ON SOME ČEBYŠEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE \((h_1, h_2)\)-CONVEX ON THE CO-ORDINATES

B. MEFTAH AND K. BOUKERRIOU\(^*\)

Abstract. The aim of this paper is to establish some new Čebyšev type inequalities involving functions whose mixed partial derivatives are \((h_1, h_2)\)-convex on the co-ordinates.

1. Introduction

In 1882, Čebyšev [4] gave the following inequality:

\[
|T(f, g)| \leq \frac{1}{12} (b - a)^2 \|f'\|_\infty \|g'\|_\infty
\]

where \(f, g : [a, b] \to \mathbb{R}\) are absolutely continuous functions, whose first derivatives \(f'\) and \(g'\) are bounded,

\[
T(f, g) = \frac{1}{b - a} \int_a^b f(x) g(x) \, dx - \left(\frac{1}{b - a} \int_a^b f(x) \, dx \right) \left(\frac{1}{b - a} \int_a^b g(x) \, dx \right),
\]

and \(\|\cdot\|_\infty\) denotes the norm in \(L_\infty[a, b]\) defined as \(\|f\|_\infty = \text{ess sup}_{t \in [a, b]} |f(t)|\).

During the past few years many researchers have given considerable attention to the inequality (1.1), various generalizations, extensions and variants of this inequality have appeared in the literature, see [1, 3, 6, 8, 9, 10]. Recently, Guezane-Lakoud and Aissaoui [6] established new Čebyšev type inequalities similar to (1.1) for functions \(f, g\) defined on bidimensional intervals \(\Delta = [a, b] \times [c, d] \subset [0, \infty)^2\) whose mixed partial derivatives \(f_{st}\) and \(g_{st}\) are integrable and bounded. The authors of the paper [12] further extend these results in special cases when the mixed partial derivatives belong to certain classes of functions that generalize convex function on the co-ordinates.

2000 Mathematics Subject Classification. 26D15, 26D20, 39A12.

Key words and phrases. Čebyšev type inequalities, co-ordinates \((h_1, h_2)\)-convex, integral inequality.

This work has been supported by CNEPRU–MESRS–B01120120103 project grants.
The main purpose of this work is to obtain new Čebyšev type inequalities involving functions whose mixed partial derivatives are \((h_1, h_2)\)-convex on the co-ordinates.

2. Preliminaries

Throughout this paper we denote by \(\Delta\) the bidimensional interval in \([0, \infty)^2\), \(\Delta := [a, b] \times [c, d]\) with \(a < b\) and \(c < d\), \(k = (b - a)(d - c)\) and \(f_{\lambda\alpha}\) for \(\frac{\partial^2 f}{\partial x \partial y}\).

Definition 2.1 ([5]). A function \(f : \Delta \to \mathbb{R}\) is said to be convex on the co-ordinates on \(\Delta\), if the following inequality
\[
f (\lambda x + (1 - \lambda) t, \alpha y + (1 - \alpha) v) \leq \lambda f(x, y) + \lambda (1 - \alpha) f(x, v) + (1 - \lambda) \alpha f(t, y) + (1 - \lambda) (1 - \alpha) f(t, v)
\]
holds for all \(\lambda, \alpha \in [0, 1]\) and \((x, y), (x, v), (t, y), (t, v) \in \Delta\).

Clearly, every convex mapping \(f : \Delta \to \mathbb{R}\) is convex on the co-ordinates. Furthermore, there exists co-ordinated convex function which is not convex.

Definition 2.2 ([2]). A function \(f : \Delta \to \mathbb{R}\) is said to be \(s\)-convex in the second sense on the co-ordinates on \(\Delta\), if the following inequality
\[
f (\lambda x + (1 - \lambda) t, \alpha y + (1 - \alpha) v) \leq \lambda^s \alpha^s f(x, y) + \lambda^s (1 - \alpha)^s f(x, v) + (1 - \lambda)^s \alpha^s f(t, y) + (1 - \lambda)^s (1 - \alpha)^s f(t, v)
\]
holds for all \(\lambda, \alpha \in [0, 1]\) and \((x, y), (x, v), (t, y), (t, v) \in \Delta\), for some fixed \(s \in (0, 1]\).

