Black Sea Journal of Engineering and Science
doi: 10.34248/bsengineering.1739598

Open Access Journal
e-ISSN: 2619 - 8991

Research Article

Volume 9 - Issue 1: XX-XX / January 2026

THE IMPACT OF OPTIMIZER SELECTION ON
TRANSFORMER PERFORMANCE: ANALYZING THE ROLE
OF MODEL COMPLEXITY AND DATASET SIZE

Hilal CELIK'* Ramazan KATIRCI!

1Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Department of Computer Engineering,
58000, Sivas, Tiirkiye

Abstract: Model complexity, dataset size and optimizer choice critically influence machine learning model performance, especially in
complex architectures like Transformers. This study aims to analyze the impact of seven optimizers —Adam, AdamW, AdaBelief,
RMSprop, Nadam, Adagrad and SGD—across two Transformer configurations and three dataset sizes. Results show adaptive
optimizers generally outperform non-adaptive ones like SGD, particularly as dataset size grows. For smaller datasets (20K, 50K),
Adam, AdamW, Nadam and RMSprop perform best on low-complexity models, while AdaBelief, Adagrad and SGD excel with higher
complexity. On the largest dataset (~140K samples), Nadam and RMSprop lead in low-complexity models, whereas Adam, AdaBelief,
Adagrad, SGD and AdamW do so in high-complexity models. Notably, low-complexity models train more than twice as fast and, in some
cases, achieve better accuracy and lower loss than their high-complexity counterparts. This result highlighting the importance of
balancing optimizer choice, dataset size and model complexity for efficiency and accuracy. These results emphasize the trade-offs
associated with optimizing model efficiency and accuracy through the interplay of optimizer selection, dataset size and model
complexity.

Keywords: Transformer architecture, Optimizer comparison, Model complexity, Dataset size, Optimizers, Training efficiency

*Corresponding author: Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Department of Computer Engineering, 58000, Sivas, Tiirkiye
E mail: hilalcelik@sivas.edu.tr (H. GELIK)

Hilal GELIK https://orcid.org/0000-0001-5428-3411
Ramazan KATIRCI https://orcid.org/0000-0003-2448-011X

Received: July 11, 2025

Accepted: November 22, 2025

Published: January 15, 2026

Cite as: Celik, H., Katircy, R. (2026). The impact of optimizer selection on transformer performance: Analyzing the role of model complexity and dataset
size. Black Sea Journal of Engineering and Science, 9(1), Xx-XX.

the model to efficiently capture long-range dependencies
and contextual relationships across the entire sequence
(Vaswani et al,, 2017; Katirci and Celik, 2024). In addition
to its ability to model long-range dependencies through

1. Introduction

Natural language processing (NLP) is a subfield of
artificial intelligence that focuses on enabling machines
to comprehend and process human language (Rithika,

2024). The importance of Natural Language Processing parallel attention mechanisms, the Transformer
(NLP) lies in its ability to enable the implementation of architecture incorporates multiple components—such as
applications such as machine translation (Abdulmumin et multi-head ~ self-attention, positional ~encoding and
al, 2021), question-answering systems (Shoeybi et al., feedforward layers—that significantly enhance its

representational capacity (Katirct and Celik, 2025a).
However, the increased number of hyperparameters and
architectural complexity also raise the challenges of
model configuration, optimization and training time,

2020; Celik et al, 2024; i§lek et al, 2024), text
summarization (Sun and Platos, 2024),
analysis (Mahadevaswamy and Swathi, 2022), speech
recognition (Sarvepalli et al.,, 2015; Jurafsky and Martin,

sentiment

2023), and others. Over time, however, it became clear
that these techniques were inadequate. These techniques
struggled to handle complex linguistic patterns, capture
long-range dependencies, and process diverse language
structures effectively. To overcome these challenges,
Transformer-based models (Vaswani et al, 2017),
particularly Generative Pre-Training (GPT) models
(Radford et al, 2019; Yan and Shao, 2024), have emerged
as a powerful solution. Unlike conventional models, the
distinguishes itself by
employing attention mechanisms that allow for non-
sequential, parallel processing of input data. This enables

Transformer architecture

often demanding substantial computational resources
(Vaswani et al.,, 2017; Katirc1 and Celik, 2025b). Despite
these challenges, the Transformer architecture remains a
strong candidate for a wide range of NLP tasks due to its
high representational capacity. Its performance,
however, is highly sensitive to architectural choices and
hyperparameter tuning. Although primar ily recognized
for its attention mechanism, further research has
enhanced other components, including positional
encoding (Zheng et al, 2022; Su et al, 2024), layered
structure (Razzhigaev et al, 2024) and parallel
processing capabilities (Lan et al., 2020; Shoeybi et al,,

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

BV N

1

@ ®O O | This work is licensed (CC BY-NC 4.0) under Creative Commons Attribution 4.0 International License

Black Sea Journal of Engineering and Science

2020). Building on these developments, subsequent
studies have focused on how various hyperparameters—
such as model size (Zhao et al., 2024), optimizer selection
(Chen et al, 2022) and dataset size variations (Zaheer
and Shaziya, 2019), highlighting their impact on the
efficiency and effectiveness of transformer models. For
instance, Yehudai et al. (Yehudai et al, 2024) aim to
calculate the frequency of each element in the input
sequence by identifying its type (such as numbers or
words) using the Transformer They
demonstrate that while large models handle this
effectively, smaller and single-layer models fail to achieve
the same level of performance. Similarly, Fang et al
(2023) analyzed the impact of model depth and width on
BERT and found that narrower, deeper models generally
perform better on complex tasks such as question
answering (QA) (Fang et al, 2023). However,
performance decreases more sharply when depth is
reduced than when width is decreased.

The performance of Transformer models

architecture.

heavily
depends on the selected optimizer, as it controls learning
dynamics by adjusting parameters such as weights and
biases (Babaeianjelodar et al., 2020). These factors
significantly impact how well a model learns and
converges during training (You et al,, 2020). The effect of
the optimizer on Transformer performance, which is a
major focus of this study, has been analyzed either
individually or in limited combinations in previous
research. Studies on the Transformer architecture have
employed a variety of optimizers, including Adaptive
Moment Estimation (Adam) (Vaswani et al, 2017),
Adaptive Factorization Optimizer (Adafactor) (Shazeer
and Stern, 2018), Stochastic Gradient Descent (SGD)
(Jelassi and Li, 2022), Layerwise Adaptive Large Batch
Optimization (LAMB) (You et al, 2020), Adaptive
Moment Estimation with Weight Decay (AdamW) (Wang
and Aitchison, 2024), Generalized AdaGrad (G-
AdaGrad)(Chakrabarti and Chopra, 2021) and Adaptive
Belief Optimization (AdaBelief) (Zhuang et al,, 2020). To
better understand the impact of these optimizers on
transformer performance, several studies have assessed
their effects in various contexts, with some specifically
focusing on the performance of individual optimizers. For
instance, the Adafactor optimizer was introduced by
Shazeer and Stern (2018) to address memory limitations
in large-scale models like Transformers. Their method
significantly reduces memory usage by maintaining only
per-row and per-column sums of the exponential moving
averages of squared gradients. This
performance comparable to Adam with much less
memory consumption. This approach has been widely
adopted for optimizing large-scale Transformer models,
particularly when working with resource-constrained

achieves

environments (Shazeer and Stern, 2018). Jelassi and Li
(2022) show that stochastic gradient descent (SGD) with
momentum improves convergence and generalization by
reducing training noise. They further demonstrate that
Gradient Descent with Momentum (GD+M) outperforms

