\int Hacettepe Journal of Mathematics and Statistics Volume 46 (6) (2017), 1029–1034

Herstein's theorem for generalized derivations in rings with involution

Shakir Ali ^{*†}, Abdul Nadim Khan^{* ‡} and Nadeem Ahmad Dar[§]

Abstract

Let R be an associative ring. An additive map $F : R \to R$ is called a generalized derivation if there exists a derivation d of R such that F(xy) = F(x)y + xd(y) for all $x, y \in R$. In [7], Herstein proved the following result: If R is a prime ring of $char(R) \neq 2$ admitting a nonzero derivation d such that [d(x), d(y)] = 0 for all $x, y \in R$, then R is commutative. In the present paper, we shall study the above mentioned result for generalized derivations in rings with involution.

Keywords: Prime ring, involution, derivation, generalized derivation. 2000 AMS Classification: 16W10, 16N60, 16W25.

Received: 30.09.2016 Accepted: 27.01.2017 Doi: 10.15672/HJMS.2017.432

1. Introduction, Notations and Results

Throughout the present paper, R always denotes an associative ring with center Z(R), C is an extended centroid of R and U is a left Utumi quotient ring of R. A ring R is said to be 2-torsion free if 2x = 0 (where $x \in R$) implies that x = 0. A ring R is called prime if aRb = (0) (where $a, b \in R$) implies either a = 0 or b = 0, and is called semiprime ring if aRa = (0) (where $a \in R$) implies a = 0. Following [6], an additive map $x \mapsto x^*$ of R into itself is called an involution if (i) $(xy)^* = y^*x^*$ and (ii) $(x^*)^* = x$ hold for all $x \in R$. A ring equipped with involution is called ring with involution or *-ring. A ring R with involution is called normal if $x^* = x^*x$ for all $x \in R$. An element x in a ring with involution is said to be hermitian if $x^* = x$ and skew-hermitian if $x^* = -x$. The sets of all hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively. The involution is said to be of the first kind if $Z(R) \subseteq H(R)$, otherwise it is said to be of the second kind. In the later case, $S(R) \cap Z(R) \neq (0)$.

^{*}Department of Mathematics, Faculty of Science & Arts- Rabigh, King Abdulaziz University, Saudi Arabia, Email: shakir50@rediffmail.com, abdulnadimkhan@gmail.com

[†]Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

 $^{^{\}ddagger}\mathrm{Corresponding}$ author

[§]Department of Computer Science and Engineering, IUST, Awantipora, Jammu & Kashmir, India, Email: ndmdarlajurah@gmail.com

An additive mapping $d: R \to R$ is said to be a derivation of R if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. A derivation d is said to be inner if there exists an element $a \in R$ such that d(x) = ax - xa for all $x \in R$. In [3], Brešar introduced the algebraic definition of generalized derivation as follows: an additive mapping $F: R \to R$ is called a generalized derivation of R if there exists a derivation d of R such that F(xy) = F(x)y + xd(y) for all $x, y \in R$. Obviously, any derivation is a generalized derivation, but the converse is not true in general. A significant example is a map of the form F(x) = ax + xb for some $a, b \in R$; such generalized derivations are called inner.

In [7], Herstein proved that if R is a prime ring of $char(R) \neq 2$ admitting a nonzero derivation d such that [d(x), d(y)] = 0 for all $x, y \in R$, then R is commutative. Later, Daif [4] extended Herstein's result for two sided ideals of a semiprime ring. Motivated by these results Dar and Ali [5] proved the following result: Let R be a prime ring with involution * of the second kind such that $char(R) \neq 2$. If R admits a nonzero derivation d such that $[d(x), d(x^*)] = 0$ for all $x \in R$, then R is commutative. Further, in [2] Bell and Rehman generalized Heristein's theorem for generalized derivations. In particular, they showed that if a prime ring of $char(R) \neq 2$ with identity admitting a generalized derivation $F : R \to R$ such that [F(x), F(y)] = 0 for all $x, y \in R$, then either R is commutative or R is a 2×2 matrices over a field and f(x) = ax + xa for all $x \in R$, where a is a fixed element of R.

In the present paper, we study the Dar and Ali's [5] result for generalized derivations in prime rings with involution. More precisely, we prove the following:

1.1. Theorem. Let R be a non commutative prime ring with involution of the second kind such that $char(R) \neq 2$. If R admits a nonzero generalized derivation $F : R \rightarrow R$ such that $[F(x), F(x^*)] = 0$ for all $x \in R$, then R is an order in a central simple algebra of dimension at most 4 over its center and F(x) = ax + xb for all $x \in R$ and fixed $a, b \in U$ such that $a - b \in C$.

We recall some well known facts which will be helpful in order to prove our results:

Fact 1. [1, Lemma 2.1] Let R be a prime ring with involution such that $char(R) \neq 2$. If $S(R) \cap Z(R) \neq (0)$ and R is normal, then R is commutative.