\(s\)-convexity on the co-ordinates does not imply the \(s\)-convexity, that is there exist functions which are \(s\)-convex on the co-ordinates but are not \(s\)-convex.

Definition 2.3 ([7]). Let \(h : J \subseteq \mathbb{R} \to \mathbb{R}\) be a positive function. A mapping \(f : \Delta \to \mathbb{R}\) is said to be \(h\)-convex on \(\Delta\), if the following inequality
\[
f (\alpha x + (1 - \alpha) t, \alpha y + (1 - \alpha) v) \leq h(\alpha) f(x, y) + h(1 - \alpha) f(t, v)
\]
holds, for all \((x, y), (t, v) \in \Delta\) and \(\alpha \in (0, 1)\).

Definition 2.4 ([7]). A function \(f : \Delta \to \mathbb{R}\) is said to be \((h_1, h_2)\)-convex on the coordinates on \(\Delta\), if the following inequality
\[
f (\lambda x + (1 - \lambda) t, \alpha y + (1 - \alpha) v) \leq h_1(\lambda) h_2(\alpha) f(x, y) + h_1(\lambda) h_2(1 - \alpha) f(x, v) + h_1(1 - \lambda) h_2(\alpha) f(t, y) + h_1(1 - \lambda) h_2(1 - \alpha) f(t, v)
\]
holds for all \(\lambda, \alpha \in [0, 1]\) and \((x, y), (x, v), (t, y), (t, v) \in \Delta\).

\(h\)-convexity on the co-ordinates does not imply the \(h\)-convexity, that is there exist functions which are \(h\)-convex on the co-ordinates but are not \(h\)-convex.

Lemma 2.1 (Lemma 1. [11]). Let \(f : \Delta \to \mathbb{R}\) be a partial differentiable mapping on \(\Delta\) in \(\mathbb{R}^2\). If \(f_{\lambda\alpha} \in L_1(\Delta)\), then for any
Let theorem 3.1.

\[f(x, y) = \frac{1}{b-a} \int_a^b f(t, y) dt + \frac{1}{d-c} \int_c^d f(x, v) dv - \frac{1}{k} \int_a^b \int_c^d f(t, v) dv dt \]

\[+ \frac{1}{k} \int_a^b \int_c^d (x-t)(y-v) \]

(2.5)

\[\times \left(\int_0^1 \int_0^1 f_{\lambda} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v) d\alpha d\lambda \right) dv dt \]

3. Main result

Theorem 3.1. Let \(h_i : J_i \subseteq \mathbb{R} \to \mathbb{R} \) be positive functions, for \(i = 1, 2 \). \(f, g : \Delta \to \mathbb{R} \) be partially differentiable functions, such that their second derivatives \(f_{\lambda} \) and \(g_{\lambda} \) are integrable on \(\Delta \). If \(|f_{\lambda}| \) and \(|g_{\lambda}| \) are \((h_1, h_2)\)-convex on the co-ordinates, then we have

\[|T(f, g)| \leq \frac{49}{3600} k^2 \left(\int_0^1 h_1(\lambda) d\lambda \right)^2 \left(\int_0^1 h_2(\alpha) d\alpha \right)^2 MN \]

where

\[T(f, g) = \frac{1}{k} \int_a^b \int_c^d f(x, y) g(x, y) dy dx - \frac{(b-a)}{k^2} \int_a^b \int_c^d g(x, y) \left(\int_f (t, y) dt \right) dy dx \]

\[- \frac{(b-a)}{k^2} \int_a^b \int_c^d g(x, y) \left(\int_f (x, v) dv \right) dy dx \]

\[+ \frac{1}{k^2} \left(\int_a^b \int_c^d f(x, y) dy dx \right) \left(\int_a^b \int_c^d g(t, v) dv dt \right) \]

\[M = \text{ess sup}_{x, t \in [a, b], y, v \in [c, d]} \{ |f_{\lambda} (x, y)| + |f_{\lambda} (x, v)| + |f_{\lambda} (t, y)| + |f_{\lambda} (t, v)| \}, \]

\[N = \text{ess sup}_{x, t \in [a, b], y, v \in [c, d]} \{ |g_{\lambda} (x, y)| + |g_{\lambda} (x, v)| + |g_{\lambda} (t, y)| + |g_{\lambda} (t, v)| \} \]

and \(k = (b-a)(d-c) \).

