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ABSTRACT 
 
In this study, the method of Artificial Neural Networks (ANN) was used to model the survival ability of Cryptococcus 
albidus SAS157 as a biocontrol agent against mold spoilage on Fuji apple fruit. C. albidus (6, 9, or 11 log CFU/mL) 
and P. expansum (6 log CFU/mL) were inoculated the punctured holes on the surface of the apples and stored at 
various temperatures (4, 10, 15, and 25°C) and relative humidity (RH) levels (85% or 95%) for 14 days. C. albidus 
survived the best in apple wounds when the initial inoculum level was 9 log CFU/mL (p<0.05). RH did not significantly 
change the survival ability of C. albidus (p>0.05). The growth of C. albidus was improved when the temperature was 
4°C. A high correlation between actual values was calculated (R2~0.99) for the C. albidus survival within the range of 
the predicted conditions found by the model. These results indicated the potential of using C. albidus for reducing 
apple spoilage, with considerations for food safety practices due to its rare association with human infections. 
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Elma Üzerindeki Yaralanmış Bölgelerde Cryptococcus albidus’un Canlı Kalma Oranının 
Matematiksel Modelleme ile Belirlenmesi 

 

ÖZ 
 
Bu çalışmada, küf gelişimine karşı biyolojik kontrol aracı olan Cryptococcus albidus SAS157’nin Fuji elmalarında canlı 
kalma yeteneğini modellemek için Yapay Sinir Ağları (YSA) yöntemi kullanılmıştır. C. albidus (6, 9 ve 11 log CFU/mL) 
ve Pennicillum expansum (6 log CFU/mL) elmaların yüzeyinde açılan deliklere aşılanarak çeşitli sıcaklık (4, 10, 15 ve 
25°C) ve bağıl nem (%85 veya %95) koşullarında 14 gün boyunca depolanmıştır. Elde edilen sonuçlar, C. albidus’un 
elma yaralarında başlangıç inokulum seviyesi 9 log CFU/mL olduğunda en iyi canlı kalma performansını gösterdiğini 
ortaya koymuştur (p<0.05). Ayrıca, farklı nem seviyelerinin C. albidus’un canlı kalma yeteneği üzerinde önemli bir 
etkisi olmadığı belirlenmiştir (p>0.05). Bununla birlikte, depolama sıcaklığının 4°C olması, C. albidus'un çoğalmasını 
anlamlı şekilde artırmıştı (p<0.05). Model tarafından tahmin edilen koşullar aralığında C. albidus’un canlı kalmasına 
ait deneysel sonuçlar arasında yüksek bir korelasyon hesaplanmıştır (R2~0.99). Bu bulgular, elma çürümelerinin 
azaltılmasında C. albidus’un potansiyelini vurgulamakta, ancak insan enfeksiyonlarıyla nadir ilişkisi nedeniyle gıda 
güvenliği önlemlerine dikkat edilmesi gerektiğini önermektedir. 
 
Anahtar Kelimeler: Canlı kalma kabiliyeti, Elma, C. albidus, Matematiksel model, Biyokontrol 
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INTRODUCTION 
 
Mold spoilage on apples in post-harvest storage causes 
significant economic losses. Penicillium expansum is an 
important factor that causes this type of spoilage on 
apples, known as blue rot, and also produces a 
mycotoxin called patulin during this spoilage [1]. Patulin 
is highly resistant to food processing conditions and has 
a toxic effect when consumed with apples or apple juice 
[2]. Synthetic fungicides are used to prevent diseases 
that can occur in apples. The regular use of fungicides 
not only damages the ecological balance but also poses 
a risk to human health due to possible residues that may 
remain on the produce [3]. In recent years, biological 
applications such as antagonistic yeasts to prevent mold 
infestation on fruit have attracted much attention [4, 5]. 
The main reasons for the use of yeast as biocontrol 
agents in fruit are their high inhibitory effects against 
molds and not producing allergenic spores [6, 7]. Yeasts 
show their antagonistic effect against molds by 
producing lytic enzyme, preventing the formation of 
mold micelles and competing for nutrients and space by 
growing faster than molds [8]. 
 
