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GLOBAL BEHAVIOR OF A THREE-DIMENSIONAL SYSTEM OF
DIFFERENCE EQUATIONS OF ORDER THREE

DURHASAN TURGUT TOLLU AND İBRAHIM YALÇINKAYA

Abstract. In this paper, we investigate the global behavior of the positive
solutions of the system of difference equations

un+1 =
α1un−1

β1 + γ1v
p
n−2

, vn+1 =
α2vn−1

β2 + γ2w
q
n−2

, wn+1 =
α3wn−1

β3 + γ3u
r
n−2

for n ∈ N0 where the initial conditions u−i, v−i, w−i (i = 0, 1, 2) are non-
negative real numbers and the parameters αj , βj , γj (j = 1, 2, 3) and p, q, r
are positive real numbers, by extending some results in the literature.

1. Introduction

Recently, difference equations have gained a great importance. Most of the
recent applications of these equations have appeared in many scientific areas such as
biology, physics, engineering, economics. Particularly, rational difference equations
and their systems have great importance in applications. So, it is very worthy to
examine the behavior of solutions of a system of rational difference equations and
to discuss the stability character of their equilibrium points. In recent years, many
researchers have investigated global behavior of solutions of difference equations
or their two dimensional systems and have suggested some diverse methods for
the qualitative behavior of the their solutions. But, studies on three dimensional
systems of difference equations in the literature are quite limited. For example,
Kulenovíc and Nurkanovíc [12] studied the global asymptotic behavior of solutions
of the system of difference equations

xn+1 =
a+ xn
b+ yn

, yn+1 =
c+ yn
d+ zn

, zn+1 =
e+ zn
f + xn

, n ∈ N0,

where a, b, c, d, e, f ∈ (0,∞) and the initial conditions x0, y0 and z0 are arbitrary
non-negative numbers. Kurbanli [15] studied the behavior of solutions of the system
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of rational difference equations

xn+1 =
xn−1

ynxn−1 − 1
, yn+1 =

yn−1
xnyn−1 − 1

, zn+1 =
zn−1

ynzn−1 − 1
, n ∈ N0,

where the initial conditions x−1, x0, y−1, y0, z−1, z0 are real numbers. See also
[13, 14, 16]. Yazlik et al. [34] obtained the explicit solutions of a three-dimensional
system of difference equations with multiplicative terms

xn+1 =
xnyn−1

a0xn + b0yn−2
, yn+1 =

ynzn−1
a1yn + b1zn−2

, zn+1 =
znxn−1

a2zn + b2xn−2
, n ∈ N0,

where the parameters ai, bi, and the initial conditions x−i, y−i (i = 0, 1, 2) are real
numbers. extending some results in literature. Also, by using explicit forms of
the solutions, they studied the asymptotic behavior of well-defined solutions of the
system. For more works related to difference equations and their two and three
dimensional systems, see references [1, 2, 3, 5, 6, 4, 9, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 30, 29, 31, 32, 33, 34].
In [7], El-Owaidy et al. investigated global behavior of the difference equation

xn+1 =
αxn−1

β + γxpn−2
, n ∈ N0, (1)

with non-negative parameters and non-negative initial conditions. Gumus and
Soykan [10] studied the dynamic behavior of the positive solutions for a system
of rational difference equations of the following form

un+1 =
αun−1

β + γvpn−2
, vn+1 =

α1vn−1
β1 + γ1u

p
n−2

, n ∈ N0, (2)

where the parameters and initial conditions are positive real numbers.
In the present paper, we investigate the global behavior of the positive solutions

of the system of difference equations

un+1 =
α1un−1

β1 + γ1v
p
n−2

, vn+1 =
α2vn−1

β2 + γ2w
q
n−2

, wn+1 =
α3wn−1

β3 + γ3u
r
n−2

, n ∈ N0, (3)

where the initial conditions u−i, v−i, w−i (i = 0, 1, 2) are non-negative real numbers
and the parameters αj , βj , γj (j = 1, 2, 3) and p, q, r are positive real numbers, by
extending some results in the literature. System (3) is a natural extension of Eq.
(1) and system (2). Note that system (3) can be written as

xn+1 =
axn−1
1 + ypn−2

, yn+1 =
byn−1
1 + zqn−2

, zn+1 =
czn−1
1 + xrn−2

, n ∈ N0, (4)

by the change of variables un =
(
β3
γ3

)1/r
xn, vn =

(
β1
γ1

)1/p
yn, wn =

(
β2
γ2

)1/q
zn

with a = α1
β1
, b = α2

β2
and c = α3

β3
. So, we will consider system (4) instead of system

(3) from now.
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2. Preliminaries