Proof. Let \(F, G, \tilde{F} \) and \(\tilde{G} \) be defined as follows

\[F = f(x, y) - \frac{1}{b-a} \int_a^b f(t, y) dt - \frac{1}{d-c} \int_c^d f(x, v) dv + \frac{1}{k} \int_a^b \int_c^d f(t, v) dv dt \]

\[G = g(x, y) - \frac{1}{b-a} \int_a^b g(t, y) dt - \frac{1}{d-c} \int_c^d g(x, v) dv + \frac{1}{k} \int_a^b \int_c^d g(t, v) dv dt \]

\[\tilde{F} = \frac{1}{k} \int_a^b \int_c^d (x-t)(y-v) \times \left(\int_0^1 \int_0^1 f_{\lambda} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v) d\alpha d\lambda \right) dv dt \]

ON SOME ČEBYŠEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE ...
\[
\tilde{G} = \frac{1}{k} \int_{a}^{b} \int_{c}^{d} (x-t)(y-v) \times \left(\int_{0}^{1} \int_{0}^{1} g_{\lambda \alpha} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v) \, d\alpha \, d\lambda \right) \, dv \, dt.
\]

By Lemma 2.1, we have \(F = \tilde{F} \) and \(G = \tilde{G} \), then

\[FG = \tilde{F} \tilde{G}. \]

Integrating (3.3) over \(\Delta \), with respect to \(x, y \), multiplying the resultant equality by \(\frac{1}{k} \), using Fubini’s Theorem and modulus, we get

\[
|T(f,g)| = \frac{1}{k^3} \left| \int_{a}^{b} \int_{c}^{d} \int_{a}^{b} \int_{c}^{d} (x-t)(y-v)
\times \left(\int_{0}^{1} \int_{0}^{1} f_{\lambda \alpha} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v) \, d\alpha \, d\lambda \right) \, dv \, dt \right|
\times \left(\int_{0}^{1} \int_{0}^{1} g_{\lambda \alpha} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v) \, d\alpha \, d\lambda \right) \, dv \, dt \right| \, dy \, dx
\leq \frac{1}{k^3} \left| \int_{a}^{b} \int_{c}^{d} \int_{a}^{b} \int_{c}^{d} |x-t||y-v|
\times \left(\int_{0}^{1} \int_{0}^{1} |f_{\lambda \alpha} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v)| \, d\alpha \, d\lambda \right) \, dv \, dt \right|
\times \left(\int_{0}^{1} \int_{0}^{1} |g_{\lambda \alpha} (\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v)| \, d\alpha \, d\lambda \right) \, dv \, dt \right| \, dy \, dx.
\]

Using the \((h_1,h_2)\)-convexity and taking into account that

\[
\int_{a}^{b} \left(\int_{a}^{b} |x-t| \, dt \right)^2 \, dx = \frac{7}{60} (b-a)^5,
\]
\[
\int_{c}^{d} \left(\int_{c}^{d} |y-v| \, dv \right)^2 \, dy = \frac{7}{60} (d-c)^5,
\]
\[
\begin{align*}
\int_0^1 h_1(1 - \lambda)d\lambda &= \int_0^1 h_1(\lambda)d\lambda \quad \text{and} \quad \int_0^1 h_2(1 - \alpha)d\alpha = \int_0^1 h_2(\alpha)d\alpha,
\end{align*}
\]
we obtain

\[
|T(f,g)| \leq \frac{1}{k^3} \left(\int_0^1 h_1(\lambda)d\lambda \right)^2 \left(\int_0^1 h_2(\alpha)d\alpha \right)^2 \times \int_a^b \int_c^d \left(\int_a^b \int_c^d |x - t||y - v| \right.
\]
\[
\left. \times |f_{\lambda\alpha}(x,y)| + |f_{\lambda\alpha}(x,v)| + |g_{\lambda\alpha}(t,y)| + |g_{\lambda\alpha}(t,v)| \right) dvdt
\]
\[
\times \left[\int_a^b \left(\int_a^b |x - t||y - v| \right) dvdt \right] dydx
\]
\[
\leq \frac{MN}{k^3} \left(\int_0^1 h_1(\lambda)d\lambda \right)^2 \left(\int_0^1 h_2(\alpha)d\alpha \right)^2 \times \int_c^d \int_a^b \left(\int_a^b |x - t||y - v| \right) dvdt \right) dydx
\]
\[
= \frac{MN}{k^3} \left(\int_0^1 h_1(\lambda)d\lambda \right)^2 \left(\int_0^1 h_2(\alpha)d\alpha \right)^2 \times \left[\int_a^b \left(\int_a^b |x - t| \right) dx \right] \left[\int_c^d \left(\int_c^d |y - v| \right) dy \right]
\]
\[
= \frac{49}{3600} k^2 \left(\int_0^1 h(\lambda)d\lambda \right)^2 \left(\int_0^1 h(\alpha)d\alpha \right)^2 MN.
\]

