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A recurrent set for one-dimensional dynamical
systems
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Abstract
In this note we introduce a new kind of recurrent set for a dynamical
system on the interval [0,1]. This set is not necessarily invariant under
continuous conjugacies, but it is invariant under absolutely continuous
ones.
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1. Introduction
One of the main problems in dynamical systems is the description of the orbit structure

of a system from a topological point of view [6, 7, 9]. Recurrence behavior is one of the
most important concepts in topological dynamics. An equilibrium solution or periodic
solution of a differential equation exhibits recurrence in the sense that it returns to it’s
initial condition infinitely often. However, solution of differential equations may also tend
toward solution displaying more complicated recurrent behaviour. To describe these types
of asymptotic behaviours, we seek to understand more complicated forms of recurrence
[4]. We shall investigate these behaviors in one-dimensional discrete dynamical systems.
By a dynamical system (I, f) we mean that I = [0, 1] and f : I → I is a continuous map.
The following examples of recurrent sets are well-known [2].

• A fixed point of dynamical system (I, f), exhibits the simplest type of recurrence.
We denote by Fix(f) the set of all fixed points of f .

• A point carried back to itself by a dynamical system (I, f) exhibits the next
most elementary type of recurrence. A point x ∈ I is called periodic if there
exists n ∈ N such that fn(x) = x. We denote by Per(f) the set of all periodic
points of f .
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• A major object in the study of dynamical systems is to describe the eventual
behavior of an orbit {fn(x)}n∈Z. A point x ∈ I is called an ω-limit point for
x ∈ I provided that there exists a sequence nk → ∞, (as k → ∞) such that
fnk (x)→ y. A point y ∈ I is called an α-limit point of x ∈ I provided that there
exists a sequence nk → ∞, (as k → ∞) such that f−nk (x) → y. We denote by
ω(x) and α(x) the set of all ω-limit points and α-limit points, respectively. A
point x ∈ I is called Poincare recurrent if x ∈ ω(x) ∩ α(x). We denote by R(f)
the set of all Poincare recurrent points of f .

• A point x ∈ I is non-wandering if for each neighborhood U of x, there exists
n ∈ N such that U ∩fn(U) 6= ∅. We denote by Ω(f) the set of all non-wandering
points of f .

• An ε-pseudo-orbit (or ε-chain) of f from x to y is a sequence {xi}ni=0 with x0 = x,
xn = y and |f(xk)− xk+1| < ε, for all k = 0, 1, ..., n− 1. A point x in I is called
chain recurrent if for each ε > 0, there is an ε-chain from x to itself. We denote
by CR(f) the set of all chain recurrent points of f .

It is known that
Fix(f) ⊆ Per(f) ⊆ R(f) ⊆ Ω(f) ⊆ CR(f).

By denoting R(f), as a recurrent set, almost all of the aforementioned recurrent sets
have the following desirable properties:

(1) The set R(f) is forward invariant with respect to f , that is f(R(f)) ⊆ R(f).
(2) R(f) is closed.
(3) R(f) is invariant under topological conjugacy, that is, if (I, f) and (J, g) are two

dynamical systems and h : I → J is a homeomorphism with h ◦ f = g ◦ h, then
R(g) = h(R(f)).

(4) R(f) has the restriction property, that is R(f |R(f)) = R(f)

Ideally, a recurrent set must have the properties (1)-(4). In this paper we are going to
introduce and study a new type of recurrence for an absolutely continuous dynamical
system.

