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Herstein’s theorem for generalized derivations in
rings with involution
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Abstract
Let R be an associative ring. An additive map F : R → R is called
a generalized derivation if there exists a derivation d of R such that
F (xy) = F (x)y + xd(y) for all x, y ∈ R. In [7], Herstein proved the
following result: If R is a prime ring of char(R) 6= 2 admitting a
nonzero derivation d such that [d(x), d(y)] = 0 for all x, y ∈ R, then R is
commutative. In the present paper, we shall study the above mentioned
result for generalized derivations in rings with involution.

Keywords: Prime ring, involution, derivation, generalized derivation.

2000 AMS Classification: 16W10, 16N60, 16W25.

Received : 30.09.2016 Accepted : 27.01.2017 Doi : 10.15672/HJMS.2017.432

1. Introduction, Notations and Results
Throughout the present paper, R always denotes an associative ring with center Z(R),

C is an extended centroid of R and U is a left Utumi quotient ring of R. A ring R is
said to be 2-torsion free if 2x = 0 (where x ∈ R) implies that x = 0. A ring R is called
prime if aRb = (0) (where a, b ∈ R) implies either a = 0 or b = 0, and is called semiprime
ring if aRa = (0) (where a ∈ R) implies a = 0. Following [6], an additive map x 7→ x∗

of R into itself is called an involution if (i) (xy)∗ = y∗x∗ and (ii) (x∗)∗ = x hold for all
x ∈ R. A ring equipped with involution is called ring with involution or ∗-ring. A ring R
with involution is called normal if xx∗ = x∗x for all x ∈ R. An element x in a ring with
involution is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets
of all hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R),
respectively. The involution is said to be of the first kind if Z(R) ⊆ H(R), otherwise it
is said to be of the second kind. In the later case, S(R) ∩ Z(R) 6= (0).
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An additive mapping d : R→ R is said to be a derivation of R if d(xy) = d(x)y +
xd(y) holds for all x, y ∈ R. A derivation d is said to be inner if there exists an element
a ∈ R such that d(x) = ax − xa for all x ∈ R. In [3], Brešar introduced the algebraic
definition of generalized derivation as follows: an additive mapping F : R → R is called
a generalized derivation of R if there exists a derivation d of R such that F (xy) =
F (x)y + xd(y) for all x, y ∈ R. Obviously, any derivation is a generalized derivation,
but the converse is not true in general. A significant example is a map of the form
F (x) = ax+ xb for some a, b ∈ R; such generalized derivations are called inner.

In [7], Herstein proved that if R is a prime ring of char(R) 6= 2 admitting a nonzero
derivation d such that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative. Later,
Daif [4] extended Herstein’s result for two sided ideals of a semiprime ring. Motivated
by these results Dar and Ali [5] proved the following result: Let R be a prime ring with
involution ∗ of the second kind such that char(R) 6= 2. If R admits a nonzero derivation
d such that [d(x), d(x∗)] = 0 for all x ∈ R, then R is commutative. Further, in [2] Bell
and Rehman generalized Heristein’s theorem for generalized derivations. In particular,
they showed that if a prime ring of char(R) 6= 2 with identity admitting a generalized
derivation F : R → R such that [F (x), F (y)] = 0 for all x, y ∈ R, then either R is
commutative or R is a 2×2 matrices over a field and f(x) = ax+xa for all x ∈ R, where
a is a fixed element of R.

In the present paper, we study the Dar and Ali’s [5] result for generalized derivations
in prime rings with involution. More precisely, we prove the following:

1.1. Theorem. Let R be a non commutative prime ring with involution of the second
kind such that char(R) 6= 2. If R admits a nonzero generalized derivation F : R → R
such that [F (x), F (x∗)] = 0 for all x ∈ R, then R is an order in a central simple algebra
of dimension at most 4 over its center and F (x) = ax+xb for all x ∈ R and fixed a, b ∈ U
such that a− b ∈ C.

We recall some well known facts which will be helpful in order to prove our results:

Fact 1. [1, Lemma 2.1] Let R be a prime ring with involution such that char(R) 6= 2. If
S(R) ∩ Z(R) 6= (0) and R is normal, then R is commutative.

