

ON A NEW CLASS OF s-TYPE OPERATORS

EMRAH EVREN KARA AND MERVE İLKHAN

ABSTRACT. In this paper, we introduce a new class of operators by using snumbers and the sequence space $Z(u,v;\ell_p)$ for 1 . We prove thatthis class is a quasi-Banach operator ideal. Also, we give some properties ofthe quasi-Banach operator ideal. Lastly, we establish some inclusion relationsamong the operator ideals formed by different s-number sequences.

1. INTRODUCTION

By ω , we denote the space of all real-valued sequences. Any vector subspace of ω is called a sequence space. We write ℓ_p for the sequence space of *p*-absolutely convergent series.

Maddox [6] defined the linear space $\ell(p)$ as follows:

$$\ell(p) = \left\{ x \in \omega : \sum_{n=1}^{\infty} |x_n|^{p_n} < \infty \right\},\,$$

where (p_n) is a bounded sequence of strictly positive real numbers.

Altay and Baar [1] introduced the sequence space $\ell(u, v; p)$ which is the set of all sequences whose generalized weighted mean transforms are in the space $\ell(p)$, that is,

$$\ell(u,v;p) = \left\{ x \in \omega : \sum_{n=1}^{\infty} \left| u_n \sum_{k=1}^n v_k x_k \right|^{p_n} < \infty \right\},$$

where $u_n, v_k \neq 0$ for all $n, k \in \mathbb{N}$.

If $(p_n) = (p)$, $\ell(u, v; p) = Z(u, v; \ell_p)$ which is defined by Malkowsky and Sava [8] as follows:

$$Z(u,v;\ell_p) = \left\{ x \in \omega : \sum_{n=1}^{\infty} \left| u_n \sum_{k=1}^n v_k x_k \right|^p < \infty \right\},\$$

where 1 .

²⁰¹⁰ Mathematics Subject Classification. 47B06, 47L20.

Key words and phrases. Operator ideals, s-numbers, quasi-norm, sequence spaces.

Cesàro sequence space was defined by Shiue [13] as

$$ces_p = \left\{ x \in \omega : \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^p < \infty \right\}$$

for 1 .

In [7], the weighted Cesàro sequence space ces(p,q) is defined as

$$ces(p,q) = \left\{ x \in \omega : \sum_{n=1}^{\infty} \left(\frac{1}{Q_n} \sum_{k=1}^n |q_k x_k| \right)^p < \infty \right\},\$$

where $q = (q_k)$ is a bounded sequence of positive real numbers, $Q_n = \sum_{k=1}^n q_k$ and 1 .

In the literature, various operator ideals were defined by using sequences of different s-numbers of bounded linear operators. For example, Pietsch [9] defined the class of ℓ_p type operators for 0 . A bounded linear operator <math>T is in this class if $\sum_{n=1}^{\infty} (a_n(T))^p < \infty$. By using the Cesàro sequence space, Constantin [3] introduced the class of ces - p type operators which satisfy the following condition:

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} a_k(T) \right)^p < \infty$$

for 1 . s-type <math>ces(p,q) operators studied by Maji and Srivastava [7] as a general case of ces - p type operators. A bounded linear operator T is of s-type ces(p,q) operator if

$$\sum_{n=1}^{\infty} \left(\frac{1}{Q_n} \sum_{k=1}^n q_k s_k(T) \right)^p < \infty$$

for 1 .

The main purpose of this paper is to introduce a more general class of s-type operators by using the sequence space $Z(u, v; \ell_p)$. We show that the class of s-type $Z(u, v; \ell_p)$ operators is an operator ideal and a quasi-norm is defined on this class. Moreover, we give some properties and inclusion relations related to the operator ideals formed by different s-number sequences.

2. Preliminaries and Background

Firstly, we give basic notations used throughout this paper. By \mathcal{B} , we denote the class of all bounded linear operators between any two Banach spaces. $\mathcal{B}(X,Y)$ is the space of all bounded linear operators from X to Y, where X and Y Banach spaces. X' is composed of continuous linear functionals on X, that is, X' is the dual of X. The map $x' \otimes y : X \to Y$ is defined by $(x' \otimes y)(x) = x'(x)y$, where $x' \in X'$ and $y \in Y$. By N and \mathbb{R}^+ , we denote the set of all natural numbers and all nonnegative real nubers, respectively.