Standard Gradient Descent (GD) in certain deep learning
tasks. This is especially true when examples share
features but show variations in classification confidence
(Jelassi and Li, 2022). You et al. (2020) introduced the
Layerwise Adaptive Large Batch (LAMB) optimization
algorithm to enable adaptive learning rates in SGD. LAMB
employs layerwise adaptive learning rates, enhancing
training efficiency with large mini-batches. This method
is particularly effective in reducing training time for
models like BERT, without sacrificing performance (You
et al,, 2020). Wang and Aitchison used AdamW to relate
weight decay to the exponential moving average (EMA)
and enable hyperparameter tuning based on this
relationship. AdamW provides critical insights on how to
adjust optimal weight decay values depending on the
model and dataset size (Wang and Aitchison, 2024).
Chakrabarti and Chopra proposed a new fast optimizer,
Generalized AdaGrad (G-AdaGrad), for accelerating the
solution of potentially non-convex machine learning
problems. Specifically, they adopt a state-space
perspective for analyzing the convergence of gradient
acceleration algorithms, namely G-AdaGrad and Adam, in
machine learning. The state space models studied are
governed by ordinary differential equations (Chakrabarti
and Chopra, 2021). Samiksha (2025) introduced ZetA, a
novel optimizer that integrates Adam'’s adaptive gradient
updates with Riemann zeta-based dynamic scaling. Using
a fully connected neural network trained on SVHN,
CIFAR-10, CIFAR-100, STL-10, and noisy CIFAR-10, the
study demonstrated that ZetA
robustness, and computational efficiency, providing a
stable alternative to Adam, particularly in noisy or
complex classification tasks. Vaidhyanathan et al.
introduced Velocity-Regularized Adam (VRAdam), a
physics-inspired optimizer that adds a velocity-based
regularization term to stabilize training and prevent
oscillations. Tested on CNN, Transformer, and GFlowNet
architectures, VRAdam outperformed AdamW, showing
improved stability and faster convergence (Vradam,
2025).

Comprehensive studies that evaluate a wide range of
optimizers under diverse conditions remain scarce. Most
existing research focuses on individual optimizers or a
subset, their
performance varying scenarios. This gap
highlights the need for a more extensive analysis that
analyzes multiple optimizers under different conditions
to gain deeper insights into their effectiveness. In this
context, Zaheer et al. (2020) systematically evaluated a
range of optimizers, including SGD, Nesterov Momentum,
RMSProp, Adam, AdaGrad and AdaDelta, across several
benchmark datasets, namely MNIST, FashionMNIST,
CIFAR-10 and CIFAR-100, focusing on traditional deep
learning models (Zaheer and Shaziya, 2019). In a similar
study, Chen et al. (2024) utilized a physics-informed
neural network (PINN) model and employed the
optimizers PIDAO (AdSI), Adam, RMSprop, AdamW?75,
and AdaHB to solve partial differential equations, aiming

improves accuracy,

limited often without considering

across

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

2

Black Sea Journal of Engineering and Science

to evaluate and compare their performance in terms of
convergence speed, numerical stability, and optimization
accuracy in complex computational scenarios. Guan
(2024) also introduces AdaPlus, an optimizer combining
AdamW, Nadam, and AdaBelief with Nesterov
momentum and no extra hyperparameters. Experiments
using LSTM for language modeling and VGG-11, ResNet-
34, and DenseNet-121 for image classification show it
matches or slightly outperforms SGD with momentum
and surpasses adaptive optimizers, also
demonstrating stability in GAN training (Guan, 2024). In
another study, Saray and Cavdar applied various
optimizers—including Nadam, Adadelta, Adamax, Adam,
Adagrad, SGD, and RMSprop—to CNN models trained on
the Fashion MNIST dataset. They found that Nadam and
Adadelta achieved the highest accuracy, while RMSprop
performed worse, showing that optimizer
significantly deep learning
performance (Saray and Cavdar, 2024). In contrast, this
study uses Transformer architectures at two levels,

other

choice

affects classification

applies the same datasets with varying sizes and
evaluates total training time for each optimizer, offering a
more comprehensive analysis. In addition, a study by
Zhao et al. (2024) compares optimization algorithms
(SGD, Adafactor, Adam, Lion and Signum) across model
(150M, 300M, 600M parameters) and two
Transformer architectures, primarily focusing on final
validation loss performance (Zhao et al, 2024). While
similar in structure, this study differs by analyzing
training efficiency and convergence behavior, evaluating
both accuracy and loss, considering optimizer
convergence and total training time for every optimizer
and including a broader set of optimizers.
This study differs from previous
systematically evaluating the
selection on transformer performance across two model
configurations and three dataset sizes. Unlike most
existing studies, which focus on individual optimizers or
a limited subset without considering their performance

sizes

research by
impact of optimizer

across different scenarios, this study evaluates the
combined effects of optimization algorithms across these
configurations and scales. By
incorporating training time as a key performance metric,
alongside accuracy and efficiency measures, this study

model dataset

provides valuable insights into model effectiveness,
contributing to a more comprehensive understanding of
optimization strategies in Transformer architectures.

1.1. Impact of Optimizer Selection on Accuracy and
Loss

This study demonstrates that optimizer selection
significantly influences accuracy and loss, particularly as
dataset size increases. For smaller datasets, complex
models tend to perform worse, but this performance gap
narrows with larger datasets. For some optimizers,
complex models provide only marginally better results
compared to simpler models.

1.2. Training Time Trends Relative to Model
Complexity

This study shows that training time increases with both
dataset size and model complexity across different
optimizers. While training times are generally similar for
smaller datasets, differences among optimizers become
more apparent as dataset size and model complexity
grow. Some optimizers achieve better performance with
less training time when used with lower-complexity
models.

1.3. Convergence Behavior Across Optimizers and
Models

This study finds that in low-complexity models, all
optimizers exhibit similar convergence behavior. With
increasing dataset size, optimizers stabilize -earlier
during training. In more complex models, convergence
occurs faster overall. Notably, NAdam and RMSprop
show slightly more aggressive convergence, whereas SGD
suffers from slower convergence and higher loss,
reflecting known challenges in Transformer optimization.
This study indicates that optimizer selection is the key
factor influencing model performance, with dataset size
and model complexity playing secondary but important
roles. Increasing complexity alone does not ensure better
results, especially with limited data or poor optimizer
choices, whereas a well-chosen optimizer combined with
a simpler model can achieve high performance more
efficiently.

The structure of the paper is as follows: Section II details
the methodology, including dataset selection, model
architecture, hyperparameter configurations, training
procedures, parallel computing techniques and model
evaluation metrics. Section III presents the results and
explains the reasons for comparing optimizers, model
configurations, dataset sizes and training times. It
discusses how these factors contribute to the
performance results and how they interact with each
other. Section IV provides the conclusion, summarizing
the key findings. Section V presents the discussion and
limitations, addressing the study's limitations and
suggesting directions for future research.

2. Materials and Methods

In this study, the Transformer architecture was designed
with two hyperparameter combinations, as shown in
Table 1, to analyze the effects of embedding size, feed-
forward layers, number of heads, number of layers and
especially the optimization algorithm on learning ability
and performance. The embedding size (128) and feed-
forward units (256), along with the number of attention
heads (4-8) and layers (3-6), were adjusted to modify the
model's complexity. Other hyperparameters, including
the dropout rate (0.1), ReLU activation function, batch
size (32) and position coding value (10,000), were kept
constant across both configurations to ensure a
controlled Additionally, the study
incorporated multiple optimization algorithms, including
Adam, AdamW, AdaBelief, RMSprop, Nadam, Adagrad

comparison.