2. Preliminaries
We use the symbol Oδ(f, x, y) for the set of δ-pseudo-orbits {xi}ni=0 of f with x0 = x

and xn = y. For given points x, y ∈ X we write x ε
 y if Oε(f, x, y) 6= ∅ and we write

x  y if Oε(f, x, y) 6= ∅ for each ε > 0. We write x! y if x  y and y  x. The
set {x ∈ I : x! x} is called the chain recurrent set of f and is denoted by CR(f). If
we define a relation R on I with x R y ⇔ x! y, then R is an equivalence relation on
CR(f).
A dynamical system (I, f) is called chain recurrent if CR(f) = I. A dynamical system f
is called chain transitive if for every x, y ∈ I we deduce x! y.
We say that a dynamical system (I, f) has the shadowing property on X if for each ε > 0
there is δ > 0 such that for a given sequence ξ = {xk}n∈Z with

|f(xk)− xk+1| < δ for k ∈ N,

there exists a point x ∈ I such that

|fk(x)− xk| < ε for k ∈ N

(In this case we say that x ∈ I, ε-shadows ξ).

Recall that a function f : I → R is called absolutely continuous if for every ε >
0 there is δ > 0 such that, for every finite collection of pairwise disjoint intervals
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(a1, b1), (a2, b2), . . . , (an, bn) ⊂ I with
∑
i |ai − bi| < δ, we have∑

i

|f(bi)− f(ai)| < ε

For most of the existing instances of absoloutely continuous functions, the inverse function
is also absoloutely continuous. The paper [8] presents a function which shows that this
is not true in general.

In following definition from [1] allows us to define our main concept in the next section.

2.1. Definition. Let (I, f) be a dynamical system. Given ε > 0 we define a function
δf,ε : I × I → [0,∞) by

δf,ε(x, y) = inf{
k∑
i=0

|pi − qi| : p0 = x, qk = y, k ∈ N}, x, y ∈ I

where the infimum is taken over all choices of pi and qi so that qi
ε
! pi+1 for all

i = 0, 1, ..., k − 1. Obviously the points pi and qi can be chosen such that the intervals
(pi, qi) or (qi, pi) be pairwise disjoint.

x = p0 p1 p2 p3 ... pk

q0

ε

q1

ε

q2

ε

q3

ε

... qk = y

Obviously for any ε > 0 the function δf,ε is a pseudo-metric on I. We denote by τf,ε
the topology induced by this pseudo-metric. If CR(f) = I, then τf,ε is finer that standard
topology on I.

3. Main results
In this section we are going to introduce a new kind of recurrent set for dynamical

system (I, f).

3.1. Definition. We say that a point x ∈ I is weak chain recurrent if δf,ε(x, x) < ε for
all ε > 0. We denote by ∆(f) the set of all weak chain recurrent points.

Obviously
Fix(f) ⊆ Per(f) ⊆ R(f) ⊆ Ω(f) ⊆ CR(f) ⊆ ∆(f).

Now we prove the desirable properties of recurrent sets for ∆(f). We begin with
Invariance property.

3.2. Proposition. If f is absolutely continuous then ∆(f) is forward invariant.

Proof: Given ε > 0 there exists δ > 0 such that for each n ∈ N and every finite
collection of pairwise disjoint intervals (x1, y1), . . . (xn, yn) in I the inequality

∑n
i=1 |xi−

yi| < δ implies
∑n
i=1 |f(xi)−f(yi)| < ε. Suppose that x ∈ ∆(f), then δf,δ(x, x) < δ. Thus

there exist intervals (p0, q0), . . . (pk, qk), k ∈ N such that
∑k
i=0 |pi − qi| < δ, qi

δ
! pi+1

for i = 0, 1, . . . k − 1 and p0 = x, qk = x. Hence
∑n
i=0 |f(pi) − f(qi)| < ε, moreover

f(qi)
ε
! f(pi+1) for i = 0, 1, . . . k − 1 and f(p0) = f(x), f(qk) = f(x). Therefore

δf,ε(f(x), f(x)) < ε. That is f(x) ∈ ∆(f).

3.3. Proposition. ∆(f) is closed.
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Proof: Suppose that x ∈ ∆(f) we shall show that x ∈ ∆(f). Given ε > 0 there exists a
point y ∈ ∆(f) such that |x−y| < ε/3. Since y ∈ ∆(f) we obtain δf,ε/3(y, y) < ε/3. Thus

there exist intervals (p0, q0) . . . (pk, qk), k ∈ N, such that
∑k
i=0 |pi − qi| < ε/3, qi

ε/3
! pi+1

for i = 0, 1, . . . k − 1 and p0 = y, qk = y. Define

p′i =

{
x if i = 0,
pi if i = 1, 2, . . . k.

and

q′i =

{
qi if i = 0, 1, . . . k − 1,
x if i = k.