Fact 2. The center of a prime ring is free from zero devisors.

Fact 3. Let R be a ring with involution such that $char(R) \neq 2$. Then, every $x \in R$ can uniquely represented as 2x = h + k, where $h \in H(R)$ and $k \in S(R)$.

Fact 4. [8, Theorem 3] Let n > 1 be a fixed integer and R is a prime ring of $char(R) \neq 2, ..., n-1$. If $F : R \to R$ is a generalized derivation such that $(F(x))^n = 0$ for all $x \in R$, then F = 0.

Proof of Theorem 1.1. By the given hypothesis, we have

(1.1) $[F(x), F(x^*)] = 0 \text{ for all } x \in R.$

Replacing x by h + k in (1.1), where $h \in H(R)$ and $k \in S(R)$, we have

(1.2) $[F(k), F(h)] = 0 \text{ for all } h \in H(R) \text{ and } k \in S(R).$

Taking $h = k_1^2$ in (1.2), where $k_1 \in S(R) \cap Z(R)$, we get

(1.3) $[F(k), F(k_1)]k_1 = 0 \text{ for all } k \in S(R) \text{ and } k_1 \in S(R) \cap Z(R).$

In view of Fact 2, we have

1030

Replacing k by h_0k_1 in (1.4), where $h_0 \in H(R)$ and $k_1 \in S(R) \cap Z(R)$, we get

(1.5)
$$[F(h_0), F(k_1)]k_1 + [h_0, F(k_1)]d(k_1) = 0$$

for all $h_0 \in H(R)$ and $k_1 \in S(R) \cap Z(R)$. Application of (1.2) yields that

(1.6) $[h_0, F(k_1)]d(k_1) = 0$ for all $h_0 \in H(R)$ and $k_1 \in S(R) \cap Z(R)$.

Using the primeness of R we obtain, either $[h_0, F(k_1)] = 0$ or $d(k_1) = 0$. Assume that $[h_0, F(k_1)] = 0$ for all $h_0 \in H(R)$ and $k_1 \in S(R) \cap Z(R)$. Replacing h_0 by k_0k_1 in the last expression, where $k_0 \in S(R)$ and $k_1 \in S(R) \cap Z(R)$, we obtain $[k_0, F(k_1)]k_1 = 0$ for all $h_0 \in H(R)$ and $k_1 \in S(R) \cap Z(R)$. This further implies that $[k_0, F(k_1)] = 0$ for all $k_0 \in S(R)$ and $k_1 \in S(R) \cap Z(R)$. In view of Fact 3, we have $2[y, F(k_1)] = [2y, F(k_1)] = [h_0 + k_0, F(k_1)] = [h_0, F(k_1)] + [k_0, F(k_1)] = 0$. Since $char(R) \neq 2$, the last expression yields that $[y, F(k_1)] = 0$ for all $y \in R$ and $k_1 \in S(R) \cap Z(R)$. That is, $F(k_1) \in Z(R)$ for all $k_1 \in S(R) \cap Z(R)$. Next, substituting k by hk_1 in (1.2), where $h \in H(R)$ and $k_1 \in S(R) \cap Z(R)$, we get $[F(hk_1), F(h)] = [F(h)k_1, F(h)] + [hd(k_1), F(h)] = [h, F(h)]d(k_1) = 0$ for all $h \in H(R)$ and $k_1 \in S(R) \cap Z(R)$. Again primeness of R forces that either [h, F(h)] = 0 or $d(k_1) = 0$. Assume that [h, F(h)] = 0 for all $h \in H(R)$. Taking $h = kk_1$ for all $k \in S(R)$ and $k_1 \in S(R) \cap Z(R)$. Application of Fact 2 yields that $[k, d(k)]k_1^2 = 0$ for all $k \in S(R)$ and $k_1 \in S(R) \cap Z(R)$. Application of Fact 2 yields that $[k, d(k)]k_1^2 = 0$. This implies that

(1.7)
$$[h, d(h)] = 0 \text{ for all } h \in H(R).$$

On linearizing (1.7), we obtain

(1.8)
$$[d(h), h_0] + [d(h_0), h] = 0 \text{ for all } h, h_0 \in H(R).$$

Which can be further written as

(1.9)
$$[d(h_0), h] = [h_0, d(h)] \text{ for all } h, h_0 \in H(R).$$

Substituting h^2 for h in above expression, we obtain

 $(1.10) \qquad [d(h_0), h^2] = [h_0, d(h)]h + h[h_0, d(h)] + d(h)[h_0, h] + [h_0, h]d(h)$

for all $h, h_0 \in H(R)$. Also, we have

$$(1.11) \qquad [d(h_0), h^2] = [d(h_0), h]h + h[d(h_0), h] = [h_0, d(h)]h + h[h_0, d(h)]$$

for all $h, h_0 \in H(R)$. Combining (1.10) and (1.11), we obtain

(1.12)
$$d(h)[h_0, h] + [h_0, h]d(h) = 0 \text{ for all } h, h_0 \in H(R).$$

Now, taking $h_0 = kk_1$ in (1.12), where $k \in S(R)$ and $k_1 \in S(R) \cap Z(R)$, and using the fact that $S(R) \cap Z(R) \neq (0)$, we arrive at

(1.13) d(h)[k,h] + [k,h]d(h) = 0 for all $h \in H(R)$ and $k \in S(R)$.