Now, we give some definitions and results about s-number sequences and operator ideals.

Definition 2.1. [7] A finite rank operator is a bounded linear operator whose dimension of the range space is finite.

Definition 2.2. [2] A map

which assigns a non-negative scalar sequence to each operator, is called an *s*-number sequence if for all Banach spaces X, Y, Z and W the following conditions are satisfied:

(i) $||T|| = s_1(T) \ge s_2(T) \ge ... \ge 0$ for all $T \in \mathcal{B}(X, Y)$.

(ii) $s_{n+m-1}(T+S) \leq s_n(T) + s_m(S)$ for $T, S \in \mathcal{B}(X, Y)$.

(iii) $s_n(RST) \leq ||R|| s_n(S) ||T||$ for all $R \in \mathcal{B}(Z, W), S \in \mathcal{B}(Y, Z), T \in \mathcal{B}(X, Y).$

(iv) If rank(T) < n, then $s_n(T) = 0$ for all $T \in \mathcal{B}(X, Y)$.

(v) $s_n(I_n) = 1$, where I_n is the identity map of *n*-dimensional Hilbert space ℓ_2^n to itself.

 $s_n(T)$ is called the *n*th *s*-number of *T*.

Let $T \in \mathcal{B}(X,Y)$ and $n \in \mathbb{N}$. $(a_n(T)), (c_n(T)), (d_n(T)), (x_n(T)), (y_n(T))$ and $(h_n(T))$ are the sequences of *n*th approximation number, *n*th Gel'fand number, *n*th Kolmogorov number, Weyl number, Chang number and Hilbert number, respectively. These sequences are some examples of *s*-number sequences of a bounded linear operator. For the definition of these sequences, see [7, 2].

Definition 2.3. [4, p. 440] A subcollection \mathcal{M} of \mathcal{B} is said to be an operator ideal if the following conditions are satisfied:

(OI-1) $x' \otimes y : X \to Y \in \mathcal{M}(X, Y)$ for $x' \in X'$ and $y \in Y$.

(OI-2) $T + S \in \mathcal{M}(X, Y)$ for $T, S \in \mathcal{M}(X, Y)$.

(OI-3) $RST \in \mathcal{M}(X_0, Y_0)$ for $S \in \mathcal{M}(X, Y), T \in \mathcal{M}(X_0, X)$ and $R \in \mathcal{M}(Y, Y_0)$.

Definition 2.4. [10] A function $\alpha : \mathcal{M} \to \mathbb{R}^+$ is said to be a quasi-norm on the operator ideal \mathcal{M} if the following conditions hold:

(QN-1) If $x' \in X'$ and $y \in Y$, then $\alpha(x' \otimes y) = ||x'|| ||y||$.

(QN-2) If $S, T \in \mathcal{M}(X, Y)$, then there exists a constant $C \ge 1$ such that $\alpha(S+T) \le C[\alpha(S) + \alpha(T)]$.

(QN-3) If $S \in \mathcal{M}(X,Y)$, $T \in \mathcal{M}(X_0,X)$ and $R \in \mathcal{M}(Y,Y_0)$, then $\alpha(RST) \leq ||R||\alpha(S)||T||$.

In particular if C = 1 then α becomes a norm on the operator ideal \mathcal{M} .

Let \mathcal{M} be an ideal and α be a quasi-norm on the ideal \mathcal{M} . $[\mathcal{M}, \alpha]$ is said to be a quasi-Banach operator ideal if each $\mathcal{M}(X, Y)$ is complete under the quasi-norm α .

Lemma 2.1. [5] If Y is a Banach space, then $\mathcal{B}(X, Y)$ is a Banach space.

Lemma 2.2. [11] Let $T, S \in \mathcal{B}(X, Y)$. Then $|s_n(T) - s_n(S)| \leq ||T - S||$ for n = 1, 2, ...

Definition 2.5. [12, p. 90] An *s*-number sequence $s = (s_n)$ is called injective if, given any metric injection $I \in \mathcal{B}(Y, Y_0)$, $s_n(T) = s_n(IT)$ for all $T \in \mathcal{B}(X, Y)$.