The potential of the yeast antagonist to prevent 
postharvest spoilage of fresh fruit and vegetables has 
been demonstrated in many studies [5, 9]. The fact that 
Cryptococcus spp., important antagonistic yeast, can 
also be used against mold spoilage was reported in 
several studies [10, 11]. For example, C. albidus, C. 
laurentii or C. infirmominiatu have been shown to 
significantly reduce P. expansum-induced blue rot in 
Golden Delicious apples [10-12]. Similarly, in our 
previous study, the relationship between the ability of 
the yeast C. albidus to reduce the growth of P. 
expansum in the wound formed on the apple surface 
and storage temperature, RH and storage duration was 
found [13]. In the same study, it was found that with the 
increase in the number of initially inoculated C. albidus 
cells, the antagonistic properties also increased. When 
antagonistic yeasts are applied to fruit surfaces, their 
survivability is also important so that they can have an 
effect throughout their shelf life. It is assumed that the 
survival of these organisms depends on some factors 
such as RH and temperature in the environment [14]. 
Studying the effect of different storage conditions on the 
viability of antagonistic yeasts as bio control agents on 
apple surface will provide important data for the design 
of uses in this area. Analyzing the effect of storage 
parameters is time consuming and costly in the classical 
method and does not reveal interactions between 
parameters. Mathematical models, on the other hand, 
allow the system parameters to be tested with many 
combinations at regular intervals, while also determining 
the optimum point where the yeast can survive best. 
 
The use of ANNs has gained increasing attention in 
recent years due to their powerful capabilities in 
predicting and optimizing the survival, growth, and 
behavior of microorganisms under diverse and complex 
environmental conditions. Unlike classical statistical 
models, which often rely on linear assumptions or 
require simplified interactions, ANNs are capable of 
modeling non-linear, multi-dimensional relationships 

without prior knowledge of the system dynamics. This 
makes them especially suitable for biological systems, 
where interactions among variables such as 
temperature, relative humidity, time, and microbial load 
are inherently complex and dynamic. In the field of food 
microbiology, ANN-based models have been widely 
applied to predict microbial growth kinetics, evaluate the 
risk of spoilage or contamination, and, notably, to 
simulate and optimize the performance of biocontrol 
agents. These models allow researchers to conduct in 
silico experiments, reducing the need for extensive 
laboratory trials while still providing reliable predictions. 
For example, studies have shown that ANNs can 
successfully model and optimize the effectiveness of 
antagonistic microorganisms, such as yeasts and 
bacteria, against pathogens like P. expansum or Botrytis 
cinerea by identifying ideal storage parameters, 
including inoculum level, temperature, and relative 
humidity [15–17]. 
 
While the use of ANN to model the survival of C. albidus 
specifically on apple wounds is limited several studies 
have highlighted the potential of ANNs in similar 
contexts [18]. Therefore, the aim of this study was to 
apply ANN to determine the influence of key 
environmental factors such as temperature, RH, time, 
and yeast inoculum number on the survival of C. albidus 
on apple wounds. By incorporating ANN into this study, 
we aim to provide a more efficient and comprehensive 
method for predicting the best conditions for biocontrol 
applications in postharvest fruit preservation. 
 

MATERIALS and METHODS 
 

Preparation of Apples for Analyses 
 
The apples (Malus domestica cv. Fuji) used in this study 
were purchased from a local greengrocery in Sakarya, 
Türkiye. Morphologically similar Fuji apples in terms of 
shape and size were selected for the study. After 
washing with normal tap water, the apples were 
immersed in water with 2% chlorine added for a minute. 
Rinsed with sterile distilled water, the apples were dried 
at room temperature in a safety cabinet for 15 min. 
 

Inoculation of Apples with C. albidus 
 
After centrifugation of 48 hours C. albidus SAS157 cell 
culture (obtained from the Department of Food 
Engineering culture stock (Sakarya University) in 
triptych soy broth (Merck, Darmstadt, Germany) 

containing 0.6% yeast extract (Merck) at 10,000g for 
15 min at 4°C, the culture was prepared at the level of 
106, 109 or 1011 CFU/mL from the pellet in sterile distilled 
water using the hemocytometer (Sigma Aldrich, St. 
Louis, MO, USA). These inoculum levels were selected 
based on findings from previous studies that emphasize 
the critical role of initial cell concentration in determining 
the biocontrol efficacy of antagonistic yeasts and their 
competition with pathogens, such as P. expansum [19]. 
Using the pipette tip, two holes with a diameter of 
approximately 3 mm and a depth of 3 mm were opened 
on both sides of the apple samples [11]. The apples ere 
inoculated with 10 µL of C. albidus culture (106, 109 and 
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1011 CFU/mL) and 10 µL of P. expansum (106 CFU/mL), 
and stored in a container at 85 and 95% RH at 4, 10, 15, 
and 25°C [11]. These storage conditions and durations 
were selected based on their relevance to typical post-
harvest storage conditions and to evaluate the broad 
adaptability of antagonistic yeasts under varying 
environmental factors [14]. The storage conditions of 
85±3 and 95±3% RH were created by adding NaCl 
(Sigma Aldrich) and KNO3 (Sigma Aldrich) saturated 
solutions to the containers, respectively [20]. 