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

3

Black Sea Journal of Engineering and Science

and SGD, to systematically assess their impact on model
training dynamics and performance. All optimizers
employed in this study utilized the default
hyperparameter configurations provided by the PyTorch
implementation to ensure stability, reproducibility, and
fair comparison. Specifically, parameters such as
momentum, weight decay, epsilon (g), and betas were
retained at their default values for each optimizer, as
these configurations have been extensively validated to
yield reliable convergence and robust generalization
performance across diverse neural architectures.

Table 1. Model hyperparameters and values

Low High
Hyperparameters Complexity Complexity
Embedding Dimension 128 256
Feed Forward Units 128 256
Number of Heads 4 8
Number of Layers 3 6
Dropout Rate 0,1 0,1
Activation Function ReLU ReLU

Batch Size 32 32
learning_rate 0.0001 0.0001
Positional Encoding 10000 10000
Adam, AdamW, AdaBelief,
RMSprop, Nadam, Adagrad,
Optimizer SGD

Model training was performed in parallel on four GPUs
using the CUDA parallel computing platform and the
PyTorch library, significantly reducing training time on
large datasets. CUDA enabled efficient GPU utilization for
deep learning workloads and PyTorch's dynamic
computation graph provided flexibility for experimenting
with different hyperparameter
(Developer, 2025). computing with CUDA
ensured scalable performance, optimizing resource
utilization and improving training efficiency (Li, 2019).

The dataset used for this study comprises 140,873
Turkish-English Turkish’s
morphological complexity and agglutinative structure, it
represents a challenging low-resource language pair (Pan

configurations
Parallel

sentence pairs. Given

et al, 2020). To evaluate model performance across
different dataset scales, the dataset was partitioned into
three subsets: small (20K), medium (50K) and large
(140,873). This partitioning enabled a comprehensive
assessment of the effects of different optimizers and
Transformer configurations on learning dynamics.

In this study, the data were randomly selected, and
reproducibility was ensured by setting random_state to
42. This value is commonly adopted in the literature to
maintain consistency and enable reproducibility of
experimental results. The resulting dataset was divided
into two subsets: 80% was used for training, and 20%
was used for validation. This division facilitated model
training and performance evaluation.

The model’s performance was evaluated using five key

metrics: training accuracy, training loss, validation
accuracy, validation loss and training time. Training
accuracy and loss were used to analyze the learning
process, while validation accuracy and loss assessed
generalization to unseen data. Additionally, training time
was recorded to measure the computational efficiency of
each optimizer across different dataset sizes and model
configurations.

The high-performance computing (HPC) system used in
this study runs on Rocky Linux 8.5 (based on Red Hat
8.5) and is powered by AMD EPYC 7543 processors. The
system includes 8 compute nodes, each with 64 cores and
1024 GB of memory. For high-speed data transfer, it
features HDR InfiniBand with 200 Gbps connectivity.

3. Results

This section summarizes the experimental findings,
highlighting how dataset size, model complexity and
optimizer choice influence Transformer performance and
training efficiency.

Table 2 presents a comparative analysis of optimizer
performance across different dataset sizes and model
complexities. The low-complexity model configuration
consists of an embedding dimension of 128, 128 feed-
forward units, 4 attention heads and 3 layers, whereas
the high-complexity model employs an embedding
dimension of 256, 256 feed-forward units, 8 attention
heads and 6 layers. Both models share the same dropout
rate, activation function, batch size, positional encoding
and a diverse set of optimizers. Notably, the most
significant findings are highlighted in bold to emphasize
key performance differences across various settings. The
results demonstrate how optimization choices influence
learning efficiency, with distinct patterns emerging
across different complexity levels and dataset sizes. The
analysis highlights how optimizer effectiveness shifts
with increasing dataset size, emphasizing the trade-offs
between accuracy, computational cost and
generalization. These insights contribute to identifying
optimal optimizer different
complexities, facilitating efficient training and guiding
hyperparameter tuning strategies.

For both the 20K and 50K sample datasets, the
experimental results demonstrated similar performance
trends across optimizers. Adam, AdamW, AdaBelief,
RMSprop and Nadam achieved the best balance of
accuracy, generalization and training efficiency. These
optimizers consistently outperformed SGD and Adagrad,
with SGD exhibiting the weakest performance, even

choices for model

lower than Adagrad. Notably, for both small and large
datasets, low-complexity models using Adam, AdamW,
RMSprop and Nadam showed higher accuracy and lower
loss compared to high-complexity models. Similarly,
high-complexity models using AdaBelief, Adagrad and
SGD also showed higher accuracy and lower loss
compared to their low-complexity counterparts. For the
full dataset, unlike the 20K and 50K samples where low-
complexity models with Adam, AdamW, RMSprop and

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

4

Black Sea Journal of Engineering and Science

Nadam performed better, only RMSprop and Nadam
maintained higher accuracy and lower loss. Similarly,
high-complexity models using AdaBelief, Adagrad and
SGD continued to outperform their low-complexity
counterparts. Moreover, in the full dataset, all optimizers
demonstrated higher accuracy and lower loss in high-
complexity models compared to low-complexity models.
In addition, as dataset size and model complexity
increased, training time also increased. The results
emphasize the importance of selecting appropriate
optimizer and model configurations while considering
the increasing computational costs associated with larger
datasets.

For small datasets (20K samples), the experimental
results in this study indicated that trend where low-

complexity models tended to outperform their high-
complexity counterparts in terms of both validation
accuracy and loss. Among the evaluated optimizers,
Nadam achieved the highest validation accuracy of
91.79% with the lowest validation loss of 0.1561,
indicating its robust performance in small-data regimes.
AdamW and AdaBelief also yielded strong results, with
validation accuracies of 91.47% and 91.62%
validation losses of 0.1643 and 0.1592, respectively.

and

These optimizers appear to balance model training and
generalization effectively in environments where data is
limited. On the other hand, SGD performed poorly,
achieving only 83.52% validation accuracy and exhibited
the highest loss, underscoring its ineffectiveness in small-
data contexts.