Replacing h by $h + h_1$ in (1.13), where $h_1 \in H(R) \cap Z(R)$, we get

(1.14) $d(h)[k,h] + d(h_1)[k,h] + [k,h]d(h) + [k,h]d(h_1) = 0$

for all $h \in H(R)$ and $k \in S(R)$. In view of (1.13), the last relation reduces to

$$2[k,h]d(h_1) = 0$$
 for all $h \in H(R), k \in S(R)$ and $h_1 \in H(R) \cap Z(R)$.

Since $char(R) \neq 2$, the above expression gives us

(1.15) $[k, h]d(h_1) = 0$ for all $h \in H(R), k \in S(R)$ and $h_1 \in H(R) \cap Z(R)$.

Since R is prime, this yields that either [k, h] = 0 or $d(h_1) = 0$. If [k, h] = 0 for all $h \in H(R)$ and $k \in S(R)$, then in view of Fact 1, R must be commutative, this leads to a contradiction. Now assume that $d(h_1) = 0$ for all $h_1 \in H(R) \cap Z(R)$. This further

implies that $d(k_1^2) = 0$ and hence $d(k_1) = 0$ for all $k_1 \in S(R) \cap Z(R)$. Replacing k by h_0k_1 in (1.2), where $h_0 \in H(R)$ and $k_1 \in S(R) \cap Z(R)$ and using $d(k_1) = 0$, we get

(1.16)
$$[F(h_0), F(h)]k_1 = 0$$

for all $h_0, h \in H(R)$ and $k_1 \in S(R) \cap Z(R)$. This further implies that

(1.17)
$$[F(h_0), F(h)] = 0 \text{ for all } h_0, h \in H(R).$$

In view of Fact 3, (1.2) and (1.17), we find that $2[F(x), F(h)] = [F(2x), F(h)] = [F(h_0 + k), F(h)] = [F(h_0), F(h)] + [F(k), F(h)] = 0$ for all $h, h_0 \in H(R), k \in S(R)$ and $x \in R$. Since $char(R) \neq 2$, the last expression yields that [F(x), F(h)] = 0 for all $x \in R$ and $h \in H(R)$. Taking $h = kk_1$ in this relation, where $k \in S(R)$ and $k_1 \in S(R) \cap Z(R)$, yields [F(x), F(k)] = 0 for all $x \in R$ and $k \in S(R)$; and another application of Fact 3 gives

(1.18)
$$[F(x), F(y)] = 0 \text{ for all } x, y \in R$$

In view of [9, Theorem 1.1], R is an order in a central simple algebra of dimension at most 4 over its center and F(x) = ax + xb for all $x \in R$ and fixed $a, b \in U$ such that $a - b \in C$. This completes the proof.

If we replace commutator by the anti-commutator in Theorem 1.1, then we obtain the following result:

1.2. Theorem. Let R be a prime ring with involution of the second kind such that $char(R) \neq 2$. If R admits a generalized derivation $F : R \to R$ such that $F(x) \circ F(x^*) = 0$ for all $x \in R$, then F = 0.

Proof. We have

(1.19)
$$F(x) \circ F(x^*) = 0 \text{ for all } x \in R.$$

That is,

(1.20)
$$F(x)F(x^*) + F(x^*)F(x) = 0 \text{ for all } x \in R.$$

On linearizing (1.20), we get

(1.21)
$$F(x)F(y^*) + F(y)F(x^*) + F(y^*)F(x) + F(x^*)F(y) = 0$$

for all $x, y \in R$. Replacing y by yh_1 in (1.21), where $h_1 \in H(R) \cap Z(R)$, we get

(1.22)
$$0 = F(x)F(y^*)h_1 + F(x)y^*d(h_1) + F(y)F(x^*)h_1 + d(h_1)yF(x^*) + F(x^*)F(y)h_1 + F(x^*)yd(h_1) + F(y^*)F(x)h_1 + d(h_1)yF(x) \text{ for all } x, y \in R \text{ and } h_1 \in H(R) \cap Z(R).$$