This completes the proof of Theorem 3.1. \(\square\)

Corollary 3.1. Let \(h : J \subseteq \mathbb{R} \to \mathbb{R}\) be a positive function, \(f, g : \Delta \to \mathbb{R}\) be partially differentiable functions, such that their second derivatives \(f_{\lambda\alpha}\) and \(g_{\lambda\alpha}\) are integrable on \(\Delta\). If \(|f_{\lambda\alpha}|\) and \(|g_{\lambda\alpha}|\) are \(h\)-convex on the co-ordinates, then we have

(3.5) \[
|T(f,g)| \leq \frac{49}{3600} k^2 \left(\int_0^1 h(\lambda)d\lambda \right)^4 MN,
\]

where \(T(f,g), M, N, k\) are defined as in Theorem 3.1.

Proof. Applying Theorem 3.1, for \(h_1(v) = h_2(v) = h(v)\), we obtain the desired inequality. \(\square\)
Corollary 3.2. Let \(f, g : \Delta \to \mathbb{R} \) be partially differentiable functions, such that their second derivatives \(f_{\lambda} \) and \(g_{\alpha} \) are integrable on \(\Delta \). If \(|f_{\lambda}| \) and \(|g_{\alpha}| \) are convex on the co-ordinates, then we have

\[
T(f, g) \leq \frac{49}{57600} k^2 MN,
\]

where \(T(f, g), M, N, k \) are defined as in Theorem 3.1.

Proof. In Theorem 3.1, if we replace \(h_1 \) and \(h_2 \) by the identity, we obtain

\[
|T(f, g)| \leq \frac{49}{3600} k^2 \left(\int_0^1 \lambda d\lambda \right)^2 \left(\int_0^1 \alpha d\alpha \right)^2 MN
\]

\[
= \frac{49}{3600} k^2 \left(\frac{\lambda^2}{2} \bigg|_{\lambda=1} \right)^2 \left(\frac{\alpha^2}{2} \bigg|_{\alpha=1} \right)^2 MN
\]

\[
= \frac{49}{3600} k^2 \times \frac{1}{4} \times \frac{1}{4} MN
\]

\[
= \frac{49}{57600} k^2 MN.
\]

This is the desired inequality in (3.6). The proof is completed.

\[\square\]

Remark 3.1. The result of Corollary 3.2 is similar to the inequality (6) of Theorem 2.1 in [12].

Corollary 3.3. Let \(f, g : \Delta \to \mathbb{R} \) be partially differentiable functions, such that their second derivatives \(f_{\lambda} \) and \(g_{\alpha} \) are integrable on \(\Delta \). If \(|f_{\lambda}| \) and \(|g_{\alpha}| \) are \((s_1, s_2)\)-convex in the second sense on the co-ordinates, then

\[
T(f, g) \leq \frac{49}{3600} k^2 \frac{1}{(1 + s_1)^2} \frac{1}{(1 + s_2)^2} MN,
\]

where \(T(f, g), M, N, k \) are defined as in Theorem 3.1 and \(s_1, s_2 \in (0, 1] \).