A quasi-normed operator ideal $[\mathcal{M}, \alpha]$ is called injective if $T \in \mathcal{M}(X, Y)$ and $\alpha(IT) = \alpha(T)$ as $IT \in \mathcal{M}(X, Y_0)$, where $T \in \mathcal{B}(X, Y)$ and $I \in \mathcal{B}(Y, Y_0)$ is a metric injection.

Definition 2.6. [12, p. 95] An *s*-number sequence $s = (s_n)$ is called surjective if, given any metric surjection $S \in \mathcal{B}(X_0, X)$, $s_n(T) = s_n(TS)$ for all $T \in \mathcal{B}(X, Y)$.

A quasi-normed operator ideal $[\mathcal{M}, \alpha]$ is called surjective if $T \in \mathcal{M}(X, Y)$ and $\alpha(TS) = \alpha(T)$ as $TS \in \mathcal{M}(X_0, Y)$, where $T \in \mathcal{B}(X, Y)$ and $S \in \mathcal{B}(X_0, X)$ is a metric surjection.

Definition 2.7. [10, p. 152] Let T' be the dual of T. An *s*-number sequence is called symmetric if $s(T) \ge s_n(T')$ for all $T \in \mathcal{B}$. If $s(T) = s_n(T')$ then the s-number sequence is said to be completely symmetric.

Definition 2.8. [10] For every operator ideal \mathcal{M} , the dual operator ideal denoted by \mathcal{M}' is defined as

$$\mathcal{M}'(X,Y) = T \in \mathcal{B}(X,Y) : T' \in \mathcal{M}'(Y',X'),$$

where T' is the dual of T, X' and Y' are duals of X and Y, respectively.

Definition 2.9. [10, p. 68] An operator ideal \mathcal{M} is called symmetric if $\mathcal{M} \subset \mathcal{M}'$. If $\mathcal{M} = \mathcal{M}'$, the operator ideal \mathcal{M} is called completely symmetric.

3. s-type $Z(u, v; \ell_p)$ operators

Let $u = (u_n)$ and $v = (v_n)$ be sequences of positive real numbers. An operator $T \in \mathcal{B}(X, Y)$ is in the class of s-type $Z(u, v; \ell_p)$ if

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T) \right)^p < \infty, \quad 1 < p < \infty.$$

The class of all s-type $Z(u, v; \ell_p)$ operators is denoted by $\mathcal{G}_p^{(s)}$. If $u_n = \frac{1}{Q_n}$ and $v_k = q_k$ are taken for all $n, k \in \mathbb{N}$, then the class of s-type $Z(u, v; \ell_p)$ operators reduces to the class of s-type ces(p, q) operators.

Theorem 3.1. Let $v = (v_k)$ be a sequence of positive numbers such that

(3.1)
$$v_{2k-1} + v_{2k} \le M v_k$$
 for all $k = 1, 2, ...$

where M > 0. If $\sum_{n=1}^{\infty} (u_n)^p < \infty$, then the class $\mathcal{G}_p^{(s)}$ is an operator ideal for 1 .

Proof. Let X and Y be any two Banach spaces and $1 . For <math>x' \in X'$ and $y \in Y$, the rank of the operator $x' \otimes y$ is one which means $s_n(x' \otimes y) = 0$ for all $n \geq 2$. We obtain

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(x' \otimes y) \right)^p = \sum_{n=1}^{\infty} \left(u_n v_1 s_1(x' \otimes y) \right)^p$$
$$= \left(v_1 s_1(x' \otimes y) \right)^p \sum_{n=1}^{\infty} (u_n)^p < \infty$$

Hence $x' \otimes y \in \mathcal{G}_p^{(s)}(X, Y)$. Let $T, S \in \mathcal{G}_p^{(s)}(X, Y)$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T) \right)^p < \infty, \quad \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(S) \right)^p < \infty.$$

By using the inequality (3.1) with monotonicity and additivity of s-number sequence,

$$\sum_{k=1}^{n} v_k s_k (T+S) = \sum_{k=1}^{n} v_{2k-1} s_{2k-1} (T+S) + \sum_{k=1}^{n} v_{2k} s_{2k} (T+S)$$

$$\leq \sum_{k=1}^{n} (v_{2k-1} + v_{2k}) s_{2k-1} (T+S)$$

$$\leq M \sum_{k=1}^{n} v_k s_{2k-1} (T+S)$$

$$\leq M \left(\sum_{k=1}^{n} v_k s_k (T) + \sum_{k=1}^{n} v_k s_k (S) \right).$$

