The robustness of proximal penalty algorithms in restoration of noisy image

Sabrina Gheraibia*†, Amar Guesmia‡ and Noureddine Daili§

Abstract

The nondifferentiable convex optimization has an importance crucial in the image restoration for this and in this article we present the performance of the Prox method adapted to the restoration of noisy images. Following of our article ([12]), we illustrate in this work the superior efficacy of this algorithm “Prox” ([12]) then we are comparing the obtained numerical results with the algorithms of Wiener filtering ([7], [16]), total variation ([5]) and wavelet soft-thresholding denoising ([1], [12], [13]), in terms of image quality and convergence. Our first experiments showed that by applying of Prox algorithm for restoration of noised image by the white Gaussian noise we obtain a top results of denosed image with high quality (net, not rehearsed and unsmoothed; textures are preserved) in addition to the convergence of the algorithm is ensured whatever the values of SNR.

Keywords: proximal penalty algorithms, image restoration, SNR, convergence.

2000 AMS Classification: Primary 68U10; Secondary 65K05, 65D18, 94A08

Received: 23.11.2016 Accepted: 14.01.2017 Doi: 10.15672/HJMS.2017.429
1. Problematic and Results

Let us given an original image u, we suppose that it was degraded by an additive noise. From the observed image Im (which is thus a degraded version of the original image u), we try to reconstruct u. If we suppose that the additive noise is Gaussian, the Maximum likelihood method leads us to look u as solution of the following problem of optimization:

$$ \inf_{u \in U^{ad}} \left\{ \frac{1}{2} \| Im - u \|_2^2 \right\} $$

where

$$ U^{ad} = \{ u \in BV(\Omega) : J(u) \leq 0 \} $$

and $J(u)$ here denotes the total variation of u

$$ J(u) = \sup \left\{ \int_\Omega u(x) \text{div}(\phi(x)) \, dx : \phi \in C^1_c(\Omega, \mathbb{R}^2), \| \phi \|_\infty \leq 1 \right\}. $$

Our problem (P) is equivalent to the following unconstrained problem:

$$ \inf_{u \in BV} \left\{ \frac{1}{2} \| Im - u \|_2^2 + r \cdot \max(0, \Pi_K(u)) \right\}. $$

where $r > 0$ and where $\Pi_K(u)$ is the projection of u in K:

$$ K = \{ \text{div}(\phi(x)) : \phi \in C^1_c(\Omega, \mathbb{R}^2), \| \phi \|_\infty \leq 1 \}. $$

so ($r \to \infty$) that when the solution $u(r)$ obtained is a solution of (P).

By the Proximal method ([1], [2], [10]), we associate to the problem (P') the following problem :

$$ \alpha_r := \min_{(u,w)} \left\{ \frac{1}{2} \| Im - u \|_2^2 + r \cdot \max(0, \Pi_K(u)) + \frac{1}{2} \| u - w \|_2^2 \right\}. $$

The algorithm applied to this problem engenders a sequence $\{u^k, w^k\}_k$ such that u^{k+1} be a solution of the problem

$$ \alpha_r := \inf_{u \in BV} \left\{ \frac{1}{2} \| Im - u \|_2^2 + r \cdot \max(0, \Pi_K(u)) + \frac{1}{2} \| u - u^k \|_2^2 \right\}. $$

and w^{k+1} be a solution of the problem

$$ \alpha_r := \sup \left\{ \frac{1}{2} \| Im - u \|_2^2 + r \cdot \max(0, \Pi_K(u^{k+1})) + \frac{1}{2} \| u^{k+1} - u \|_2^2 \right\}. $$

We propose the following proximal-penalty algorithm (see [2], [8], [9], [10], [15], [18]):

Proximal Penalty Algorithm

Step 0 ($k = 0$)

Let $u^0 \in \mathbb{R}^n$, $\varepsilon > 0$ be a precision.
Step 1:
We choose a penalty coefficient r^0, a precision $\delta > 0$.
Apply the minimization algorithm to find u^1 solution of the problem
\[
\inf_{u \in \mathbb{R}^n} \left\{ \frac{1}{2} \|Im - u\|^2_2 + r_0 \max(0, \Pi_K(u)) + \frac{1}{2} \|u - u^0\|^2 \right\}
\]
Step 2:
Let $u^1(r^0) = u^1$ be the obtained solution.
If $\|u^1 - u^0\| < \varepsilon$ and $r_0 h(u^1(r^0)) < \delta$, then u^1 is the best and good approximation of the optimum and the calculations end in the iteration $k + 1$.
Else, we choose a penalty coefficient $r^1 > r^0$, put $r_0 = r^1$ and $u^0 = u^1; k = k + 1$ and return to the step 1.