Proof. Taking in Theorem 3.1, \(h_1(\lambda) = \lambda^{s_1} \) and \(h_2(\alpha) = \alpha^{s_2} \), we obtain

\[
|T(f, g)| \leq \frac{49}{3600} k^2 \left(\int_0^1 \lambda^{s_1} d\lambda \right)^2 \left(\int_0^1 \alpha^{s_2} d\alpha \right)^2 MN
\]

\[
= \frac{49}{3600} k^2 \frac{1}{(1 + s_1)^2} \frac{1}{(1 + s_2)^2} MN.
\]

This is the desired inequality in (3.7). The proof is completed.

\[\square\]

Corollary 3.4. Let \(f, g : \Delta \to \mathbb{R} \) be partially differentiable functions, such that their second derivatives \(f_{\lambda} \) and \(g_{\alpha} \) are integrable on \(\Delta \). If \(|f_{\lambda}| \) and \(|g_{\alpha}| \) are \(s \)-convex in the second sense on the co-ordinates, then

\[
T(f, g) \leq \frac{49}{3600} k^2 \frac{1}{(1 + s)^4} MN,
\]

where \(T(f, g), M, N, k \) are defined as in Theorem 3.1 and \(s \in (0, 1] \).
Proof. Putting in Theorem 3.1, $h_1(\lambda) = \lambda^s$ and $h_2(\alpha) = \alpha^s$, we get

$$|T(f, g)| \leq \frac{49}{3600}k^2 \left(\int_0^1 \lambda^s d\lambda \right)^2 \left(\int_0^1 \alpha^s d\alpha \right)^2 MN$$

$$= \frac{49}{3600}k^2 \frac{1}{(1 + s)^4} MN.$$

(3.9)

This is the required inequality in (3.8). The proof is completed. \qed

Theorem 3.2. Let $h_i : J_i \subset \mathbb{R} \to \mathbb{R}$ be positive functions, for $i = 1, 2$, $f, g : \Delta \to \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda\alpha}$ and $g_{\lambda\alpha}$ are integrable on Δ. If $|f_{\lambda\alpha}|$ and $|g_{\lambda\alpha}|$ are (h_1, h_2)-convex on the co-ordinates, then we have

$$|T(f, g)| \leq \frac{1}{8k^2} \left(\int_0^1 h_1(\lambda) d\lambda \right) \left(\int_0^1 h_2(\alpha) d\alpha \right)$$

$$\times \int_a^b \int_c^d \left[M |g(x, y)| + N |f(x, y)| \right]$$

$$\times \left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) dy dx.$$

(3.10)

where $T(f, g)$, M, N, k are defined as in Theorem 3.1.

Proof. By Lemma 2.1, we have

$$f(x, y) = \frac{1}{b-a} \int_a^b f(t, y) dt + \frac{1}{d-c} \int_c^d f(x, s) ds - \frac{1}{k} \int_a^b \int_c^d f(t, v) dv dt$$

$$+ \frac{1}{k} \int_a^b \int_c^d (x-t)(y-v)$$

$$\times \left(\int_0^1 \int_0^1 f_{\lambda\alpha}(\lambda x + (1-\lambda)t, \alpha y - (1-\alpha)v) d\alpha d\lambda \right) dv dt,$$

(3.11)
and

\[
g(x, y) = \frac{1}{b-a} \int_a^b g(t, y) dt + \frac{1}{d-c} \int_c^d g(x, v) ds - \frac{1}{k} \int_a^b \int_c^d g(t, v) dv dt
\]

\[
+ \frac{1}{k} \int_a^b \int_c^d (x - t)(y - v)
\]

\[
\times \left(\int_0^1 \int_0^1 g_{\alpha \lambda} (\lambda x + (1 - \lambda)t, \alpha y - (1 - \alpha)v) d\alpha d\lambda \right) d\alpha d\lambda
\]

(3.12)

Multiplying (3.11) by \(\frac{1}{2k^2} g(x, y)\) and (3.12) by \(\frac{1}{2k^2} f(x, y)\), summing the resultant equalities, then integrating on \(\Delta\), we get

\[
T(f, g) = \frac{1}{2k^2} \left[\int_a^b \int_c^d g(x, y) \left(\int_a^b \int_c^d (x - t)(y - v) \right) \int_0^1 \int_0^1 f_{\alpha \lambda} (\lambda x + (1 - \lambda)t, \alpha y - (1 - \alpha)v) d\alpha d\lambda \right] dy dx
\]

\[
+ \int_a^b \int_c^d f(x, y) \left(\int_a^b \int_c^d (x - t)(y - v) \right) \int_0^1 \int_0^1 g_{\alpha \lambda} (\lambda x + (1 - \lambda)t, \alpha y - (1 - \alpha)v) d\alpha d\lambda \right) d\alpha d\lambda
\]