From Minkowsky inequality, we have

$$\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T+S)\right)^p\right)^{1/p} \le M \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T) + u_n \sum_{k=1}^n v_k s_k(S)\right)^p\right)^{1/p} \le M \left[\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T)\right)^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(S)\right)^p\right)^{1/p}\right]$$

Thus $T + S \in \mathcal{G}_p^{(s)}(X, Y)$. Let $S \in \mathcal{G}_p^{(s)}(X, Y)$, $T \in \mathcal{G}_p^{(s)}(X_0, X)$ and $R \in \mathcal{G}_p^{(s)}(Y, Y_0)$. Since s-number sequence has ideal property, we obtain that

$$\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(RST)\right)^p\right)^{1/p} \le \|R\| \cdot \|T\| \cdot \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(S)\right)^p\right)^{1/p} < \infty.$$

Hence $RST \in \mathcal{G}_p^{(s)}(X_0, Y_0).$

We have proved that the class $\mathcal{G}_p^{(s)}$ satisfied the conditions (OI-1) to (OI-3) and so $\mathcal{G}_p^{(s)}$ is an operator ideal.

Proposition 3.1. The inclusion $\mathcal{G}_p^{(s)} \subseteq \mathcal{G}_q^{(s)}$ holds for 1 .*Proof.* Since $\ell_p \subseteq \ell_q$ for $1 , we have <math>\mathcal{G}_p^{(s)} \subseteq \mathcal{G}_q^{(s)}$.

Now, let $\mathcal{G}_p^{(s)}$ be an operator ideal. Define the maps $\Gamma_p^{(s)} : \mathcal{G}_p^{(s)} \to \mathbb{R}^+$ and $\widehat{\Gamma}_p^{(s)} : \mathcal{G}_p^{(s)} \to \mathbb{R}^+$ for 1 by

$$\Gamma_p^{(s)}(T) = \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T)\right)^p\right)^{1/p} \text{ and } \widehat{\Gamma}_p^{(s)}(T) = \frac{\Gamma_p^{(s)}(T)}{\left(\sum_{n=1}^{\infty} (v_1 u_n)^p\right)^{1/p}}.$$

Theorem 3.2. Let $v = (v_k)$ be a sequence of positive numbers satisfying inequality (3.1). If $\sum_{n=1}^{\infty} (u_n)^p < \infty$, then the function $\widehat{\Gamma}_p^{(s)}$ is a quasi-norm on $\mathcal{G}_p^{(s)}$.

Proof. Let X and Y be two Banach spaces. Then $x' \otimes y : X \to Y$ is a rank one operator, that is, $s_n(x' \otimes y) = 0$ for all $n \geq 2$. Hence, we have

$$\Gamma_p^{(s)}(x' \otimes y) = \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(x' \otimes y)\right)^p\right)^{1/p}$$
$$= \left(\sum_{n=1}^{\infty} (u_n v_1 s_1(x' \otimes y))^p\right)^{1/p}$$
$$= \|x' \otimes y\| \left(\sum_{n=1}^{\infty} (v_1 u_n)^p\right)^{1/p}.$$

Since $\sup_{\|x\|=1} \|x' \otimes y\| = \sup_{\|x\|=1} \|x'(x)y\| = \|y\| \sup_{\|x\|=1} |x'(x)| = \|x'\| \|y\|$, we have

$$\widehat{\Gamma}_p^{(s)}(x' \otimes y) = \|x'\| \|y\|$$

Since the following inequality holds

$$\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T+S)\right)^p\right)^{1/p} \le M \left[\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T)\right)^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(S)\right)^p\right)^{1/p}\right]$$

that is, $\Gamma_p^{(s)}(T+S) \le M\left[\Gamma_p^{(s)}(T) + \Gamma_p^{(s)}(S)\right]$ for $T, S \in \mathcal{G}_p^{(s)}(X, Y)$, we have

$$\widehat{\Gamma}_{p}^{(s)}(T+S) = \frac{\Gamma_{p}^{(s)}(T+S)}{\left(\sum_{n=1}^{\infty} (v_{1}u_{n})^{p}\right)^{1/p}} \\ \leq M \frac{\left[\Gamma_{p}^{(s)}(T) + \Gamma_{p}^{(s)}(S)\right]}{\left(\sum_{n=1}^{\infty} (v_{1}u_{n})^{p}\right)^{1/p}} \\ = M \left[\widehat{\Gamma}_{p}^{(s)}(T) + \widehat{\Gamma}_{p}^{(s)}(S)\right]$$