2. Numerical results:

Figure 1. Original image
Figure 2. The SNR of denosed images for segma 0.08

[a]: Denoised of noisy Image by generalized Wiener filtering.
[b]: Denoised of noisy Image by Total Variational.
[c]: Soft Denoising of noisy Image.
[d]: Denoised of noisy Image by Prox.
Figure 3. The SNR of denosed images for segma 0.35

[a]: Denoised of noisy Image by generalized Wiener filtering.
[b]: Denoised of noisy Image by Total Variational.
[c]: Soft Denoising of noisy Image.
[d]: Denoised of noisy Image by Prox.
Figure 4. The SNR of denoised images for sigma 0.501

[a]: Denoised of noisy Image by generalized Wiener filtering.
[b]: Denoised of noisy Image by Total Variational.
[c]: Soft Denoising of noisy Image.
[d]: Denoised of noisy Image by Prox.
Figure 5. The SNR of denoised images for sigma 1

[a]: Denoised of noisy Image by generalized Wiener filtering.
[b]: Denoised of noisy Image by Total Variational.
[c]: Soft Denoising of noisy Image.
[d]: Denoised of noisy Image by Prox.
<table>
<thead>
<tr>
<th>Segma</th>
<th>SNR Prox</th>
<th>SNR TV</th>
<th>SNR Soft</th>
<th>SNR Wiener filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>21.4</td>
<td>12.5</td>
<td>14.7</td>
<td>13</td>
</tr>
<tr>
<td>0.15</td>
<td>25.1</td>
<td>9.28</td>
<td>9.89</td>
<td>9.47</td>
</tr>
<tr>
<td>0.25</td>
<td>20.4</td>
<td>5.68</td>
<td>5.76</td>
<td>5.68</td>
</tr>
<tr>
<td>0.35</td>
<td>21.9</td>
<td>3.01</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>0.5</td>
<td>24.1</td>
<td>0.17</td>
<td>0.0173</td>
<td>0.0075</td>
</tr>
<tr>
<td>0.501</td>
<td>21</td>
<td>0.126</td>
<td>0.008</td>
<td>/</td>
</tr>
<tr>
<td>0.5125</td>
<td>25.1</td>
<td>0.0956</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1</td>
<td>22.6</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1.5</td>
<td>23.3</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2</td>
<td>20.4</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>2.5</td>
<td>21.9</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>3</td>
<td>21.9</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Table 1. The different values of SNR of denoised image by: Prox, Wiener filtering, total variation and wavelet soft-thresholding denoising methods.

Figure 6. The curves of SNR of denoised images with segma of white noise.
a]: The curve of SNR by generalized Wiener filtering
[b]: The curve of SNR by Total Variational
[c]: The curve of SNR by Soft
[d]: The curve of SNR by Prox

Comment:
We see from the results that the restoration with the total variation of denosed image shows that the regularization term has more influence on energy and therefore on the position of its minimizer. The reverse occurs when the regularization term is higher so the restored image is smoother ([19]).

On the other hand the quality of images denosed with Prox stay fixed with the increasing of the Lagrangian value of Prox which keeps the performance of texture after denoising.

Also the figures (2; 3; 4; 5; 6) illustrate that the different algorithms applied to restoration image such the total variation, wavelet soft-thresholding, Wiener filtering are not robust they find difficulties during the restoration. In other words, they diverge with increasing of invariance of white noise (sigma), but this is not the case if we apply the Prox algorithm. It seems that this last is very effective and strong. It gives whatever the variance Sigma high quality of denoised image from Table.1, the SNR of restored images remains almost constant, that its average value is:

\[
SNR(prox)_{db} = 22.4250.
\]

On the other hand the curve of SNR with SEGMA for other methods seems that it varied under the form of exponential:

\[
SNR = \beta EXP(-\alpha . segma).
\]

Conclusion
About the above results we can conclued that the Prox algorithm suitable for image restoration is more effective in terms of the convergence to the solution (denoised image) if we compared with an other methods. Therefore the results obtained by this method confirms the validity and performance of our algorithm of Prox for restoration image.

ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their valuable comments.

References