(3.13)

using the properties of modulus, (3.13) becomes

\[
|T(f, g)| \leq \frac{1}{2k^2} \left[\int_a^b \int_c^d |g(x, y)| \left(\int_a^b \int_c^d |x - t||y - v| \right) \int_0^1 \int_0^1 |f_{\alpha \lambda} (\lambda x + (1 - \lambda)t, \alpha y - (1 - \alpha)v)| d\alpha d\lambda \right] dy dx
\]

\[
+ \int_a^b \int_c^d |f(x, y)| \left(\int_a^b \int_c^d |x - t||y - v| \right) \int_0^1 \int_0^1 |g_{\alpha \lambda} (\lambda x + (1 - \lambda)t, \alpha y - (1 - \alpha)v)| d\alpha d\lambda \right) d\alpha d\lambda
\]

(3.14)
Using the \((h_1, h_2)\)-convexity, (3.14) gives

\[
|T(f, g)| \leq \frac{1}{2k^2} \left[\int_{a}^{b} \int_{c}^{d} |g(x, y)| \left(\int_{0}^{1} h_1(\lambda)d\lambda \right) \left(\int_{0}^{1} h_2(\alpha)d\alpha \right) \right.
\]
\[
\times \left[\int_{a}^{b} \int_{c}^{d} |x - t| |y - v| \left[|f_{\lambda_0}(x, y)| + |f_{\lambda_0}(x, v)| \right.
\]
\[
+ |f_{\lambda_0}(t, y)| + |f_{\lambda_0}(t, v)| \right] dvdt \right] dydx
\]
\[
\left. + \int_{a}^{b} \int_{c}^{d} |f(x, y)| \left(\int_{0}^{1} h_1(\lambda)d\lambda \right) \left(\int_{0}^{1} h_2(\alpha)d\alpha \right) \right]
\]
\[
\times \left[\int_{a}^{b} \int_{c}^{d} |x - t| |y - v| \left[|g_{\lambda_0}(x, y)| + |g_{\lambda_0}(x, v)| \right.
\]
\[
+ |g_{\lambda_0}(t, y)| + |g_{\lambda_0}(t, v)| \right] dvdt \right] dydx,
\]
(3.15)

By a simple calculation we get

\[
|T(f, g)| \leq \frac{1}{2k^2} \left(\int_{0}^{1} h_1(\lambda)d\lambda \right) \left(\int_{0}^{1} h_2(\alpha)d\alpha \right)
\]
\[
\times \left[\int_{a}^{b} \int_{c}^{d} M |g(x, y)| \left(\int_{a}^{b} \int_{c}^{d} |x - t| |y - v| dvdt \right) \right.
\]
\[
+ N |f(x, y)| \left(\int_{a}^{b} \int_{c}^{d} |x - t| |y - v| dvdt \right) \right] dydx
\]
\[
= \frac{1}{8k^2} \left(\int_{0}^{1} h_1(\lambda)d\lambda \right) \left(\int_{0}^{1} h_2(\alpha)d\alpha \right)
\]
\[
\times \left[\int_{a}^{b} \int_{c}^{d} [M |g(x, y)| + N |f(x, y)|]
\]
\[
\times \left((x - a)^2 + (b - x)^2 \right) \left((y - c)^2 + (d - y)^2 \right) dydx.
\]
(3.16)

This completes the proof of Theorem 3.2. \(\square\)

Corollary 3.5. Let \(h : J \subseteq \mathbb{R} \to \mathbb{R}\) be a positive function, \(f, g : \Delta \to \mathbb{R}\) be partially differentiable functions, such that their second derivatives \(f_{\lambda_0}\) and \(g_{\lambda_0}\) are integrable...
on Δ. If $|f_{\lambda\alpha}|$ and $|g_{\lambda\alpha}|$ are h-convex on the co-ordinates, then we have

$$
|T(f, g)| \leq \frac{1}{8k^2} \left(\int_0^1 h(\lambda) d\lambda \right)^2 \int_a^b \int_c^d \left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) dy dx.
$$

where $T(f, g)$, M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.2, for $h_1(\lambda) = h_2(\lambda)$, we obtain the desired inequality. \square