Table 2. Performance comparison of seven optimization algorithms (Adam, AdamW, AdaBelief, RMSprop, Nadam,
Adagrad and SGD) across different dataset sizes (20K, 50K, and ~140K samples) and model complexities (low vs. high)

Low complexity High complexity
3 3 g 9
g 3 E 2 3 ?) > 4 2 %
o = = = =) s = 3 = = =
s & £ E 5 3 £ EF: E 5 3 £
Adam 91.81 0.1581 0.1634 91.52 0.06.16 89.40 0.1894 0.1882 89.49 0.15.16
AdamW 91.87 0.1578 0.1643 9147 0.06.11 8942 0.1871 0.1850 89.34 0.15.12
2 AdaBelief 91.53 0.1589 0.1592 91.62 0.0640 9338 0.1170 0.1173 9344 0.16.41
g- RMSprop 91.69 0.1586 0.1562 91.75 0.06.10 8999 0.1791 0.1805 8995 0.15.45
g Nadam 91.87 0.1555 0.1561 91.79 0.06.03 83.37 0.3796 03837 8327 0.15.42
8 Adagrad 87.61 0.5564 0.5479 87.87 0.05.27 88.21 0.2829 0.2840 8822 0.15.17
E SGD 8330 04791 04735 8352 0.0610 8390 0.3853 03914 83.59 0.14.27
Adam 93.73 0.1115 0.1138 93.63 0.14.38 9279 0.1108 0.1103 92.79 0.37.40
AdamW 93.88 0.1090 0.1085 93.78 0.15.05 9214 0.1210 0.1238 9196 0.38.02
v AdaBelief 94.05 0.0978 0.1005 93.87 0.1533 96.37 0.0513 0.0513 9640 0.40.13
TEJ‘ RMSprop 93.56 0.1206 0.1211 9343 0.1428 9295 0.1357 0.1328 93.07 0.39.40
z Nadam 93.79 0.1088 0.1074 9394 0.13.52 86.97 0.2657 0.2625 87.10 0.37.38
E Adagrad 87.66 0.4382 04362 87.67 0.14.06 8879 0.2594 0.2605 88.72 0.36.22
E SGD 8335 04449 04492 83.27 0.14.18 8694 03669 0.3729 86.77 0.35.42
Adam 98.71 0.0188 0.0186 98.74 0.51.51 9891 0.0133 0.0133 9890 2.58.48
AdamW 98.70 0.0189 0.0187 98.73 0.50.26 98.98 0.0126 0.0126 9896 2.59.53
% AdaBelief 98.78 0.0165 0.0159 98.81 0.54.01 99.47 0.0061 0.0061 9946 3.17.49
g RMSprop 9856 0.0267 0.0261 98,59 0.51.07 9841 0.0361 0.0360 9841 3.00.53
% Nadam 98.73 0.0179 0.0181 98.72 0.50.54 9837 0.0212 0.0208 9839 3.21.32
g Adagrad 96.28 0.1318 0.1315 96.28 0.49.59 96.75 0.0772 0.0776 96.72 2.52.26
% SGD 95.00 0.1415 0.1419 9499 05139 96.02 0.1182 0.1182 96.05 2.51.18

Adam = adaptive moment estimation, AdamW = adam with weight decay, AdaBelief = adaptive belief optimizer, RMSprop = root mean
square propagation, Nadam = nesterov-accelerated, Adagrad = adaptive gradient algorithm, SGD = stochastic gradient descent.

For medium-sized datasets (50K samples), the results
show that low-complexity models tend to perform better
with optimizers like Adam, AdamW, RMSprop and
Nadam, while higher complexity models benefit from
optimizers like AdaBelief, Adagrad and SGD. Adam,

AdamW, RMSprop and Nadam demonstrate better
performance in simpler models, achieving relatively good
validation accuracy with moderate loss values. However,
in high-complexity settings, models trained with
AdaBelief, Adagrad and SGD outperform the others, as

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

5

Black Sea Journal of Engineering and Science

they can handle the increased model complexity more
effectively. Specifically, AdaBelief achieves a high train
accuracy of 94.05%, outperforming Adam and AdamW,
which have train accuracies of 93.74% and 93.88%,
respectively, demonstrating the effectiveness of the
optimizer even with a low-complexity model. Meanwhile,
Nadam performs well in low-complexity scenarios, but it
faces challenges with larger models, showing a drop in
validation accuracy and an increase in validation loss.
Adagrad and SGD exhibit lower performance on medium-
sized datasets, achieving poorer accuracy and higher loss
when compared to other optimizers, which perform
significantly better across both low and high-complexity
models. These results emphasize that optimizers like
AdaBelief, Adagrad and SGD are more effective in high-
complexity models, while Adam, AdamW RMSprop and
Nadam perform better with simpler models on smaller
datasets. These findings highlight the importance of
aligning optimizer selection with both dataset size and
model complexity, as adaptive optimizers like Adam and
AdamW excel in less complex models, whereas AdaBelief
and SGD manage larger parameter spaces effectively in
more complex models.

For large datasets (140,873 samples), high-complexity
models consistently outperform low-complexity models,
achieving the highest validation which
highlights the benefits of increased model complexity.
Among the optimizers, AdaBelief achieved the best
performance, with a validation accuracy of 99.46% and
the lowest validation loss of 0.0061, closely followed by
AdamW with 98.96% accuracy and a loss of 0.0126. In
contrast, SGD performed poorly, reaching only 96.05%
accuracy and exhibiting the highest loss, making it less
suitable for large datasets. These results demonstrate

accuracy,

that pairing high-complexity models with advanced
optimizers such as AdaBelief, Adam, or AdamW is most
effective for achieving superior accuracy and
generalization. The advantage of these optimizers can be
attributed to their adaptive learning mechanisms, which
enable efficient gradient updates and better convergence.
Conversely, the weaker performance of SGD, likely due to
its inability to dynamically adapt learning rates,
underscores the importance of selecting optimizers that
fully leverage model capacity for optimal results.

The relationship between model complexity and dataset
size significantly influences optimizer performance in
this study. When trained on smaller datasets (20K and
50K samples), models utilizing Adam, AdamW, RMSprop
and Nadam show a decline in both training and
validation accuracy as model complexity increases. This
pattern is consistent with the general understanding that
higher model complexity worsens performance problems
in data-limited scenarios, making these optimizers less
However, AdaBelief, Adagrad and SGD
demonstrate robustness with smaller datasets, achieving
higher accuracy and lower loss as model complexity
increases. In contrast, when the dataset size increases to
140,000 samples, Adam, AdamW, AdaBelief, Adagrad and

effective.

SGD benefit from larger model architectures, achieving
higher performance, while RMSprop and Nadam
experience a decline in accuracy. These results can be
explained by the optimizers' inherent characteristics.
Adaptive optimizers like Adam and AdamW tend to
overfit on smaller datasets due to aggressive learning
rate adjustments, while SGD and Adagrad generalize
better by avoiding excessive updates. AdaBelief's stability
makes it effective across all dataset sizes. RMSprop and
Nadam's decline in performance, even with larger
datasets, may their sensitivity to
hyperparameters and difficulty in scaling with model
complexity. This highlights the need to match optimizer

stem from

choice with dataset size and model architecture.
AdaBelief consistently excelled with high-complexity
models and large datasets because its belief-based
adaptive mechanism dynamically adjusts learning rates
based on gradient reliability rather than magnitude. This
enables more stable and efficient convergence in deep
architectures with large parameter spaces, reducing
gradient noise and improving generalization (Zhuang et
al,, 2020; Zhang et al., 2022).

RMSprop and Nadam perform better as
complexity increases. In large deep learning models, the
accumulation of gradient variance can destabilize

model

exponential moving averages, leading to overcorrection
in adaptive updates and reduced training
stability.(Tomihari and Sato, 2025).

SGD demonstrated consistent weakness across all dataset
scales, as its fixed learning rate and non-adaptive nature
make it prone to slow convergence and difficulty
escaping local minima. This limitation becomes more
pronounced in high-dimensional Transformer
architectures, where adaptive optimizers can better
adjust to complex gradient dynamics (Choi et al,, 2019;
Pan and Li, 2023; Zhang et al,, 2024; Tomihari and Sato,
2025).