In view of (1.21), we conclude that

(1.23)
$$(F(x)y^* + yF(x^*) + F(x^*)y + y^*F(x))d(h_1) = 0$$

for all $x, y \in R$ and $h_1 \in H(R) \cap Z(R)$. Application of Fact 2 yields that either $F(x)y^* + yF(x^*) + F(x^*)y + y^*F(x) = 0$ or $d(h_1) = 0$. Suppose that $d(h_1) = 0$ for all $h_1 \in H(R) \cap Z(R)$. This further implies that $d(k_1) = 0$ for all $k_1 \in S(R) \cap Z(R)$. Replacing y by yk_1 in (1.21), where $k_1 \in S(R) \cap Z(R)$ and using the fact that $S(R) \cap Z(R) \neq (0)$, we obtain

(1.24)
$$-F(x)F(y^*) + F(y)F(x^*) - F(y^*)F(x) + F(x^*)F(y) = 0$$

for all $x, y \in R$. On combining (1.21) and (1.24), we get

(1.25)
$$F(x)F(y^*) + F(y^*)F(x) = 0 \text{ for all } x, y \in R.$$

1032

Taking $y = x^*$ and using the fact that $char(R) \neq 2$, we have

(1.26)
$$(F(x))^2 = 0 \text{ for all } x \in R.$$

In view of Fact 4, we get F = 0. Next, we suppose that

(1.27)
$$F(x)y^* + yF(x^*) + F(x^*)y + y^*F(x) = 0 \text{ for all } x, y \in R.$$

Taking $y = h_1$ in above expression, where $h_1 \in H(R) \cap Z(R)$ and using the fact that $char(R) \neq 2$, we obtain

(1.28)
$$F(x+x^*)h_1 = 0 \text{ for all } x \in R \text{ and } h_1 \in H(R) \cap Z(R).$$

This implies that

(1.29) $F(x+x^*) = 0 \text{ for all } x \in R.$

That is,

(1.30) $F(x) = -F(x^*) \text{ for all } x \in R.$

This reduces (1.20) into

(1.31)
$$(F(x))^2 = 0 \text{ for all } x \in R.$$

Again in view of Fact 4, we get F = 0. Thereby proof of the theorem is completed. \Box

At the end, let us write an example which shows that the restriction of second kind involution in Theorem 1.1 is not superfluous.

1.3. Example. Let \mathbb{F} be any field. Consider $R = \left\{ \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \middle| a_1, a_2, a_3, a_4 \in \mathbb{F} \right\}$. Of course, R with matrix addition and matrix multiplication is a non commutative prime ring. Define mappings $F : R \longrightarrow R, d : R \longrightarrow R$, and $* : R \longrightarrow R$ such that $F \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} = \begin{pmatrix} 0 & -2a_2 \\ 2a_3 & 0 \end{pmatrix}, d \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} = \begin{pmatrix} 0 & -2a_2 \\ 2a_3 & 0 \end{pmatrix}, \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} = \begin{pmatrix} a_4 & a_2 \\ a_3 & a_1 \end{pmatrix}$. Obviously, $Z(R) = \left\{ \begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix} \middle| a_1 \in \mathbb{F} \right\}$. Then $x^* = x$ for all $x \in Z(R)$, and hence $Z(R) \subseteq H(R)$, which shows that the involution * is of the first kind. Moreover, F is a nonzero generalized derivation with associated derivation d and satisfies the condition $[F(x), F(x^*)] = 0$ for all $x \in R$. In this case, F is of the form F(x) = ax + xb, where $a = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. However, $a - b \notin C$. Hence, the hypothesis of the second kind involution is crucial in Theorem 1.1.

Acknowledgment: The authors are greatly indebted to the referee(s) for their helpful suggestions and comments.

References

- Ali, S. and Dar, N. A. On *-centralizing mappings in rings with involution, Georgian Math. J. 21(1), 25–28, 2014.
- [2] Bell, H. E. and Rehman, N. Generalized derivations with commutativity and anticommutativity conditions, Math. J. Okayama Univ. 49, 139–147, 2007.
- Brešar, M. On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 89–93, 1991.
- [4] Daif, M. N. Commutativity results for semiprime rings with derivation, Int. J. Math. and Math. Sci. 21(3), 471–474, 1998.
- [5] Dar, N. A. and Ali, S. On *-commuting mappings and derivations in rings with involution, Turkish J. Math. 40, 884–894, 2016.
- [6] Herstein, I. N. Rings with involution (The university of Chicago Press, 1976).
- [7] Herstein, I. N. A note on derivations, Canad. Math. Bull. 21, 369–370, 1978.

- [8] Hvala, B. Generalized derivations in rings, Comm. Algebra 26(4), 1147–1166, 1998.
- [9] Rehman, N. and De Filippis, V. Commutativity and skew-commutativity conditions with generalized derivations, Algebra Colloq. 17, 841-850, 2010.

1034