Let I1, I2, I3 be some intervals of real numbers and f : I
k+1
1 × Ik+12 × Ik+13 →

I1, g : I
k+1
1 × Ik+12 × Ik+13 → I2, h : I

k+1
1 × Ik+12 × Ik+13 → I3 be continuously

differentiable functions. Then, for every initial conditions (x−i, y−i, z−i) ∈ I1×I2×
I3, i = 0, . . . , k, the system of difference equations xn+1 = f (xn, . . . , xn−k, yn, . . . , yn−k, zn, . . . , zn−k)

yn+1 = g (xn, . . . , xn−k, yn, . . . , yn−k, zn, . . . , zn−k)
zn+1 = h (xn, . . . , xn−k, yn, . . . , yn−k, zn, . . . , zn−k)

for n ∈ N0 (5)

has the unique solution {(xn, yn, zn)}∞n=−k . Also, an equilibrium point of system
(5) is a point (x, y, z) that satisfies

x = f (x, . . . , x, y, . . . , y, z, . . . , z) ,
y = g (x, . . . , x, y, . . . , y, z, . . . , z) ,
z = h (x, . . . , x, y, . . . , y, z, . . . , z) ,

We rewrite system (5) in the vector form

Xn+1 = F (Xn) , n ∈ N0, (6)

where Xn = (xn, . . . , xn−k, yn, . . . , yn−k, zn, . . . , zn−k)
T , F is a vector map such

that F : Ik+11 × Ik+12 × Ik+13 → Ik+11 × Ik+12 × Ik+13 and

F





x0
...
xk
y0
...
yk
z0
...
zk




=



f (x0, . . . , xk, y0, . . . , yk, z0, . . . , zk)
...

xk−1
g (x0, . . . , xk, y0, . . . , yk, z0, . . . , zk)

...
yk−1

h (x0, . . . , xk, y0, . . . , yk, z0, . . . , zk)
...

zk−1


.

It is clear that if an equilibrium point of system (5) is (x, y, z), then the correspond-
ing equilibrium point of system (6) is the point X = (x, . . . , x, y, . . . , y, z, . . . , z)

T .
In this study, we denote by ‖.‖ any convenient vector norm and the corresponding

matrix norm. Also, we denote by X0 ∈ Ik+11 × Ik+12 × Ik+13 a initial condition of
system (6).

Definition 1. Let X be an equilibrium point of system (6). Then,

i) The equilibrium point X is called stable if for every ε > 0 there exists δ > 0
such that

∥∥X0 −X
∥∥ < δ implies

∥∥Xn −X
∥∥ < ε, for all n ≥ 0. Otherwise

the equilibrium point X is called unstable.
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ii) The equilibrium point X is called local asymptotically stable if it is stable
and there exists γ > 0 such that

∥∥X0 −X
∥∥ < γ and Xn → X as n→∞.

iii) The equilibrium point X is called a global attractor if Xn → X as n→∞.
iv) The equilibrium point X is called globally asymptotically stable if it is both

local asymptotically stable and global attractor.

The linearized system of system (6) evaluated at the equilibrium point X is

Zn+1 = JFZn, n ∈ N0, (7)

where JF is the Jacobian matrix of the map F at the equilibrium point X. The
characteristic polynomial of system (7) about the equilibrium point X is

P (λ) = a0λ
3(k+1) + a1λ

3k+2 + ···+ a3k+2λ+ a3(k+1), (8)

with real coeffi cients and a0 > 0.

Theorem 2. [11] Assume that X is a equilibrium point of system (6). If all eigen-
values of the Jacobian matrix JF evaluated at X lie in the open unit disk |λ| < 1,
then X is locally asymptotically stable. If one of them has a modulus greater than
one, then X is unstable.

3. Stability of the system

In this section, we investigate the stability of the equilibrium points of system
(4). When a, b, c ∈ (0, 1), the point (x1, y1, z1) = (0, 0, 0) is the unique nonneg-
ative equilibrium point of system (4). When a, b, c ∈ (1,∞), the unique positive
equilibrium point of system (4) is

(x2, y2, z2) =
(
(c− 1)1/r , (a− 1)1/p , (b− 1)1/q

)
.