This study primarily focuses on the impact of dataset size
and model complexity on accuracy and loss across
various optimization algorithms, while also providing a
comprehensive assessment of their influence on training
time. Consequently, as dataset size and model complexity
training times rise significantly,
emphasizing the need to balance performance and

increase, further
computational efficiency. For instance, with 20K data
points, Adam achieves 91.81% training accuracy in 6.16
minutes for a low-complexity model, whereas the same
dataset requires 15.16 minutes for a high-complexity
model, with accuracy dropping to 89.40%. Similarly, for
50K data points, Adam attains 93.73% accuracy in 14.38
minutes for a low-complexity model, whereas it takes
37.40 minutes to reach 92.79% accuracy in a high-
complexity model. This trend becomes even more
pronounced with the full dataset (140K), where Adam
achieves 98.71% accuracy in 51.51 minutes for a low-
complexity model, while the high-complexity model
requires 2 hours, 58 minutes and 48 seconds to reach
98.91% accuracy. Among the optimization algorithms,

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

6

Black Sea Journal of Engineering and Science

AdaBelief achieves the highest accuracy (99.47%) in
high-complexity models with the full dataset but requires
an extended training time of 3.17 hours. In contrast,
optimizers such as Nadam and Adagrad yield faster
results in low-complexity models (e.g., ~6 minutes for
20K data). High-complexity models generally yield better
performance but require significantly longer training
times, especially for larger datasets. For example,
training a high-complexity model on the full dataset takes
over three hours, compared to just six minutes for a low-
complexity model on a smaller dataset. This highlights
the need for efficient optimization strategies that can
balance performance and computational cost. While
time-intensive algorithms are preferable for achieving
higher accuracy, faster optimizers may be more suitable
for time-constrained applications. Additionally, the
findings underscore the direct impact of dataset size and
model complexity on computational cost. Furthermore,
specific optimization techniques or hyperparameter
adjustments might enable higher accuracy within shorter
training durations. This study also emphasizes the trade-
off between model complexity and training efficiency.
3.1. Evaluation of Loss Across Models, Optimizers and
Data Size

The effectiveness of an optimization algorithm is closely
linked to how efficiently it minimizes both training and
validation loss during training. Understanding the loss
dynamics across different model complexities and
dataset sizes provides valuable insights into optimizer
performance. For this reason, this section assesses how
various optimizers influence the reduction of training
and validation loss, shedding light on their convergence
behavior and effectiveness in different scenarios. Figure
1 display the training and validation loss for different
optimizers across epoch values, using Transformer
architecture with hyperparameters tailored for both low
and high complexity models. The graphs on the left
(Figures a, ¢ and e) show the low-complexity model with
128 embedding dimensions, 4 attention heads and 3
layers, while the graphs on the right (Figures b, c and d)
illustrate the with 256
embedding dimensions, 8 attention heads and 6 layers. A
key factor in model training is how optimization
algorithms impact the reduction of both training and

high-complexity model

validation loss over time. In both sets of graphs, the
training and validation losses generally decrease as the
number of epochs increases, suggesting that the model
continues to learn from the data. While the loss decreases
for all cases, the rate of reduction varies across
optimizers, with showing faster decreases,
indicating distinct convergence behaviors. The varying
rates of loss reduction across optimizers suggest
differences in their efficiency and adaptability, with some

some

achieving faster convergence, which could imply better
generalization.

The results presented in Figure 1la and Figure 1b
illustrate the training and validation losses across
different dataset

optimization algorithms for a

comprising 20K samples, evaluated under two distinct
model architectures. Among the evaluated optimizers,
Adam, AdamW, Nadam and RMSprop exhibit rapid
convergence and maintain low loss values, particularly in
high-complexity models. While AdaBelief initially shows
higher loss, it quickly adapts and achieves comparable or
superior final performance within the same number of
epochs. This effect is especially pronounced in more
complex architectures, where AdaBelief's adaptive
mechanism enhances stability and generalization. By
dynamically adjusting learning rates based on gradient
predictability, AdaBelief effectively mitigates sharp loss
fluctuations, leading to improved optimization efficiency
in deeper models with larger parameter spaces
(Chakrabarti and Chopra, 2021). Additionally, SGD and
Adagrad exhibit distinctive performance characteristics
compared to the other optimizers considered in this
study. SGD demonstrates slower convergence, resulting
in higher final loss values across nearly all experimental
conditions. In contrast, Adagrad starts with loss values
similar to those of Adam, AdamW, Nadam and RMSprop
but gradually aligns more with SGD's performance,
ultimately resulting in higher loss
performance disparity between SGD and Adagrad is
influenced by factors such as model complexity and

values. The

dataset size, suggesting that their effectiveness depends
on these variables. The slower convergence and higher
final loss values of SGD, as observed in this study, can be
attributed to its sensitivity to the learning rate and the
absence of adaptive adjustments. SGD typically requires
careful tuning of the learning rate and hyperparameters
like momentum to prevent slow convergence and local
minima issues. When these factors are not optimally set,
SGD struggles to converge efficiently, particularly with
complex models or large datasets (Fehrman and Gess,
2020). On the other hand, Adagrad with
comparable loss values to Adam and other optimizers but
eventually suffers from diminishing updates. While its
adaptive learning rate initially provides an advantage,

starts

over time, the accumulated sum of squared gradients
leads to excessively small updates, resulting in slower
convergence and higher final loss values (Luo, 2019).

As illustrated in Figure 1 (subplots a-f), this analysis
focuses on the training and validation losses across
different dataset sizes and model complexities. The
results presented in Figure 1c and 1d illustrate the
training and validation losses for a dataset size of 50K
samples across two model architectures. Similar to the
20K dataset (Figure la and 1b), Adam, Adam-W and
Nadam demonstrate rapid convergence and maintain low
loss values, with Adam-W showing the most stable
performance. RMSprop also converges quickly but
exhibits minor fluctuations in validation loss, indicating
slight instability. Adagrad and SGD
convergence and higher loss values, with SGD performing
the worst. As model complexity increases, Adam-based
optimizers remain the most effective, while RMSprop,
despite starting with a very low loss, may require careful

show slower

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

7

Black Sea Journal of Engineering and Science

tuning due to the possibility of progressing too quickly
without sufficient learning. These observations
emphasize the critical role of optimizer selection in
balancing convergence speed, stability and performance,
particularly as model architectures grow in complexity.
Compared to the 20K-sample case, the simpler model
(low complexity) trained with 50K samples exhibits
higher lower final loss,
suggesting that larger datasets introduce variability in

initial loss but achieves
early optimization but improve generalization. For the
more complex model, increasing dataset size leads to
lower initial and final loss, indicating that larger datasets
allow complex models to utilize their capacity more

Training vs Validation Loss

25

2.0

15

Loss

1.0

0.5

] 20 40 60 80 100
Epoch

(a) 20K samples and low complexity model
Training vs Validation Loss

25 b
2.0

1.5

Loss

1.0

0.5

0.0

Epoch
(c) 50K samples and low complexity model
Training vs Validation Loss

2.0

1.5

0.5

0.0 — o —
0 20 20 60 80 100
Epoch

(e) 140,873 samples and low complexity model

--=-- Adabelief - Train
—— Adabelief - val

===- Adam-W - Train
Adam-W - val

-- Adam - Train
—— Adam - Val

---- Adagrad - Train
—— Adagrad - Val

effectively. This effect is particularly pronounced in
complex models, where increased data availability helps
maximize representational capacity. In contrast to 20K
and 50K samples, Figure le and Figure 1f (140,873
samples) show that models trained on larger datasets
start with lower initial loss and achieve even lower final
loss, highlighting the benefits of larger datasets for
providing a learning signal,
generalization and enhancing stability across all
optimizers. These results underscore the importance of
selecting the right optimizer, particularly as architectural
complexity increases.

richer improving

Training vs Validation Loss

2.00
\
|

175 |
:

1.501
1.25
w

3 1.00
—

0.75
0.50

0.25

Epoch
(b) 20K samples and high complexity model

Training vs Validation Loss

16
14
12
1.0

wn

u

g8
0.6

0.4

0.2

0.0

0 20 40 60 80 100
Epoch

(d) 50K samples and high complexity model

Training vs Validation Loss

0811

‘:

!
061 !
n d
wn
[s]
04
0.2

T ——

0.0

0 20 40 60 80 100

Epoch

(f) 140,873 samples and high complexity model

RMS - Train ==== SGD - Train
RMS - Val —— SGD - Vval

NADAM - Train
NADAM - Val

Figure 1. Training and validation loss per epoch for different optimizers across dataset sizes (20K, 50K, 140,873) and

model complexities (low and high).