Corollary 3.6. Let $f, g : \Delta \to \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda\alpha}$ and $g_{\lambda\alpha}$ are integrable on Δ. If $|f_{\lambda\alpha}|$ and $|g_{\lambda\alpha}|$ are convex on the co-ordinates, then we have

$$
|T(f, g)| \leq \frac{1}{32k^2} \int_a^b \int_c^d \left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) dy dx.
$$

(3.17)

where $T(f, g)$, M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.2, if we replace h_1 and h_2 by the identity, we obtain

$$
|T(f, g)| \leq \frac{1}{8k^2} \left(\int_0^1 h(\lambda) d\lambda \right)^2 \left(\int_0^1 h(\alpha) d\alpha \right) \int_a^b \int_c^d \left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) dy dx.
$$

This is the desired inequality in (3.17). The proof is completed. \square

Remark 3.2. The result of Corollary 3.6, is similar to the inequality (7) of Theorem 2.1 in [12].

Corollary 3.7. Let $f, g : \Delta \to \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda\alpha}$ and $g_{\lambda\alpha}$ are integrable on Δ. If $|f_{\lambda\alpha}|$ and $|g_{\lambda\alpha}|$ are
(s₁, s₂)-convex in the second sense on the co-ordinates, then we have

\[
|T(f, g)| \leq \frac{1}{8k²(1 + s₁)(1 + s₂)} \\
\times \int_a^b \int_c^d [M|g(x, y)| + N|f(x, y)|] \\
\times \left((x - a)^2 + (b - x)^2 \right) \left((y - c)^2 + (d - y)^2 \right) \, dy \, dx,
\]

(3.18)

where T(f, g), M, N, k are defined as in Theorem 3.1 and s₁, s₂ ∈ (0, 1].

Proof. Putting in Theorem 3.2, \(h₁(\lambda) = \lambda^{s₁} \) and \(h₂(\alpha) = \alpha^{s₂} \), we get

\[
|T(f, g)| \leq \frac{1}{8k²} \left(\int_0^{λ₁} \lambda^{s₁} \, dλ \right) \left(\int_0^{α₂} \alpha^{s₂} \, dα \right) \\
\times \int_a^b \int_c^d [M|g(x, y)| + N|f(x, y)|] \\
\times \left((x - a)^2 + (b - x)^2 \right) \left((y - c)^2 + (d - y)^2 \right) \, dy \, dx.
\]

This is the required inequality in (3.18). The proof is completed. \(\Box \)

Corollary 3.8. Let \(f, g : Δ \to \mathbb{R} \) be partially differentiable functions, such that their second derivatives \(f_{λα} \) and \(g_{λα} \) are integrable on \(Δ \). If \(|f_{λα}|\) and \(|g_{λα}|\) are \(s \)-convex in the second sense on the co-ordinates, then we have

\[
|T(f, g)| \leq \frac{1}{8k²(1 + s)^2} \\
\times \int_a^b \int_c^d [M|g(x, y)| + N|f(x, y)|] \\
\times \left((x - a)^2 + (b - x)^2 \right) \left((y - c)^2 + (d - y)^2 \right) \, dy \, dx,
\]

(3.19)

where T(f, g), M, N, k are defined as in Theorem 3.1 and \(s \in (0, 1] \).
Proof. Taking in Theorem 3.2, $h_1(\lambda) = \lambda^s$ and $h_2(\alpha) = \alpha^s$, we get

$$|T(f,g)| \leq \frac{1}{8k^2} \left(\int_0^1 \lambda^s d\lambda \right) \left(\int_0^1 \alpha^s d\alpha \right)$$

$$\times \int_a^b \int_c^d \left[M |g(x,y)| + N |f(x,y)| \right]$$

$$\times \left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) dy dx.$$

$$= \frac{1}{8k^2 (1+s)^2}$$

$$\times \int_a^b \int_c^d \left[M |g(x,y)| + N |f(x,y)| \right]$$

$$\times \left((x-a)^2 + (b-x)^2 \right) \left((y-c)^2 + (d-y)^2 \right) dy dx.$$

This is the desired inequality in (3.19). The proof is completed. □

4. ACKNOWLEDGEMENTS

The author would like to thank the anonymous referee for his/her valuable suggestions.

REFERENCES

University of Guelma. Guelma, Algeria.
E-mail address: khaledv2004@yahoo.fr