In addition,
(i) if a = b = c = 1,then

(x3, y3, z3) = (c1, 0, 0) , (x4, y4, z4) = (0, c2, 0) and (x5, y5, z5) = (0, 0, c3) ,

(ii) if a = 1 and b, c ∈ (1,∞), then

(x1, y1, z1) = (0, 0, 0) and (x6, y6, z6) =
(
(c− 1)1/r , 0, c3

)
,

(iii) if a 6= 1, b = 1 and c ∈ (1,∞), then

(x1, y1, z1) = (0, 0, 0) and (x7, y7, z7) =
(
c1, (a− 1)1/p , 0

)
,

(iv) if a, b ∈ (1,∞) and c = 1, then

(x1, y1, z1) = (0, 0, 0) and (x8, y8, z8) =
(
0, c2, (b− 1)1/q

)
,

(v) if a = b = 1 and c ∈ (1,∞), then

(x3, y3, z3) = (c1, 0, 0) , (x4, y4, z4) = (0, c2, 0) and (x6, y6, z6) =
(
(c− 1)1/r , 0, c3

)
,
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(vi) if a = c = 1 and b ∈ (1,∞), then

(x3, y3, z3) = (c1, 0, 0) , (x5, y5, z5) = (0, 0, c3) and (x8, y8, z8) =
(
0, c2, (b− 1)1/q

)
,

(vii) if b = c = 1 and a ∈ (1,∞), then

(x4, y4, z4) = (0, c2, 0) , (x5, y5, z5) = (0, 0, c3) and (x7, y7, z7) =
(
c1, (a− 1)1/p , 0

)
,

where c1, c2 and c3 are real numbers.

Theorem 3. The following statements hold:
i) If a, b, c ∈ (0, 1), then the equilibrium point (x1, y1, z1) = (0, 0, 0) of system
(4) is locally asymptotically stable.

ii) If a, b, c ∈ (1,∞), then the equilibrium point (x1, y1, z1) = (0, 0, 0) of system
(4) is unstable.

iii) If a, b, c ∈ (1,∞), then the positive equilibrium point (x2, y2, z2) =(
(c− 1)1/r , (a− 1)1/p , (b− 1)1/q

)
of system (4) is unstable.

Proof. First, we can write system (4) in the form of system (6) such that

Xn = (xn, xn−1, xn−2, yn, yn−1, yn−2, zn, zn−1, zn−2)
T

the map F is

F





x0
x1
x2
y0
y1
y2
z0
z1
z2




=



ax1/(1 + y
p
2)

x0
x1

by1/(1 + z
q
2)

y0
y1

cz1/(1 + x
r
2)

z0
z1


.

i) The linearized system of (4) about the equilibrium point
X0 = (0, 0, 0, 0, 0, 0, 0, 0, 0)

T is given

Xn+1 = JF (X0)Xn,

where

Xn =



xn
xn−1
xn−2
yn
yn−1
yn−2
zn
zn−1
zn−2


and JF (X0) =



0 a 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 b 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


.
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The characteristic equation of JF (X0) is given by

P (λ) = λ9 − (a+ b+ c)λ7 + (ab+ ac+ bc)λ5 − abcλ3 = 0 (9)

or
P (λ) = λ3

(
λ2 − a

) (
λ2 − b

) (
λ2 − c

)
= 0.

It is easy to see that if a, b, c ∈ (0, 1), then all the roots of the characteristic
equation (9) lie in the open unit disk |λ| < 1. So, the equilibrium point
(x1, y1, z1) = (0, 0, 0) of (4) is locally asymptotically stable.

ii) It is clearly seen that if a, b, c ∈ (1,∞), then some roots of characteris-
tic equation (9) have absolute value greater than one. In this case, the
equilibrium point (x1, y1, z1) = (0, 0, 0) of (4) is unstable.

iii) The linearized system of (4) about the positive equilibrium point

Xa,b,c =



(c− 1)1/r

(c− 1)1/r

(c− 1)1/r

(a− 1)1/p

(a− 1)1/p

(a− 1)1/p

(b− 1)1/q

(b− 1)1/q

(b− 1)1/q


is given by

Xn+1 = JF (Xa,b,c)Xn,

where

Xn =



xn
xn−1
xn−2
yn
yn−1
yn−2
zn
zn−1
zn−2


, JF (Xa,b,c) =



0 1 0 0 0 A 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 B
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 C 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


,

with

A = −p (a− 1)
(p−1)/p

(c− 1)1/r

a
, B = −q (b− 1)

(q−1)/q
(a− 1)1/p

b

and

C = −r (c− 1)
(r−1)/r

(b− 1)1/q

c
.
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The characteristic polynomial of JF (Xa,b,c) is given by

P (λ) = λ9 − 3λ7 + 3λ5 − λ3 + pqr (a− 1) (b− 1) (c− 1)
abc

. (10)

It is clear that P (λ) has a root in interval (−∞,−1), since

P (−1) = pqr (a− 1) (b− 1) (c− 1)
abc

> 0 and lim
λ→−∞

P (λ) = −∞.