The superior performance of Adam-based optimizers can
be attributed to their adaptive learning rate mechanisms,
which efficiently navigate complex loss landscapes,
especially with smaller datasets. In contrast, SGD and

Adagrad face difficulties with sparse or noisy gradients,
leading to slower convergence and higher final loss
values, particularly with larger or more complex models.

This suggests that for smaller datasets, adaptive

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

8

Black Sea Journal of Engineering and Science

optimizers are not only preferable but essential for stable
and efficient training. Additionally, combining adaptive
optimizers with regularization techniques, such as
dropout or weight decay, could further
performance by preventing overfitting and enhancing
generalization.

3.2. Evaluation of Accuracy Across
Optimizers and Data Size

This subsection assesses the impact of optimization
algorithms on different model
complexities and dataset sizes, focusing on learning

improve

Models,

accuracy across

stability, convergence speed and generalization
Training vs Validation Accuracy

801

> 6011

3 !

o

3
g

20

|

0 20 40 60 80 100
Epoch

(a) 20K samples and low complexity model

Training vs Validation Accuracy

T,
801
> 60
[}
J
3
é(‘;.' 40
20
0
0 20 40 60 80 100
Epoch
(c) 50K samples and low complexity model
Training vs Validation Accuracy
100 T S ———————
901
> 80
c
3
&"j 70
60
50| |

0 20 40 60 80 100
Epoch

(e) 140,873 samples and low complexity model
---- Adam-W - Train ---- Adagrad - Train
—— Adam-w - val —— Adagrad - Val

--=- Adam - Train
—— Adam - Val

performance. Figure 2 illustrates the accuracy of various
optimizers during training for both low-complexity
(smaller) and high-complexity (larger) models. The left-
side graphs (Figures 2a, 2c and 2e) correspond to the
smaller model, while the right-side graphs (Figures 2b,
2d and 2f) represent the larger model. Figures 2a-2b, 2c-
2d and 2e-2f correspond to datasets containing 20K, 50K
and 140,873 samples, respectively. These plots show
accuracy trends, emphasizing the effects of model
complexity and dataset size on optimization efficiency
and generalization.

Training vs Validation Accuracy

%0 W
ISEas e i - 8 WY
T
‘;L‘ I —
80|
>
%)
o
3704 4
£
60
50
0 20 40 60 80 100
Epoch
(b) 20K samples and high complexity model
Training vs Validation Accuracy
95
20
z
@ 85
3
[}
£ 80
751 !
70
0 20 40 60 80 100
Epoch

(d) 50K samples and high complexity model

Training vs Validation Accuracy

P
98 i:::::;‘ﬁgﬁﬁdﬁgmsﬂﬂﬂsgﬂwb

o
(=]

Accuracy
0
=

92

20

0 20 40
Epoch
(f) 140,873 samples and high complexity model
RMS - Train -==- SGD - Train
RMS - Val —— SGD - val

NADAM - Train
NADAM - Val

Figure 2. Training and validation accuracy per epoch for different optimizers across dataset sizes (20K, 50K, 140,873)

and model complexities (low and high).

As model complexity and dataset size increase, the
accuracy values of the optimization algorithms show
higher initial and final performance levels, with the
differences in accuracy across optimizers becoming more

pronounced. These disparities are further accentuated
with larger data size, highlighting the greater impact of
dataset size on optimization performance. This could be
due to the increased availability of data allowing the

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

9

Black Sea Journal of Engineering and Science

model to better generalize, which in turn enables the
optimization algorithms to perform more effectively.
Additionally, larger models with more parameters tend
to benefit more from larger datasets, as they require
more data to fully capture the underlying patterns and
avoid overfitting.

In this study, among the optimization algorithms, Adam,
AdamW, AdaBelief, Nadam and RMSprop achieve high
accuracy with minimal loss between training and
validation values, demonstrating strong generalization
and robust performance across different dataset sizes
and model complexities. In contrast, SGD performs the
worst, with the lowest accuracy and highest loss between
training and validation results, while Adagrad follows,
showing slightly better performance than SGD. This may
suggest that hyperparameter optimization, particularly
adjusting learning rate, momentum and weight decay,
could help improve the performance of both SGD and
Adagrad, as these algorithms may struggle with
convergence and generalization compared to more
adaptive optimizers. Nadam, on the other hand, may
struggle with stabilizing more complex models due to the
increased number of parameters and layers, which make
it harder to adapt learning rates effectively. The presence
of gradient noise in these models may further complicate
training, potentially leading to slower convergence and
poorer generalization.

When the model complexity was low, the optimization
algorithms exhibited similar convergence behavior,
suggesting that simpler models allowed all optimizers to
perform effectively. However, as model complexity
increased, particularly with larger dataset sizes, notable
differences in convergence patterns emerged. This
observation aligns with prior research, which analyzed
the computational cost of deep learning models and
complexity grows,
convergence rates among different optimizers begin to
diverge, highlighting the necessity of adaptive
optimization methods for training deeper networks
efficiently (Ahmad and Al-ramahi, 2023; Baskakov,
2023).

Adam, Adagrad, AdamW, RMSprop and Nadam, exhibited
similar convergence rates, indicating their efficiency in
adapting to increased model complexity, while Adagrad

demonstrated that as model

remained slightly behind toward the final stages. On the
other hand, Nadam, Adam, AdamW and RMSprop, despite
similar trends, initially struggled to
stabilize, suggesting that complex models challenge their
learning rate adaptation in early training stages.
Meanwhile, SGD and AdaBelief started with lower
accuracy values and converged more quickly, with SGD
starting from an even lower value but achieving a faster
convergence. SGD's poor performance is likely due to its

convergence

fixed learning rate, making it highly sensitive to
hyperparameter tuning and potentially prone to slow
convergence in complex models. This behavior could be
attributed to the differences in how these optimizers
handle gradient updates and learning rate adjustments.

Adam, AdaBelief and Adagrad use adaptive learning
rates, allowing them to adjust more effectively to varying
gradient magnitudes, leading to stable
convergence. Nadam, AdamW and RMSprop, while also
adaptive, may experience instability due to aggressive
updates early in training (Zhou et al,, 2021; Guan, 2024).

more

4. Discussion

The results demonstrate that optimizer selection plays a
decisive role in performance-efficiency trade-offs across
varying model complexities and dataset sizes. AdaBelief,
Adagrad, and SGD performed notably better with high-
complexity models, particularly as the dataset size
increased. In our experiments, AdaBelief stood out by
achieving promising results, including a validation
accuracy of 99.46% on the full dataset with the high-
complexity model. However, this performance gain came
with a significant increase in training time, especially for
more complex models and larger datasets. These findings
highlight that while certain optimizers can better
leverage increased capacity and data volume, they also
introduce higher computational costs.

