nvidia.com/cuda-zone
https://doi.org/10.18653/v1/2023.findings-eacl.181

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Hilal ÇELİK and Ramazan KATIRCI 12

stochastic gradient descent method for non-convex objective

functions. arXiv:1904.01517.

Guan, L. (2024). Adaplus: Integrating Nesterov momentum and

precise stepsize adjustment on AdamW basis. ICASSP 2024,

5210–5214.

https://doi.org/10.1109/ICASSP48485.2024.10447337

İşlek, B., Katırcı, R., & Çelik, H. (2024). Enhancing question

answering systems through optimal hyperparameter tuning in

GRU. 8th International Artificial Intelligence and Data

Processing Symposium (IDAP 2024).

https://doi.org/10.1109/IDAP64064.2024.10710732

Jelassi, S., & Li, Y. (2022). Towards understanding how

momentum improves generalization in deep learning.

Proceedings of Machine Learning Research, 162, 9965–10040.

Jurafsky, D., & Martin, J. H. (2008). Speech and language

processing: An introduction to natural language processing,

computational linguistics, and speech recognition (2nd ed.).

Prentice Hall.

Katırcı, R., & Çelik, H. (2024). Transformer mimarisi.

https://doi.org/10.5281/zenodo.13971609

Katırcı, R., & Çelik, H. (2025a). Evaluating the impact of

activation functions on transformer architecture performance.

International Science and Art Research Center, 626–639.

Katırcı, R., & Çelik, H. (2025b). Learning rate sensitivity in

transformer models: A case study in neural machine

translation. https://doi.org/10.5281/zenodo.15769066

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut,

R. (2020). ALBERT: A lite BERT for self-supervised learning of

language representations. 8th International Conference on

Learning Representations (ICLR 2020).

Li, S. (2019). Getting started with distributed data parallel.

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Luo, L. (2019). Adaptive gradient methods with dynamic bound

of learning rate. arXiv. https://arxiv.org/abs/1902.09843

Mahadevaswamy, U. B., & Swathi, P. (2022). Sentiment analysis

using bidirectional LSTM network. Procedia Computer Science,

218, 45–56. https://doi.org/10.1016/j.procs.2022.12.400

Pan, Y., Li, X., Yang, Y., & Dong, R. (2020). Morphological word

segmentation on agglutinative languages for neural machine

translation. arXiv:2001.01589.

Pan, Y., & Li, Y. (2023). Toward understanding why Adam

converges faster than SGD for transformers. arXiv:2306.00204.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I.

(2019). Language models are unsupervised multitask learners.

OpenAI Technical Report.

Razzhigaev, A., Mikhalchuk, M., Goncharova, E., Oseledets, I.,

Dimitrov, D., & Kuznetsov, A. (2024). The shape of learning:

Anisotropy and intrinsic dimensions. arXiv.

Rithika. (2024). Recent advances in large language models: An

upshot. Journal, 5(6), 137–143.

https://doi.org/10.55248/gengpi.5.0624.1403

Saray, U., & Çavdar, U. (2024). Comparison of different

optimization algorithms in the Fashion MNIST dataset.

International Journal of Management Science and Information

Technology, 8(2), 52–58.

https://doi.org/10.36287/ijmsit.8.2.1

Sarvepalli, S. K., Sarat, S., & Sarvepalli, K. (2015). Deep learning

in neural networks: The science behind an artificial brain.

https://doi.org/10.13140/RG.2.2.22512.71682

Shazeer, N., & Stern, M. (2018). Adafactor: Adaptive learning

rates with sublinear memory cost. ICML 2018, 7322–7330.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., &

Catanzaro, B. (2020). Megatron-LM: Training multi-billion

parameter language models using model parallelism.

https://arxiv.org/abs/1909.08053

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., & Liu, Y. (2024).

RoFormer: Enhanced transformer with rotary position

embedding. Neurocomputing, 568, Article 127063.

https://doi.org/10.1016/j.neucom.2023.127063

Sun, Y., & Platoš, J. (2024). Abstractive text summarization

model combining a hierarchical attention mechanism and

multiobjective reinforcement learning. Expert Systems with

Applications, 248.

https://doi.org/10.1016/j.eswa.2024.123356

Tomihari, A., & Sato, I. (2025). Understanding why Adam

outperforms SGD: Gradient heterogeneity in transformers.

arXiv:2502.00213.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all

you need. Advances in Neural Information Processing Systems,

30, 5999–6009.

Vradam, V. A. (2025). A physics-inspired optimizer: Velocity

regularized Adam. (Eksik: Yayın türü)

Wang, X., & Aitchison, L. (2024). How to set AdamW’s weight

decay as you scale model and dataset size. arXiv:2405.13698.

Yan, H., & Shao, D. (2024). Enhancing transformer training

efficiency with dynamic dropout. arXiv:2411.03236.

Yehudai, G., Kaplan, H., Ghandeharioun, A., Geva, M., &

Globerson, A. (2024). When can transformers count to n?

arXiv:2407.15160.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song,

X., Demmel, J., Keutzer, K., & Hsieh, C. J. (2020). Large batch

optimization for deep learning: Training BERT in 76 minutes.

ICLR 2020, 1-15.

Zaheer, R., & Shaziya, H. (2019). A study of the optimization

algorithms in deep learning. Proceedings of the ICISC 2019,

536–539.

https://doi.org/10.1109/ICISC44355.2019.9036442

Zhang, G., Niwa, K., & Kleijn, W. B. (2022). A DNN optimizer that

improves over AdaBelief by suppression of the adaptive

stepsize range. arXiv:2203.13273.

Zhang, Y., Chen, C., Ding, T., Li, Z., Sun, R., & Luo, Z. (2024). Why

transformers need Adam: A Hessian perspective. NeurIPS.

Zhao, R., Morwani, D., Brandfonbrener, D., Vyas, N., & Kakade, S.

(2024). Deconstructing what makes a good optimizer for

language models. arXiv:2407.07972.

Zheng, J., Rezagholizadeh, M., & Passban, P. (2022). Dynamic

position encoding for transformers. Proceedings of COLING

2022, 5076–5084.

Zhou, Y., Huang, K., Cheng, C., Wang, X., Hussain, A., & Liu, X.

(2021). FastAdaBelief: Improving convergence rate for belief-

based adaptive optimizers by exploiting strong convexity.

arXiv:2104.13790.

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S., & Dvornek, N. (2020).

AdaBelief optimizer: Adapting stepsizes by the belief in

observed gradients. arXiv:2010.07468.

https://doi.org/10.1109/ICASSP48485.2024.10447337
https://doi.org/10.1109/IDAP64064.2024.10710732
https://doi.org/10.5281/zenodo.13971609
https://doi.org/10.5281/zenodo.15769066
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://doi.org/10.1016/j.procs.2022.12.400
https://doi.org/10.55248/gengpi.5.0624.1403
https://doi.org/10.36287/ijmsit.8.2.1
https://doi.org/10.13140/RG.2.2.22512.71682
https://arxiv.org/abs/1909.08053
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.eswa.2024.123356
https://doi.org/10.1109/ICISC44355.2019.9036442