Fact 2. The center of a prime ring is free from zero devisors.

Fact 3. Let R be a ring with involution such that char(R) 6= 2. Then, every x ∈ R can
uniquely represented as 2x = h+ k, where h ∈ H(R) and k ∈ S(R).

Fact 4. [8, Theorem 3] Let n > 1 be a fixed integer and R is a prime ring of char(R) 6=
2, ..., n− 1. If F : R→ R is a generalized derivation such that (F (x))n = 0 for all x ∈ R,
then F = 0.

Proof of Theorem 1.1. By the given hypothesis, we have

[F (x), F (x∗)] = 0 for all x ∈ R.(1.1)

Replacing x by h+ k in (1.1), where h ∈ H(R) and k ∈ S(R), we have

[F (k), F (h)] = 0 for all h ∈ H(R) and k ∈ S(R).(1.2)

Taking h = k2
1 in (1.2), where k1 ∈ S(R) ∩ Z(R), we get

[F (k), F (k1)]k1 = 0 for all k ∈ S(R) and k1 ∈ S(R) ∩ Z(R).(1.3)

In view of Fact 2, we have

[F (k), F (k1)] = 0 for all k ∈ S(R) and k1 ∈ S(R) ∩ Z(R).(1.4)
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Replacing k by h0k1 in (1.4), where h0 ∈ H(R) and k1 ∈ S(R) ∩ Z(R), we get

[F (h0), F (k1)]k1 + [h0, F (k1)]d(k1) = 0(1.5)

for all h0 ∈ H(R) and k1 ∈ S(R) ∩ Z(R). Application of (1.2) yields that

[h0, F (k1)]d(k1) = 0 for all h0 ∈ H(R) and k1 ∈ S(R) ∩ Z(R).(1.6)

Using the primeness of R we obtain, either [h0, F (k1)] = 0 or d(k1) = 0. Assume that
[h0, F (k1)] = 0 for all h0 ∈ H(R) and k1 ∈ S(R) ∩ Z(R). Replacing h0 by k0k1 in the
last expression, where k0 ∈ S(R) and k1 ∈ S(R) ∩ Z(R), we obtain [k0, F (k1)]k1 = 0 for
all h0 ∈ H(R) and k1 ∈ S(R) ∩ Z(R). This further implies that [k0, F (k1)] = 0 for all
k0 ∈ S(R) and k1 ∈ S(R)∩Z(R). In view of Fact 3, we have 2[y, F (k1)] = [2y, F (k1)] =
[h0 + k0, F (k1)] = [h0, F (k1)] + [k0, F (k1)] = 0. Since char(R) 6= 2, the last expression
yields that [y, F (k1)] = 0 for all y ∈ R and k1 ∈ S(R)∩Z(R). That is, F (k1) ∈ Z(R) for
all k1 ∈ S(R) ∩ Z(R). Next, substituting k by hk1 in (1.2), where h ∈ H(R) and k1 ∈
S(R)∩Z(R), we get [F (hk1), F (h)] = [F (h)k1, F (h)]+[hd(k1), F (h)] = [h, F (h)]d(k1) = 0
for all h ∈ H(R) and k1 ∈ S(R) ∩ Z(R). Again primeness of R forces that either
[h, F (h)] = 0 or d(k1) = 0. Assume that [h, F (h)] = 0 for all h ∈ H(R). Taking h = kk1
for all k ∈ S(R) and k1 ∈ S(R) ∩ Z(R) and using F (k1) ∈ Z(R), we get [k, d(k)]k2

1 = 0
for all k ∈ S(R) and k1 ∈ S(R) ∩ Z(R). Application of Fact 2 yields that [k, d(k)] = 0
for all k ∈ S(R). Next, replacing k by hk1 in the last relation, we get [h, d(h)]k2

1 = 0.
This implies that

[h, d(h)] = 0 for all h ∈ H(R).(1.7)