Let $S \in \mathcal{G}_p^{(s)}(X,Y), T \in \mathcal{G}_p^{(s)}(X_0,X)$ and $R \in \mathcal{G}_p^{(s)}(Y,Y_0)$. Then, we have

$$\Gamma_p^{(s)}(RST) = \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(RST)\right)^p\right)^{1/p}$$
$$\leq \|R\| \|T\| \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(S)\right)^p\right)^{1/p}$$
$$= \|R\| \|T\| \Gamma_p^{(s)}(S).$$

Hence, we obtain

$$\begin{split} \widehat{\Gamma}_{p}^{(s)}(RST) &= \frac{\Gamma_{p}^{(s)}(RST)}{\left(\sum_{n=1}^{\infty} (v_{1}u_{n})^{p}\right)^{1/p}} \\ &\leq \frac{\|R\| \|T\| \Gamma_{p}^{(s)}(S)}{\left(\sum_{n=1}^{\infty} (v_{1}u_{n})^{p}\right)^{1/p}} = \|R\| \|T\| \widehat{\Gamma}_{p}^{(s)}(S). \end{split}$$

Consequently, $\widehat{\Gamma}_{p}^{(s)}$ is a quasi-norm on $\mathcal{G}_{p}^{(s)}$.

Theorem 3.3. Let $1 . <math>\left[\mathcal{G}_p^{(s)}, \widehat{\Gamma}_p^{(s)}\right]$ is a quasi-Banach operator ideal.

Proof. Let X and Y be any two Banach spaces and 1 . The following inequality holds

$$\Gamma_{p}^{(s)}(T) = \left(\sum_{n=1}^{\infty} \left(u_{n} \sum_{k=1}^{n} v_{k} s_{k}(T)\right)^{p}\right)^{1/p}$$
$$\geq \left(\sum_{n=1}^{\infty} \left(u_{n} v_{1} s_{1}(T)\right)^{p}\right)^{1/p} = \|T\| \left(\sum_{n=1}^{\infty} \left(v_{1} u_{n}\right)^{p}\right)^{1/p}$$

for $T \in \mathcal{G}_p^{(s)}(X, Y)$. Hence, we have

(3.2)
$$||T|| \le \widehat{\Gamma}_p^{(s)}(T)$$

Let (T_m) be a Cauchy sequence in $\mathcal{G}_p^{(s)}(X,Y)$. Then for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

(3.3)
$$\widehat{\Gamma}_p^{(s)}(T_m - T_l) < \varepsilon$$

for $\forall m, l \geq n_0$. It follows that

$$||T_m - T_l|| \le \widehat{\Gamma}_p^{(s)}(T_m - T_l) < \varepsilon$$

from the inequality (3.2). Then (T_m) is a Cauchy sequence in $\mathcal{B}(X, Y)$. According to Lemma 2.1, $\mathcal{B}(X, Y)$ is a Banach space since Y is a Banach space. Therefore $|| T_m - T || \to 0$ as $m \to \infty$ for $T \in \mathcal{B}(X, Y)$. Now, we show that $\widehat{\Gamma}_p^{(s)}(T_m - T) \to 0$ as $m \to \infty$ for $T \in \mathcal{G}_p^{(s)}(X, Y)$.

The operators $T_l - T_m$, $T - T_m$ are in the class $\mathcal{B}(X, Y)$ for $T_m, T_l, T \in \mathcal{B}(X, Y)$. From Lemma 2.2, we have

$$|s_n(T_l - T_m) - s_n(T - T_m)| \le ||T_l - T_m - (T - T_m)||$$

= ||T_l - T||.