Interestingly,
effective optimizers such as AdaBelief or RMSprop on

low-complexity models trained with
large datasets achieved accuracy levels comparable to
those of high-complexity models. This indicates that
increasing model depth does not always yield better
outcomes, especially when optimizer selection or data
volume is suboptimal. On smaller datasets (20K and
50K), Adam, AdamW, RMSprop, and Nadam provided
better performance with low-complexity models while
requiring significantly less training time. On the full
dataset, Adam and AdamW showed slightly better
performance on high-complexity models,
RMSprop and Nadam achieved marginally better results

whereas

on low-complexity models. Considering that training time
nearly doubles when model complexity increases within
the same dataset size, these results emphasize that the
trade-off between model depth and efficiency becomes
especially relevant in large-scale applications. Therefore,
under resource constraints, pairing effective optimizers
with less complex models can offer a more practical and
time-efficient solution without substantial performance
loss.

5. Conclusion

In general, the findings of this study indicate that the
choice of optimizer should be aligned with both dataset
size and model complexity. For smaller datasets or low-
complexity models, optimizers such as SGD, Nadam,
RMSprop, Adam, and AdamW are more effective due to
their fast convergence and lower computational cost. In
contrast, Adagrad and AdaBelief are better suited for
high-complexity models trained on limited data, as their
adaptive mechanisms help stabilize learning. When large
datasets are available, all optimizers yield higher
accuracy with complex models, demonstrating that

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

10

Black Sea Journal of Engineering and Science

sufficient data enables these architectures to fully exploit
their representational capacity.

The findings from this study suggest that optimizer
selection is a key factor influencing model performance,
with dataset size and model complexity playing
secondary but important roles. Increasing complexity
alone does not ensure better results, especially with
limited data or poor optimizer choices, whereas a well-
chosen optimizer combined with a simpler model can
achieve high performance more efficiently. Moreover,
shorter training times can be achieved with certain
optimizers on low-complexity models when dataset sizes
are large, highlighting that the right combination of
optimizer, dataset size and model hyperparameters
enables both time efficiency and high accuracy. This
emphasizes that the optimal combination of optimizer,
dataset size and model hyperparameters is crucial for
balancing training time and performance.

Future research could examine more optimizers and a
wider range of dataset sizes to better understand their
effects on model performance. Analyzing various
Transformer complexity levels may offer deeper insights
into efficiency-accuracy trade-offs. Additionally,
exploring techniques such as pruning or
knowledge distillation could help reduce computational

model

costs without sacrificing accuracy. Extending the study to
larger datasets and real-world scenarios would further
improve the generalizability of the results. Furthermore,
a key limitation of this study is that each configuration
was executed only once, preventing statistical validation
of performance differences. should
conduct multiple runs with different random seeds and
apply statistical tests to ensure robustness.

Future studies

Author Contributions

The percentages of the authors’ contributions are
presented below. All authors reviewed and approved the
final version of the manuscript.

H.CA. B.C.

50 50

D 50 50
100

DCP 80 20
DAI 50 50
L 50 50
w 60 40
CR 10 90
SR 50 50
PM 20 80

C=Concept, D= design, S= supervision, DCP= data collection
and/or processing, DAI= data analysis and/or interpretation, L=
literature search, W= writing, CR= critical review, SR=
submission and revision, PM= project management.

Conflict of Interest
The authors declared that there is no conflict of interest.

Ethical Consideration

Ethics committee approval was not required for this
study because of there was no study on animals or
humans.

Acknowledgements
This work has been supported by the Scientific Research
ProjectsCoordination Unit of the Sivas University of
Science and Technology. ProjectNumber: 2024-DTP-
Miih-0004. Computing resources used in this work were
providedby the National Center for High Performance
Computing of Tirkiye (UHeM) undergrant number
5020092024. The research utilized computational
resources providedby the TUBITAK ULAKBIM High
Performance and Grid Computing Center (TRUBA)
andthe Liitfi Albay Artificial Intelligence and Robotics
Laboratory at Universityof

Sivas Science and

Technology."

References

Abdulmumin, I, Galadanci, B. S., & Isa, A. (2021). Enhanced back-
translation for low resource neural machine translation using
self-training. Communications in Computer and Information
Science, 1350, 355-371. https://doi.org/10.1007/978-3-030-
69143-1_28

Ahmad, R, & Al-Ramahi, I. A. M. (2023). Optimization of deep
learning models: Benchmark and analysis. Advances in
Computational Intelligence, 3(2), 1-15.
https://doi.org/10.1007 /s43674-023-00055-1

Babaeianjelodar, M. Lorenz, S. Gordon,], Matthews, |, &
Freitag, E. (2020). Quantifying gender bias in different
corpora. Companion Proceedings of the Web Conference 2020,
752-759. https://doi.org/10.1145/3366424.3383559

Baskakov, D. (2023). The computational complexity of machine
learning (Issue January). Springer.
https://doi.org/10.1007/978-981-33-6632-9

Celik, H., Katircy, R, & Islek, B. (2024). Effect of parameters on
performance in question-answer model with simple RNN deep
learning method. International Conference on Scientific and
Innovation Research, 161-169.

Chakrabarti, K., & Chopra, N. (2021). Generalized AdaGrad (G-
AdaGrad) and Adam: A state-space perspective. Proceedings of
the IEEE Conference on Decision and Control (CDC), 1496-
1501. https://doi.org/10.1109/CDC45484.2021.9682994

Chen, Y., Song, X., Lee, C, Wang, Z. Zhang, Q. Dohan, D,
Kawakami, K., Kochanski, G., Doucet, A., Ranzato, M., Perel, S.,
& de Freitas, N. (2022). Towards learning universal
hyperparameter optimizers with transformers. Advances in
Neural Information Processing Systems, 35, 1-16.

Choi, D., Shallue, C.]., Nado, Z., Lee,]., Maddison, C.]., & Dahl, G. E.
(2019). On empirical comparisons of optimizers for deep
learning. arXiv. https://arxiv.org/abs/1910.05446

Developer, N. (2025). CUDA
https://developer.nvidia.com/cuda-zone

Fang, H., Lee, J. U, Moosavi, N. S, & Gurevych, I. (2023).
Transformers with learnable activation functions. Findings of
the EACL 2023, 2337-2353.
https://doi.org/10.18653/v1/2023.findings-eacl.181

Fehrman, B, & Gess, B. (2020). Convergence rates for the

zZone.

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

11

https://doi.org/10.1007/978-3-030-69143-1_28
https://doi.org/10.1007/978-3-030-69143-1_28
https://doi.org/10.1007/s43674-023-00055-1
https://doi.org/10.1145/3366424.3383559
https://doi.org/10.1007/978-981-33-6632-9
https://doi.org/10.1109/CDC45484.2021.9682994
https://developer.nvidia.com/cuda-zone
https://doi.org/10.18653/v1/2023.findings-eacl.181

Black Sea Journal of Engineering and Science

stochastic gradient descent method for non-convex objective
functions. arXiv:1904.01517.