Therefore
k∑
i=0

|p′i − q′i| ≤ 2|x− y|+
k∑
i=0

|pi − qi| < ε.

Moreover p′0 = x, q′k = x and q′i
ε
! p′i+1 for i = 0, 1, . . . k− 1. Hence δf,ε(x, x) < ε. That

is x ∈ ∆(f).

3.4. Theorem. Let (I, f) and (J, g) be two dynamical systems and suppose that h : I → J
is an absolutely continuous map with absolutely continuous inverse such that h◦f = g◦h.
Then h(∆(f)) = ∆(g).

Proof. Assume that z = h(x) ∈ h(∆(f)) and ξ > 0. Suppose that η is a ξ modulus of
absolute continuity of h. Since x ∈ ∆(f), we obtain δf,η(x, x) < η. Thus there exist
a finite collection of pairwise disjoint intervals (p0, q0), . . . , (pk, qk) such that

∑k
i=0 |pi −

qi| < η and qi
η
! pi+1 for all i = 0, 1, . . . , k − 1. Hence

∑k
i=0 |h(pi) − h(qi)| < ξ and

h(qi)
ξ
! h(pi+1). Therefore δg,ξ(h(x), h(y)) < ξ and z ∈ ∆(g). A similar proof works

for the inclusion h(∆(f)) ⊇ ∆(g). �

3.5. Lemma. Let (I, f) be a dynamical system. Then for any ε > 0 there exists δ > 0
such that for each x, y ∈ I,

Oδ(f, x, y) 6= ∅ ⇒ Oε(f |CR(f), x, y) 6= ∅.

Proof. By contrapositive assume that there exists ε > 0 such that for any n ∈ N there
exist points xn, yn ∈ I with O 1

n
(f, x, y) 6= ∅ such that Oε(f, xn, yn) = ∅. Passing to the

subsequnces we can assume that xn → x and yn → y for some x, y ∈ I. For each n ∈ N,
there exists a sequence xn = xn,0, xn,1, . . . xn,kn = yn such that |f(xn,i)−xn,i+1| < 1

n
for

all i = 0, 1, . . . , kn − 1. Define Cn = {xn,0, xn,1, . . . , xn,kn} for each n ∈ N, so the set Cn
is compact . The space K(I) of all nonempty compact subsets of I with the Hausdorff
metric

D(A,B) = sup{|a−B|, |b−A| : a ∈ A, b ∈ B}
is a compact metric space. Thus the sequence {Cn} in K(I) contains a sub-sequence Cnl

which converges to some C ∈ K(I). We may assume, without loss of generality, that
{Cn} converges to C.
Assume that p, q ∈ C and δ ∈ (0, ε

3
) is an ε modulus of uniform continuity of f . Since

{Cn} converges to C there exists a positive integer n such that 1
n
< ε and D(Cn, C) < δ.

Hence there exist xn,s, xn,t ∈ Cn such that |xn,s − p| < δ, |xn,t − q| < δ and xn+s < xnt .
By defining

yi =

{
xn,s+i if i = 0, 1, . . . , kn − s− 1,

xn,s+i−kn if i = kn − s . . . kn.
SinceD(Cn, C) < δ, for each j = 0, 1, . . . , kn−1 there exists pj ∈ C such that |yj−pj | < δ.
Put p0 = p and pkn = q, obviously p = p0, p1, . . . , pkn = q is an ε-pseudo-orbit from p to
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q. Consequently p0, p1, . . . pkn is an ε-pseudo-orbit in C from p to q. Since xn, yn ∈ Cn
for each n ∈ N, we obtain that x, y ∈ C. Therefore Oε(f |CR(f), xn, yn) 6= ∅ for some
n ∈ N which is a contradiction. �

3.6. Theorem. Let (I, f) be a dynamical system. then ∆(f |∆(f)) = ∆(f).

Proof. The inclusion ∆(f |∆(f)) ⊆ ∆(f) is immediate. Assume that x ∈ ∆(f). Given
ξ > 0, by Lemma 3.5 there exists η ∈ (0, ξ) such that for all x, y ∈ I,

(3.1) Oη(f, x, y) 6= ∅ ⇒ Oξ(f |CR(f), x, y) 6= ∅.