Since $T_l \to T$ as $l \to \infty$, that is $||T_l - T|| < \varepsilon$, we obtain (3.4) $s_n(T_l - T_m) \to s_n(T - T_m)$ as $l \to \infty$.

$$S_n(I_l - I_m) \rightarrow S_n(I - I_m) \text{ as } l = I_m$$

It follows from (3.3) that the statement

$$\widehat{\Gamma}_{p}^{(s)}(T_{m} - T_{l}) = \frac{\Gamma_{p}^{(s)}(T_{m} - T_{l})}{\left(\sum_{n=1}^{\infty} (v_{1}u_{n})^{p}\right)^{1/p}} = \frac{\left(\sum_{n=1}^{\infty} (u_{n}\sum_{k=1}^{n} v_{k}s_{k}(T_{m} - T_{l}))^{p}\right)^{1/p}}{\left(\sum_{n=1}^{\infty} (v_{1}u_{n})^{p}\right)^{1/p}} < \varepsilon$$

holds for $\forall m, l \geq n_0$. Then,

$$\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k (T_m - T_l)\right)^p\right)^{1/p} < \varepsilon \left(\sum_{n=1}^{\infty} \left(v_1 u_n\right)^p\right)^{1/p}$$

for $\forall m, l \geq n_0$. We obtain from (3.4) that

$$\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k (T_m - T)\right)^p\right)^{1/p} < \varepsilon \left(\sum_{n=1}^{\infty} \left(v_1 u_n\right)^p\right)^{1/p}$$

as $l \to \infty$ for $\forall m \ge n_0$. Hence, we have $\widehat{\Gamma}_p^{(s)}(T_m - T) < \varepsilon$ for $\forall m \ge n_0$.

Finally, we show that $T \in \mathcal{G}_p^{(s)}(X,Y)$. From the inequality (3.4) and conditions (i), (ii) of Definition 2.2, we obtain

$$\sum_{k=1}^{n} v_k s_k(T) = \sum_{k=1}^{n} v_{2k-1} s_{2k-1}(T) + \sum_{k=1}^{n} v_{2k} s_{2k}(T)$$

$$\leq \sum_{k=1}^{n} (v_{2k-1} + v_{2k}) s_{2k-1}(T)$$

$$\leq M \sum_{k=1}^{n} v_k s_{2k-1}(T)$$

$$= M \sum_{k=1}^{n} v_k s_{k+k-1}(T - T_m + T_m)$$

$$\leq M \left[\sum_{k=1}^{n} v_k s_k(T - T_m) + \sum_{k=1}^{n} v_k s_k(T_m) \right]$$

By using Minkowsky inequality, since $T_m \in \mathcal{G}_p^{(s)}(X,Y)$ for all m and $\widehat{\Gamma}_p^{(s)}(T_m (T) \to \infty$ as $m \to \infty$, we have

$$\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T)\right)^p\right)^{1/p} \leq M \left[\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T-T_m) + u_n \sum_{k=1}^n v_k s_k(T_m)\right)^p\right]^{1/p} \\
\leq M \left[\left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T-T_m)\right)^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T_m)\right)^p\right)^{1/p}\right] \\
< \infty$$

which means $T \in \mathcal{G}_p^{(s)}(X, Y)$.

 $\operatorname{Let}\left[\mathcal{G}_{p}^{(a)},\widehat{\Gamma}_{p}^{(a)}\right],\left[\mathcal{G}_{p}^{(c)},\widehat{\Gamma}_{p}^{(c)}\right],\left[\mathcal{G}_{p}^{(d)},\widehat{\Gamma}_{p}^{(d)}\right],\left[\mathcal{G}_{p}^{(x)},\widehat{\Gamma}_{p}^{(x)}\right],\left[\mathcal{G}_{p}^{(y)},\widehat{\Gamma}_{p}^{(y)}\right] \text{ and } \left[\mathcal{G}_{p}^{(h)},\widehat{\Gamma}_{p}^{(h)}\right]$ be the quasi-Banach operator ideals corresponding to the approximation numbers $a = (a_n)$, Gel'fand numbers $c = (c_n)$, Kolmogorov numbers $d = (d_n)$, Weyl numbers $x = (x_n)$, Chang numbers $y = (y_n)$ and Hilbert numbers $h = (h_n)$, respectively.

Theorem 3.4. If s-number sequence is injective, then the quasi-Banach operator ideal $\left[\mathcal{G}_p^{(s)}, \widehat{\Gamma}_p^{(s)}\right]$ is injective for 1 .