 

Growth of C. albidus on Apples  
 
The number of C. albidus was determined in the apple 
wound at 0, 7, and 14 days of storage. For analysis, a 
10 g piece of damaged part of the wounded fruit was 
placed in the stomacher bag containing 90 mL of 
peptone water solution (0.1% wt/v) and homogenized for 
2 min using a stomacher (Interscience, Bagmixer 400, 
France). Serial dilution was plated on OGEY Agar 
(Merck) and incubated at 30°C for 2 days. After 
incubation, cream-colored colonies grown on agar were 
counted as C. albidus [21].  
 

Statistical Analyses 
 
Each analysis was repeated twice, and the experiment 
was conducted three times. JMP (13.0 version; SAS 
Institute Inc., Cary, NC, USA) was used for statistical 
analysis. The analysis of variance (ANOVA) was 
performed to analyze the data and the Tukey-HSD 
multiple comparison test revealed the statistical 
difference at the p<0.05 level. 

Datasets 
 
The independent variables in this study were the 
inoculum level of C. albidus, RH, time, and temperature. 
The effect of these parameters on the survival of C. 
albidus was investigated. The studied inoculum levels 
were 106, 109, and 1011 CFU/mL. The RH levels were 
85% and 95%. The time periods in which the number of 
C. albidus was examined were 0, 7 and 14 days. The 
temperature variable was tested for 4, 10, 15, and 25°C. 
The full factorial design was used in the experimentation 
of these variables, which yields 96 datasets in total. 
 

Artificial Neural Networks Model 
 
The relationship between the four independent variables 
(the inoculum level of C. albidus, RH, time, and 
temperature) and the dependent variable (the growth of 
C. albidus) was modeled using an ANN model. The 
model was trained and optimized using the Neural Net 
Fitting application provided by the Deep Learning 
Toolbox of MATLAB software (MATLAB, 2021. version 
9.10.0.1710957 (R2021a) Update 4. Natick, 
Massachusetts: The MathWorks Inc.). The procedure of 
the Neural Net Fitting application and its mathematical 
basis were provided by Beale et al.  [22]. 
 
Figure 1 shows the network architecture with one hidden 
layer and an output layer. The ANN model is based on 
the feed-forward backpropagation algorithm. The 

normalization of the 𝑥 and 𝑦 values in the datasets was 
implemented to make them in the range [-1,1]. 

Figure 1. Schematic diagram of an ANN architecture with two layers (𝑥𝑛 denotes the nth parameter, 𝑎𝑖
(1)

 denotes the ith 

node in the hidden layer, 𝑏𝑖

(1)
 denotes the bias for the 𝑎𝑖

(1)
, 𝑊𝑛,𝑖

(1)
 denotes the weight for the relationship between the 𝑥𝑛 

and the 𝑎𝑖
(1)

. 𝑎(2) denotes the output node, 𝑏(2) denotes the bias for the 𝑎(2), and 𝑊𝑖
(2)

 denotes the weight for the 

relationship between the 𝑎𝑖
(1)

 and 𝑎(2)) 

 
The 𝑔(𝑧) is the hyperbolic tangent function given in 
Equation1 that introduced the nonlinearity to the model. 
Equation 2 takes the sum of the weighted parameters 
and the biases and makes the sum nonlinear It defines 
the non-linear relationship between the input parameters 
and the nodes in the hidden layer. The nodes in the 
hidden layer can be considered as artificial parameters. 
Equation 3 is composed of the sum of the weighted 
hidden nodes and the bias of the output node. Equation 
3 defines the linear relationship between the hidden 
nodes and the output node. 