On linearizing (1.7), we obtain

[d(h), h0] + [d(h0), h] = 0 for all h, h0 ∈ H(R).(1.8)

Which can be further written as

[d(h0), h] = [h0, d(h)] for all h, h0 ∈ H(R).(1.9)

Substituting h2 for h in above expression, we obtain

[d(h0), h
2] = [h0, d(h)]h+ h[h0, d(h)] + d(h)[h0, h] + [h0, h]d(h)(1.10)

for all h, h0 ∈ H(R). Also, we have

[d(h0), h
2] = [d(h0), h]h+ h[d(h0), h] = [h0, d(h)]h+ h[h0, d(h)](1.11)

for all h, h0 ∈ H(R). Combining (1.10) and (1.11), we obtain

d(h)[h0, h] + [h0, h]d(h) = 0 for all h, h0 ∈ H(R).(1.12)

Now, taking h0 = kk1 in (1.12), where k ∈ S(R) and k1 ∈ S(R) ∩ Z(R), and using the
fact that S(R) ∩ Z(R) 6= (0), we arrive at

d(h)[k, h] + [k, h]d(h) = 0 for all h ∈ H(R) and k ∈ S(R).(1.13)

Replacing h by h+ h1 in (1.13), where h1 ∈ H(R) ∩ Z(R), we get

d(h)[k, h] + d(h1)[k, h] + [k, h]d(h) + [k, h]d(h1) = 0(1.14)

for all h ∈ H(R) and k ∈ S(R). In view of (1.13), the last relation reduces to

2[k, h]d(h1) = 0 for all h ∈ H(R), k ∈ S(R) and h1 ∈ H(R) ∩ Z(R).

Since char(R) 6= 2, the above expression gives us

[k, h]d(h1) = 0 for all h ∈ H(R), k ∈ S(R) and h1 ∈ H(R) ∩ Z(R).(1.15)

Since R is prime, this yields that either [k, h] = 0 or d(h1) = 0. If [k, h] = 0 for all
h ∈ H(R) and k ∈ S(R), then in view of Fact 1, R must be commutative, this leads
to a contradiction. Now assume that d(h1) = 0 for all h1 ∈ H(R) ∩ Z(R). This further



1032

implies that d(k2
1) = 0 and hence d(k1) = 0 for all k1 ∈ S(R) ∩ Z(R). Replacing k by

h0k1 in (1.2), where h0 ∈ H(R) and k1 ∈ S(R) ∩ Z(R) and using d(k1) = 0, we get

[F (h0), F (h)]k1 = 0(1.16)

for all h0, h ∈ H(R) and k1 ∈ S(R) ∩ Z(R). This further implies that

[F (h0), F (h)] = 0 for all h0, h ∈ H(R).(1.17)

In view of Fact 3, (1.2) and (1.17), we find that 2[F (x), F (h)] = [F (2x), F (h)] = [F (h0+
k), F (h)] = [F (h0), F (h)] + [F (k), F (h)] = 0 for all h, h0 ∈ H(R), k ∈ S(R) and x ∈ R.
Since char(R) 6= 2, the last expression yields that [F (x), F (h)] = 0 for all x ∈ R and
h ∈ H(R). Taking h = kk1 in this relation, where k ∈ S(R) and k1 ∈ S(R)∩Z(R), yields
[F (x), F (k)] = 0 for all x ∈ R and k ∈ S(R); and another application of Fact 3 gives

[F (x), F (y)] = 0 for all x, y ∈ R.(1.18)

In view of [9, Theorem 1.1], R is an order in a central simple algebra of dimension at most
4 over its center and F (x) = ax+xb for all x ∈ R and fixed a, b ∈ U such that a− b ∈ C.
This completes the proof. 2

If we replace commutator by the anti-commutator in Theorem 1.1, then we obtain
the following result:

1.2. Theorem. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R→ R such that F (x)◦F (x∗) = 0
for all x ∈ R, then F = 0.