So, from Theorem 2, we can say that if a, b, c ∈ (1,∞), then the posi-
tive equilibrium point (x2, y2, z2) =

(
(c− 1)1/r , (a− 1)1/p , (b− 1)1/q

)
of

system (4) is unstable.
�

Theorem 4. If a, b, c ∈ (0, 1), then the equilibrium point (x1, y1, z1) = (0, 0, 0) of
system (4) is globally asymptotically stable.

Proof. From Theorem 3, we know that if a, b, c ∈ (0, 1), then the equilibrium point
(x1, y1, z1) = (0, 0, 0) of system (4) is locally asymptotically stable. Hence, it
suffi ces to show that

lim
n→∞

(xn, yn, zn) = (0, 0, 0). (11)

From system (4), we have that

0 ≤ xn+1 =
axn−1

1 + ypn−2
≤ axn−1, 0 ≤ yn+1 =

byn−1

1 + zqn−2
≤ byn−1, 0 ≤ zn+1 =

czn−1

1 + xrn−2
≤ czn−1

(12)

for n ∈ N0. From (12), we have by induction

0 ≤ x2n−i ≤ anx−i, 0 ≤ y2n−i ≤ bny−i, 0 ≤ z2n−i ≤ cnz−i (13)

where x−i, y−i, z−i (i = 0, 1) are the initial conditions. Consequently, by taking
limits of inequalities in (13) when a, b, c ∈ (0, 1), then we have the limit in (11)
which completes the proof. �

4. Oscillation behavior and existence of unbounded solutions

In the following result, we are concerned with the oscillation of positive solutions

of system (4) about the equilibrium point (x2, y2, z2) =
(
(c− 1)1/r , (a− 1)1/p , (b− 1)1/q

)
.

Theorem 5. Assume that a, b, c ∈ (1,∞) and let {(xn, yn, zn)}∞n=−2 be a positive
solution of system (4) such that

x−2, x0 ≥ x2, x−1 < x2, y−2, y0 ≥ y2, y−1 < y2, z−2, z0 ≥ z2, z−1 < z2 (14)

or

x−2, x0 < x2, x−1 ≥ x2, y−2, y0 < y2, y−1 ≥ y2, z−2, z0 < z2, z−1 ≥ z2. (15)
Then, {(xn, yn, zn)}∞n=−2 oscillates about the equilibrium point (x2, y2, z2) with
semi-cycles of length one .
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Proof. Assume that (14) holds. (The case where (15) holds is similar and will be
omitted.) From (4), we have

x1 =
ax−1
1 + yp−2

<
ax2
1 + yp2

= x2,

y1 =
by−1
1 + zq−2

<
by2
1 + zq2

= y2,

z1 =
cz−1
1 + xr−2

<
cz2
1 + xr2

= z2

and

x2 =
ax0

1 + yp−1
> ax2
1 + yp2

= x2,

y2 =
by0

1 + zq−1
> by2
1 + zq2

= y2,

z2 =
cz0

1 + xr−1
> cz2
1 + xr2

= z2

then, the proof follows by induction. �

In the following theorem, we show the existence of unbounded solutions for
system (4) .

Theorem 6. Assume that a, b, c ∈ (1,∞), then system (4) possesses an unbounded
solution.

Proof. From Theorem 5, we can assume that without loss of generality that the
solution {(xn, yn, zn)}∞n=−2 of system (4) is such that x2n−1 < x2, y2n−1 < y2,
z2n−1 < z2, x2n > x2, y2n > y2 and z2n > z2 for n ∈ N0. Then, we have

x2n+2 =
ax2n

1 + yp2n−1
>

ax2n
1 + yp2

=
ax2n

1 + (a− 1) = x2n,

y2n+2 =
by2n

1 + zq2n−1
>

by2n
1 + zq2

=
by2n

1 + (b− 1) = y2n,

z2n+2 =
cz2n

1 + xr2n−1
>

cz2n
1 + xr2

=
cz2n

1 + (c− 1) = z2n

and

x2n+3 =
ax2n+1
1 + yp2n

<
ax2n+1
1 + yp2

=
ax2n+1

1 + (a− 1) = x2n+1,

y2n+3 =
by2n+1
1 + zq2n

<
by2n+1
1 + zq2

=
by2n+1

1 + (b− 1) = y2n+1,

z2n+3 =
cz2n+1
1 + xr2n

<
cz2n+1
1 + xr2

=
cz2n+1

1 + (c− 1) = z2n+1
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from which it follows that

lim
n→∞

(x2n, y2n, z2n) = (∞,∞,∞) and lim
n→∞

(x2n+1, y2n+1, z2n+1) = (0, 0, 0)

which completes the proof. �

5. Periodicity

In this section, we investigate the existence of period two solution of system (4).