Proof. Let $T \in \mathcal{B}(X,Y)$ and $I \in \mathcal{B}(Y,Y_0)$ be any metric injections. If $IT \in \mathcal{B}(Y,Y_0)$ $\mathcal{G}_p^{(s)}(X,Y_0)$, then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k (IT) \right)^p < \infty.$$

Since $s = (s_n)$ is injective, we have $s_n(T) = s_n(IT)$ for all $T \in \mathcal{B}(X, Y)$. Thus, we obtain

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T) \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(IT) \right)^p < \infty,$$

 $\in \mathcal{G}_n^{(s)}(X,Y).$ Clearly, we have $\widehat{\Gamma}_n^{(s)}(IT) = \widehat{\Gamma}_n^{(s)}(T).$

that is, $T \in \mathcal{G}_p^{(s)}(X,Y)$. Clearly, we have $\Gamma_p^{(s)}(IT) = \Gamma_p^{(s)}(T)$

8

Conclusion 3.1. The quasi-Banach operator ideals $\left[\mathcal{G}_{p}^{(c)}, \widehat{\Gamma}_{p}^{(c)}\right]$ and $\left[\mathcal{G}_{p}^{(x)}, \widehat{\Gamma}_{p}^{(x)}\right]$ are injective since the Gel'fand numbers and the Weyl numbers are injective (See [12, p. 90-94]).

Theorem 3.5. If s-number sequence is surjective, then the quasi-Banach operator ideal $\left[\mathcal{G}_p^{(s)}, \widehat{\Gamma}_p^{(s)}\right]$ is surjective for 1 .

Proof. Let $T \in \mathcal{B}(X,Y)$ and $S \in \mathcal{B}(X_0,X)$ be any metric surjections. If $TS \in \mathcal{G}_p^{(s)}(X_0,Y)$, then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(TS) \right)^p < \infty.$$

Since $s = (s_n)$ is surjective, we have $s_n(T) = s_n(TS)$ for all $T \in \mathcal{B}(X, Y)$. Thus, we obtain

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(T) \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k s_k(TS) \right)^p < \infty,$$

that is, $T \in \mathcal{G}_p^{(s)}(X, Y)$. Clearly, we have $\widehat{\Gamma}_p^{(s)}(TS) = \widehat{\Gamma}_p^{(s)}(T)$.

Conclusion 3.2. The quasi-Banach operator ideals $\left[\mathcal{G}_{p}^{(d)}, \widehat{\Gamma}_{p}^{(d)}\right]$ and $\left[\mathcal{G}_{p}^{(y)}, \widehat{\Gamma}_{p}^{(y)}\right]$ are surjective since the Kolmogorov numbers and the Chang numbers are surjective (See [12, p. 95]).

Now, we give some inclusion relations among the operator ideals $\mathcal{G}_p^{(a)}$, $\mathcal{G}_p^{(c)}$, $\mathcal{G}_p^{(d)}$, $\mathcal{G}_p^{(x)}$, $\mathcal{G}_p^{(y)}$ and $\mathcal{G}_p^{(h)}$.

Theorem 3.6. The following inclusion relations

(i) $\mathcal{G}_p^{(a)} \subseteq \mathcal{G}_p^{(c)} \subseteq \mathcal{G}_p^{(x)} \subseteq \mathcal{G}_p^{(h)}$, (ii) $\mathcal{G}_p^{(a)} \subseteq \mathcal{G}_p^{(d)} \subseteq \mathcal{G}_p^{(y)} \subseteq \mathcal{G}_p^{(h)}$,

hold for 1 .

Proof. Let $T \in \mathcal{G}_p^{(a)}$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k a_k(T) \right)^p < \infty,$$

where $1 . It follows from [12, p. 115] that <math>h_n(T) \le x_n(T) \le c_n(T) \le a_n(T)$ and $h_n(T) \le y_n(T) \le d_n(T) \le a_n(T)$. Hence, we have

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k h_k(T) \right)^p \le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k x_k(T) \right)^p$$
$$\le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k c_k(T) \right)^p$$
$$\le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k a_k(T) \right)^p < \infty$$

and

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k h_k(T) \right)^p \le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k y_k(T) \right)^p$$
$$\le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k v_k(T) \right)^p$$
$$\le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k a_k(T) \right)^p < \infty.$$

Thus, the inclusions are clear.

Theorem 3.7. Let $1 . The operator ideal <math>\mathcal{G}_p^{(a)}$ is symmetric and the operator ideal $\mathcal{G}_p^{(h)}$ is completely symmetric.

Proof. Let 1 .