Proof. We have

F (x) ◦ F (x∗) = 0 for all x ∈ R.(1.19)

That is,

F (x)F (x∗) + F (x∗)F (x) = 0 for all x ∈ R.(1.20)

On linearizing (1.20), we get

F (x)F (y∗) + F (y)F (x∗) + F (y∗)F (x) + F (x∗)F (y) = 0(1.21)

for all x, y ∈ R. Replacing y by yh1 in (1.21), where h1 ∈ H(R) ∩ Z(R), we get

0 = F (x)F (y∗)h1 + F (x)y∗d(h1) + F (y)F (x∗)h1(1.22)
+d(h1)yF (x∗) + F (x∗)F (y)h1

+F (x∗)yd(h1) + F (y∗)F (x)h1

+d(h1)yF (x) for all x, y ∈ R and h1 ∈ H(R) ∩ Z(R).

In view of (1.21), we conclude that

(F (x)y∗ + yF (x∗) + F (x∗)y + y∗F (x))d(h1) = 0(1.23)

for all x, y ∈ R and h1 ∈ H(R)∩Z(R). Application of Fact 2 yields that either F (x)y∗+
yF (x∗) + F (x∗)y + y∗F (x) = 0 or d(h1) = 0. Suppose that d(h1) = 0 for all h1 ∈
H(R) ∩ Z(R). This further implies that d(k1) = 0 for all k1 ∈ S(R) ∩ Z(R). Replacing
y by yk1 in (1.21), where k1 ∈ S(R) ∩ Z(R) and using the fact that S(R) ∩ Z(R) 6= (0),
we obtain

−F (x)F (y∗) + F (y)F (x∗)− F (y∗)F (x) + F (x∗)F (y) = 0(1.24)

for all x, y ∈ R. On combining (1.21) and (1.24), we get

F (x)F (y∗) + F (y∗)F (x) = 0 for all x, y ∈ R.(1.25)
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Taking y = x∗ and using the fact that char(R) 6= 2, we have

(F (x))2 = 0 for all x ∈ R.(1.26)

In view of Fact 4, we get F = 0. Next, we suppose that

F (x)y∗ + yF (x∗) + F (x∗)y + y∗F (x) = 0 for all x, y ∈ R.(1.27)

Taking y = h1 in above expression, where h1 ∈ H(R) ∩ Z(R) and using the fact that
char(R) 6= 2, we obtain

F (x+ x∗)h1 = 0 for all x ∈ R and h1 ∈ H(R) ∩ Z(R).(1.28)

This implies that

F (x+ x∗) = 0 for all x ∈ R.(1.29)

That is,

F (x) = −F (x∗) for all x ∈ R.(1.30)

This reduces (1.20) into

(F (x))2 = 0 for all x ∈ R.(1.31)

Again in view of Fact 4, we get F = 0. Thereby proof of the theorem is completed. �

At the end, let us write an example which shows that the restriction of second kind
involution in Theorem 1.1 is not superfluous.

1.3. Example. Let F be any field. Consider R =

{(
a1 a2

a3 a4

) ∣∣∣ a1, a2, a3, a4 ∈ F
}
.

Of course, R with matrix addition and matrix multiplication is a non commutative
prime ring. Define mappings F : R −→ R, d : R −→ R, and ∗ : R −→ R such that

F

(
a1 a2

a3 a4

)
=

(
0 −2a2

2a3 0

)
, d

(
a1 a2

a3 a4

)
=

(
0 −2a2

2a3 0

)
,
(

a1 a2

a3 a4

)∗

=(
a4 a2

a3 a1

)
. Obviously, Z(R) =

{(
a1 0
0 a1

) ∣∣∣ a1 ∈ F
}
. Then x∗ = x for all x ∈

Z(R), and hence Z(R) ⊆ H(R), which shows that the involution ∗ is of the first kind.
Moreover, F is a nonzero generalized derivation with associated derivation d and satisfies
the condition [F (x), F (x∗)] = 0 for all x ∈ R. In this case, F is of the form F (x) = ax+xb,

where a =

(
−1 0
0 1

)
and b =

(
1 0
0 −1

)
. However, a−b /∈ C. Hence, the hypothesis

of the second kind involution is crucial in Theorem 1.1.
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