Since δf,η(x, x) < η, there exist points p0, p1, . . . , pk, q0, q1, . . . , qk with p0 = x, qk = x

such that qi
η
! pi+1 with respect to f and

∑k
i=0 |pi−qi| < η. Therefore Oη(f, qi, pi+1) 6=

∅ and by 3.1 we obtain Oξ(f |CR(f), qi, pi+1) 6= ∅. This implies that x ∈ ∆(f |∆(f)). �

4. Weak chain recurrent set in metric spaces
If (X, d) is a compact metric space and f : X → X is continuous, then for every

x, y ∈ X, we can define

δf,ε(x, y) = inf{
k∑
i=0

d(pi, qi) : p0 = x, qk = y, k ∈ N}

where the infimum is taken over all choices of pi and qi so that qi
ε
! pi+1 for all

i = 0, 1, ..., k − 1.
We also define

δf (x, y) = inf{
k∑
i=0

d(pi, qi) : p0 = x, qk = y, k ∈ N}

where the infimum is taken over all choices of pi and qi so that qi ! pi+1 for all
i = 0, 1, ..., k − 1.
The straightforward calculations imply that for ε1 ≤ ε2 we deduce δf,ε2(x, y) ≤ δf,ε1(x, y) ≤
δf (x, y).
In [1] the author proved the following theorems.

4.1. Theorem. [1] Let f : X → X be a chain recurrent continuous map. Then f is
chain transitive if and only if δf (x, y) = 0 for all x, y ∈ X.

4.2. Theorem. [1] Let f : X → X be a chain recurrent continuous map. Then δf (x, y) =
d(x, y) for all x, y ∈ X if and only if f is the identity map and X is totally disconnected.

4.3. Theorem. [1] Let (X, d) be a compact metric space. Then X is connected if and
only if for each x, y ∈ X, δid(x, y) = 0.

Let f : X → X be a continuous surjection. Then if

lim
←

(I, f) = {xxx = (xi) : xi ∈ X and f(xi+1) = xi, i ≥ 0}

and

ρ((xi), (yi)) =
∞∑
i=0

|xi − yi|
2i

then (Xf , ρ) is a metric space called inverse limit space. The homeomorphism σ : Xf →
Xf with σ((xi)

∞
i=0) = (f(xi))

∞
i=0 is called the shift map. Investigating the relationships

between the dynamical properties of continuous map and shift map of the inverse limit
space is always interesting [5].
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4.4. Theorem. [3] Let f : I → I be a continuous surjection and let lim←(I, f) be the
inverse limit space with the shift map σ. Then

(1) Fix(σ) = lim←(Fix(f), f)
(2) Per(σ) = lim←(Per(f), f)
(3) R(σ) = lim←(R(f), f)
(4) Ω(σ) = lim←(Ω(f), f)
(5) CR(σ) = lim←(CR(f), f)

Now we are going to prove the same statement for ∆(f).

4.5. Theorem. Let f : I → I be a continuous surjection and ∆(σ) be the weak chain
recurrent set for the shift map σ : lim←(I, f) → lim←(I, f). Then we deduce ∆(σ) =
(lim←(∆(f), f)

Proof. First we prove the inclusion ∆(σ) ⊆ (lim←(∆(f), f). Suppose that (xi) ∈ ∆(σ).
Fix m ≥ 0, for ε > 0, since δσ,2−mε((xi), (xi)) < 2−mε there exist points (pji ), (q

j
i ) ∈

lim←(I, f), j = 0, 1, ..., k such that (p0
i ) = (xi), (qki ) = (xi), (qji )

2−mε
! (pj+1

i ) for j =
0, 1, ..., k − 1 and

k∑
j=0

ρ((pji ), (q
j
i )) <

ε

2m
.