Theorem 7. If a = b = c = 1, then, system (4) possesses the prime period two
solution

..., (0, 0, ϕ), (0, 0, ψ), (0, 0, ϕ), (0, 0, ψ), ...

with ϕ,ψ > 0. Furthermore, every solution of system (4) converges to a period two
solution.

Proof. Assume that a = b = c = 1 and let {(xn, yn, zn)}∞n=−2 be a solution of
system (4). Then, from system (4), we have

x2n+1 =
x2n−1
1+yp2n−2

and x2n+2 =
x2n

1+yp2n−1

y2n+1 =
y2n−1
1+zq2n−2

and y2n+2 =
y2n

1+zq2n−1

z2n+1 =
z2n−1

1+xr2n−2
and z2n+2 =

z2n
1+xr2n−1

(16)

for n ∈ N0. From (16), we get

x2n−1 = x−1
n−1∏
i=0

(
1

1+yp2i−2

)
and x2n = x0

n−1∏
i=0

(
1

1+yp2i−1

)
y2n−1 = y−1

n−1∏
i=0

(
1

1+zq2i−2

)
and y2n = y0

n−1∏
i=0

(
1

1+zq2i−1

)
z2n−1 = z−1

n−1∏
i=0

(
1

1+xr2i−2

)
and z2n = z0

n−1∏
i=0

(
1

1+xr2i−1

) (17)

for n ∈ N0. If (x−1, x0) = (0, 0) and (y−1, y0) = (0, 0), then (xn, yn) = (0, 0) and
(z2n−1, z2n) = (z−1, z0) for n ∈ N0.Therefore,

..., (0, 0, ϕ), (0, 0, ψ), (0, 0, ϕ), (0, 0, ψ), ...

is a period two solution of system (4) with z−2, z0 = ϕ > 0 and z−1 = ψ > 0.
Furthermore, from (16), we have

x2n+1 − x2n−1 = −
x2n−1y

p
2n−2

1+yp2n−2
≤ 0,

y2n+1 − y2n−1 = −
y2n−1z

q
2n−2

1+zq2n−2
≤ 0,

z2n+1 − z2n−1 = −
z2n−1x

r
2n−2

1+xr2n−2
≤ 0

(18)
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and
x2n+2 − x2n = −

x2ny
p
2n−1

1+yp2n−1
≤ 0,

y2n+2 − y2n = −
y2nz

q
2n−1

1+zq2n−1
≤ 0,

z2n+2 − z2n = −
z2nx

r
2n−1

1+xr2n−1
≤ 0.

(19)

From (18) and (19), we get

x2n+1 ≤ x2n−1, y2n+1 ≤ y2n−1, z2n+1 ≤ z2n−1 and

x2n+2 ≤ x2n, y2n+2 ≤ y2n, z2n+2 ≤ z2n.
That is, the sequences (x2n−1, y2n−1, z2n−1) and (x2n, y2n, z2n) are non-increasing.
Hence, while the odd-index terms tend to one periodic point and the even-index
terms tend to another periodic point. This completes the proof. �

6. Numerical examples

In this section, we support our theoretical results related to system (4) with some
numerical examples.

Example 8. In the following figures, we illustrate the solution which corresponds
to the initial conditions x−2 = 0.1, x−1 = 1.2, x0 = 0.17, y−2 = 0.11, y−1 = 1.12,
y0 = 2.17, z−2 = 3.1, z−1 = 2.12, z0 = 0.1 and p = 3, q = 2, r = 4 of (4) for
difference values of the parameters a , b, c.

Figure 1. a = 0.7, b = 0.4, c = 0.8 and p = 3, q = 2, r = 4
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Figure 2. a = b = c = 1 and p = 3, q = 2, r = 4

Figure 3. a = 2.1, b = 1.3, c = 1.1 and p = 3, q = 2, r = 4
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Figure 4. a = 1, b = 0.4, c = 0.8 and p = 3, q = 2, r = 4

Figure 5. a = 0.7, b = 1, c = 0.8 and p = 3, q = 2, r = 4
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Figure 6. a = 0.7, b = 0.4, c = 1 and p = 3, q = 2, r = 4

Figure 7. a = 0.7, b = 1, c = 1.1 and p = 3, q = 2, r = 4
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Figure 8. a = 1.1, b = 1, c = 1 and p = 3, q = 2, r = 4
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