Firstly, we prove that the inclusion $\mathcal{G}_p^{(a)} \subseteq \left(\mathcal{G}_p^{(a)}\right)'$ holds. Let $T \in \mathcal{G}_p^{(a)}$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k a_k(T) \right)^p < \infty.$$

It follows from [10, p. 152] that $a_n(T') \leq a_n(T)$ for $T \in \mathcal{B}$. Hence, we have

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k a_k(T') \right)^p \le \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k a_k(T) \right)^p < \infty,$$

that is, $T \in \left(\mathcal{G}_p^{(a)}\right)'$. Thus, $\mathcal{G}_p^{(a)}$ is symmetric.

Now, we prove that the equation $\mathcal{G}_p^{(h)} = \left(\mathcal{G}_p^{(h)}\right)'$ holds. It follows from [12, p. 97] that $h_n(T') = h_n(T)$ for $T \in \mathcal{B}$. Hence, we have

$$\sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n v_k h_k(T') \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{k=1}^n h_k a_k(T) \right)^p.$$

Thus, $\mathcal{G}_p^{(h)}$ is completely symmetric.

Theorem 3.8. Let $1 . The equation <math>\mathcal{G}_p^{(c)} = \left(\mathcal{G}_p^{(d)}\right)'$ and the inclusion $\mathcal{G}_p^{(d)} \subseteq \left(\mathcal{G}_p^{(c)}\right)'$ hold. Also, the equation $\mathcal{G}_p^{(d)} = \left(\mathcal{G}_p^{(c)}\right)'$ holds for any compact operators.

Proof. Let $1 . We have from [12, p. 95] that <math>c_n(T) = d_n(T')$ and $c_n(T') \leq c_n(T')$ $d_n(T)$ for $T \in \mathcal{B}$. Also, the equality $c_n(T') = d_n(T)$ holds, where T is a compact operator. Thus the proof is clear.

Theorem 3.9. Let $1 . The equations <math>\mathcal{G}_p^{(x)} = \left(\mathcal{G}_p^{(y)}\right)'$ and $\mathcal{G}_p^{(y)} = \left(\mathcal{G}_p^{(x)}\right)'$ hold.

Proof. Let $1 . We have from [12, p. 96] that <math>x_n(T) = y_n(T')$ and $y_n(T) = \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$ $x_n(T')$ for $T \in \mathcal{B}$. Thus the proof is clear.

10

References

- [1] B. Altay and F. Başar, Generalization of the sequence space $\ell(p)$ derived by weighted mean, J. Math. Anal. Appl. Vol:330 (2007), 174–185.
- [2] J. Burgoyne, Denseness of the generalized eigenvectors of a discrete operator in a Banach space, J. Operator Theory Vol:33 (1995), 279–297.
- [3] Gh. Constantin, Operators of ces-p type, Rend. Acc. Naz. Lincei. Vol:52 No.8 (1972), 875–878.
- [4] W. B. Johnson and J. Lindenstrauss, Handbook of the geometry of banach spaces, Elsevier Science B. V., North-Holand, 2001.
- [5] E. Kreyszig, Introductory functional analysis with applications, John Wiley Sons. Inc., The United States of America, 1978.
- [6] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxforf Vol:18 No.2 (1967), 345–355.
- [7] A. Maji and P. D. Srivastava, On operator ideals using weighted Cesàro sequence space, Egyp. Math. Soc., Vol:22 (2014), 446–452.
- [8] E. Malkowsky and E. Sava, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comp. Vol:147 (2004), 333–345.
- [9] A. Pietsch, Einige neue klassen von kompakten linearen Abbildungen, Rev. Math. Pures Appl. Vol:8 (1963), 427–447.
- [10] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
- [11] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. Vol:51 (1974), 201–223.
- [12] A. Pietsch, Eigenvalues and s-numbers, Cambridge University Press, New York, 1986.
- [13] J. S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math. Vol:1 No.1 (1970), 19–25.

DUZCE UNIVERSITY, SCIENCE AND ART FACULTY, DEPARTMENT OF MATHEMATICS, DUZCE-TURKEY

E-mail address: eevrenkara@hotmail.com

DUZCE UNIVERSITY, SCIENCE AND ART FACULTY, DEPARTMENT OF MATHEMATICS, DUZCE-TURKEY

E-mail address: merveilkhan@gmail.com