We show that for each j = 0, 1, ...k−1, qjm
ε
! pj+1

m . Fix j ≥ 0, then Oε/2m(σ, (qji ), (p
j+1
i )) 6=

∅. Let {(r0
i ), (r

1
i ), ..., (r

n
i )} ∈ Oε/2m(σ, (qji ), (p

j+1
i )). Then

|f(rlm)− rl+1
m |

2m
=
|rlm−1 − rl+1

m |
2m

≤ ρ(σ(rli), (r
l+1
i )) < ε/2m

for l = 0, 1, ..., n − 1. Thus {r0
m, r

1
m, ..., r

n
m} ∈ Oε(f, q

j
m, p

j+1
m ) so qjm

ε
! pj+1

m . On other
hand

k∑
j=0

∞∑
i=0

|pji − q
j
i |

2i
<

ε

2m

Hence
k∑
j=0

|pjm − qjm| < ε.

Therefore δf,ε(xm, xm) < ε. This implies that xm ∈ ∆(f). Since m is arbitrary we obtain
(xi) ∈ (lim←(∆(f), f).

Conversely assume that xxx = (xi) ∈ lim←(∆(f), f). Given ε > 0, there exists m > 0
such that 2−m+1 < ε, by uniform continuity of f there exists η ∈ (0, ε/4) such that
|x− y| < η implies that

max
0<i≤m

|f i(x)− f i(y)| < ε/4.

Since xm ∈ ∆(f), we obtain δf,η(xm, xm) < η. Then there exist points xm = p0
m, p

1
m, . . . , p

k
m

and q0
m, q

1
m, . . . , q

k
m = xm in ∆(f) such that qjm

δ
! pj+1

m for all j = 0, 1, . . . , k − 1, and∑k
j=0 |p

j
m − qjm| < δ.

Fix j, since qjm
δ
! pj+1

m , we obtain Oδ(f, q
j
m, p

j+1
m ) 6= ∅. Suppose that {r0

m, . . . r
n
m} ∈

Oδ(f, q
j
m, p

j+1
m ) ∩ CR(f). Then |f i+1(rlm) − f(rl+1

m )| < ε/4 for all l = 0, 1, . . . , n − 1 and
all 0 < i ≤ m. Hence we conclude that

m∑
i=0

|f i+1(rlm)− f i(rl+1
m )|

2m−i
≤

m∑
i=0

ε

4
.

1

2m−i
<
ε

2
.
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Since f(CR(f)) = CR(f), for 0 ≤ l ≤ n− 1 we can find points rlm+1, r
l
m+2, . . . such that

qqql = (fm(rlm), fm−1(rlm), . . . , f(rlm), rlm, r
l
m+1, r

l
m+2, . . . ) ∈ lim

←
(CR(f), f),

qqq0 = (qji ) and qqqn = (pj+1
i ). Furthermore we obtain

ρ(σ(qqql), qqql+1) =

m∑
i=0

|f i+1(rlm)− f i(rl+1
m )|

2m−i
+

∞∑
i=m+1

|rli−1 − rl+1
i |

2i
<
ε

2
+

1

2m
< ε.

Hence for fixed j, the sequence {qqq0, qqq1, . . . , qqqn} is an ε-chain from (qji ) to (pj+1
i ). That

is (qji )
ε
 (pj+1

i ). Similar proof shows that (pj+1
i )

ε
 (qji ). Finally we have

k∑
j=0

ρ((pji ), (q
j
i )) =

k∑
j=0

∞∑
i=0

|pji − q
j
i |

2i
≤
∞∑
i=0

ε/2

2i
= ε.

Therefore ρσ,ε(xxx,xxx) < ε. This completes the proof. �
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