Guan, L. (2024). Adaplus: Integrating Nesterov momentum and
precise stepsize adjustment on AdamW basis. ICASSP 2024,
5210-5214.
https://doi.org/10.1109/ICASSP48485.2024.10447337

islek, B, Katirci, R, & Celik, H. (2024). Enhancing question
answering systems through optimal hyperparameter tuning in
GRU. 8th International Artificial Intelligence and Data
Processing Symposium (IDAP 2024).
https://doi.org/10.1109/IDAP64064.2024.10710732

Jelassi, S, & Li, Y. (2022). Towards understanding how
momentum improves generalization in deep learning.
Proceedings of Machine Learning Research, 162, 9965-10040.

Jurafsky, D. & Martin,]J. H. (2008). Speech and language
processing: An introduction to natural language processing,
computational linguistics, and speech recognition (2nd ed.).
Prentice Hall.

Katirc, R, & Celik, H. (2024). Transformer
https://doi.org/10.5281/zenodo.13971609

Katirci, R, & Celik, H. (2025a). Evaluating the impact of
activation functions on transformer architecture performance.

mimarisi.

International Science and Art Research Center, 626-639.

Katircy, R, & Celik, H. (2025b). Learning rate sensitivity in
transformer models: A case study in neural machine
translation. https://doi.org/10.5281/zenodo.15769066

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut,
R. (2020). ALBERT: A lite BERT for self-supervised learning of
language representations. 8th International Conference on
Learning Representations (ICLR 2020).

Li, S. (2019). Getting started with distributed data parallel.
https://pytorch.org/tutorials/intermediate /ddp_tutorial.html

Luo, L. (2019). Adaptive gradient methods with dynamic bound
of learning rate. arXiv. https://arxiv.org/abs/1902.09843

Mahadevaswamy, U. B., & Swathi, P. (2022). Sentiment analysis
using bidirectional LSTM network. Procedia Computer Science,
218, 45-56. https://doi.org/10.1016/j.procs.2022.12.400

Pan, Y, Li, X, Yang, Y., & Dong, R. (2020). Morphological word
segmentation on agglutinative languages for neural machine
translation. arXiv:2001.01589.

Pan, Y, & Li, Y. (2023). Toward understanding why Adam
converges faster than SGD for transformers. arXiv:2306.00204.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I.
(2019). Language models are unsupervised multitask learners.
OpenAl Technical Report.

Razzhigaev, A, Mikhalchuk, M., Goncharova, E. Oseledets, I,
Dimitrov, D., & Kuznetsov, A. (2024). The shape of learning:
Anisotropy and intrinsic dimensions. arXiv.

Rithika. (2024). Recent advances in large language models: An
upshot. Journal, 5(6), 137-143.
https://doi.org/10.55248/gengpi.5.0624.1403

Saray, U, & Cavdar, U. (2024). Comparison of different
optimization algorithms in the Fashion MNIST dataset.
International Journal of Management Science and Information
Technology, 8(2), 52-58.
https://doi.org/10.36287/ijmsit.8.2.1

Sarvepall, S. K., Sarat, S., & Sarvepalli, K. (2015). Deep learning
in neural networks: The science behind an artificial brain.

https://doi.org/10.13140/RG.2.2.22512.71682

Shazeer, N, & Stern, M. (2018). Adafactor: Adaptive learning
rates with sublinear memory cost. ICML 2018, 7322-7330.

Shoeybi, M., Patwary, M., Puri, R, LeGresley, P., Casper,], &
Catanzaro, B. (2020). Megatron-LM: Training multi-billion
parameter language models using model parallelism.
https://arxiv.org/abs/1909.08053

Su, J., Ahmed, M., Lu, Y, Pan, S, Bo, W, & Liu, Y. (2024).

Enhanced transformer with rotary position
embedding. Neurocomputing, 568, Article 127063.
https://doi.org/10.1016/j.neucom.2023.127063

Sun, Y., & Platos,]J. (2024). Abstractive text summarization
model combining a hierarchical attention mechanism and

RoFormer:

multiobjective reinforcement learning. Expert Systems with
Applications, 248.
https://doi.org/10.1016/j.eswa.2024.123356

Tomihari, A, & Sato, I. (2025). Understanding why Adam
outperforms SGD: Gradient heterogeneity in transformers.
arXiv:2502.00213.

Vaswani, A., Shazeer, N., Parmar, N. Uszkoreit,], Jones, L.,
Gomez, A. N,, Kaiser, L., & Polosukhin, I. (2017). Attention is all
you need. Advances in Neural Information Processing Systems,
30, 5999-6009.

Vradam, V. A. (2025). A physics-inspired optimizer: Velocity
regularized Adam. (Eksik: Yayin tiirii)

Wang, X., & Aitchison, L. (2024). How to set AdamW’s weight
decay as you scale model and dataset size. arXiv:2405.13698.
Yan, H, & Shao, D. (2024). Enhancing transformer training

efficiency with dynamic dropout. arXiv:2411.03236.

Yehudai, G., Kaplan, H., Ghandeharioun, A, Geva, M, &
Globerson, A. (2024). When can transformers count to n?
arXiv:2407.15160.

You, Y, Li,], Reddi, S., Hseu,], Kumar, S., Bhojanapallj, S., Song,
X., Demmel,], Keutzer, K., & Hsieh, C.]. (2020). Large batch
optimization for deep learning: Training BERT in 76 minutes.
ICLR 2020, 1-15.

Zaheer, R.,, & Shaziya, H. (2019). A study of the optimization
algorithms in deep learning. Proceedings of the ICISC 2019,
536-539.
https://doi.org/10.1109/1CISC44355.2019.9036442

Zhang, G., Niwa, K., & Kleijn, W. B. (2022). A DNN optimizer that
improves over AdaBelief by suppression of the adaptive
stepsize range. arXiv:2203.13273.

Zhang, Y., Chen, C, Ding, T, Li, Z,, Sun, R, & Luo, Z. (2024). Why
transformers need Adam: A Hessian perspective. NeurIPS.

Zhao, R.,, Morwani, D., Brandfonbrener, D., Vyas, N., & Kakade, S.
(2024). Deconstructing what makes a good optimizer for
language models. arXiv:2407.07972.

Zheng,]., Rezagholizadeh, M., & Passban, P. (2022). Dynamic
position encoding for transformers. Proceedings of COLING
2022,5076-5084.

Zhou, Y. Huang, K, Cheng, C., Wang, X., Hussain, A., & Liu, X.
(2021). FastAdaBelief: Improving convergence rate for belief-
based adaptive optimizers by exploiting strong convexity.
arXiv:2104.13790.

Zhuang,], Tang, T., Ding, Y., Tatikonda, S., & Dvornek, N. (2020).
AdaBelief optimizer: Adapting stepsizes by the belief in
observed gradients. arXiv:2010.07468.

BSJ] Eng Sci / Hilal CELIK and Ramazan KATIRCI

12

https://doi.org/10.1109/ICASSP48485.2024.10447337
https://doi.org/10.1109/IDAP64064.2024.10710732
https://doi.org/10.5281/zenodo.13971609
https://doi.org/10.5281/zenodo.15769066
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://doi.org/10.1016/j.procs.2022.12.400
https://doi.org/10.55248/gengpi.5.0624.1403
https://doi.org/10.36287/ijmsit.8.2.1
https://doi.org/10.13140/RG.2.2.22512.71682
https://arxiv.org/abs/1909.08053
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.eswa.2024.123356
https://doi.org/10.1109/ICISC44355.2019.9036442