𝑔(𝑧) =
1 − 𝑒−𝑧

1 + 𝑒−𝑧
         (1) 

𝑎𝑖

(1)
= 𝑔 (∑ 𝑊𝑛,𝑖

(1)
𝑥𝑛 + 𝑏𝑖

(1)

𝑁

𝑛=1

) (2) 

𝑎(2) = ∑ 𝑊𝑖

(2)
𝑎𝑖

(1)
+ 𝑏(2)

𝐼

𝑖=1

 (3) 
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The development of an ANN model involves two 
separate processes for the networks with one hidden 
layer. The first process includes optimizing the weights 
and biases, the second optimization of the network 
architecture (i.e., determination the number of nodes in 
the hidden layer). The experimental datasets were 
randomly divided into three subsets for these 
optimizations: Training, Validation, and Test data sets. 
The training and validation data sets were used to 
optimize the weights and biases, which included 70% 
and 15% of the whole data sets, respectively. The test 
data sets were used to optimize the network architecture 
and included 15% of the total datasets. The Levenberg-
Marquardt algorithm was chosen for the optimization of 
the weights and biases due to its efficiency with small 
networks. The Mean Square Error (MSE) and the 
Coefficient of Determination (R2) values were used in 
the network architecture optimization.  
 

In Equations 4 and 5, the 𝑆 denotes the number of data 
sets. The 𝑦𝑠 notation was used for the predicted value of 
the dependent variable, which was calculated with the 
input values in the sth data set. The 𝑟𝑠 notation was used 
for the actual value of the dependent variable in the sth 

data set. The �̅� notation in Equation 5 was used for the 
mean of the actual values. The 𝑒𝑠 in Equation 4 
represents the deviation between the predicted and 
actual values of the dependent variable for the sth data 
set. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑒𝑠)2

𝑆

𝑠=1

=  
1

𝑁
∑(𝑦𝑠 − 𝑟𝑠)2

𝑆

𝑠=1

 (4) 

𝑅2 = 1 − [
∑ (𝑦𝑠 − 𝑟𝑠)2𝑆

𝑠=1

∑ (𝑟𝑠 − �̅�)2𝑆
𝑠=1

] (5) 

The procedure in MATLAB was as follows: network 
architecture with some number of nodes in its hidden 
layer was chosen by us. The experimental datasets 
were randomly divided into the three subsets, and the 
weights and biases were randomly initialized by 
MATLAB. Then the training started, and the Levenberg-
Marquardt algorithm carried out its optimization task. 
The optimization is an iterative process. More iteration 
provides more learning and makes the model more fitted 
to the training data sets. However, highly fitted models 
lose their generalization. This is known as the over fitting 
problem. Therefore, when the validation error is at its 
minimum, the weights and biases are saved and 
accepted as optimum by MATLAB. At this point, 
MATLAB uses these weights and biases and calculates 
the test error and the test accuracy in the forms of MSE 
and R2 values, which we used manually to evaluate the 
performance of the chosen network architecture. 
 

RESULTS and DISCUSSION 
 

The Survival of C. albidus on Apple Wound 
 
C. albidus applied to the apples at the different 
concentrations demonstrated the ability to survive 
throughout the 14-day storage period under all tested 
conditions (Figure 2). Notably, under certain 

environmental parameters, the yeast not only 
maintained viability but also proliferated. For instance, 
storage at 4°C and 95% RH significantly promoted 
growth, with cell counts increasing from 9 to 9.8 log 
CFU/mL by the end of the storage period (p<0.05). This 
suggests that low temperature and high humidity can 
create favorable microenvironments within apple 
wounds, likely due to reduced competition from native 
microbiota and decreased metabolic stress on the yeast. 
 
In contrast, when apples were stored at 15°C under both 
85% and 95% RH, C. albidus populations remained 
relatively stable, with no statistically significant change 
observed from the initial inoculation level of 6 log 
CFU/mL. This indicates that although moderate 
temperatures did not significantly hinder yeast survival, 
they also did not promote proliferation, possibly due to a 
balance between growth-promoting and stress-inducing 
factors. However, Lima et al. [23] do not agree with the 
current study, they reported that C. laurentii LS28 was 
able to survive better at the storage of 20°C than at 3°C 
in the apple. This disagreement may stem from strain-
specific physiological differences, as well as variations 
in host fruit cultivar, storage atmosphere, or initial 
inoculum levels. Similarly, the numbers of C. infirmo-
miniatus strain YY6 and C. laurentii strain HRA5 yeast 
inoculated in the wounds opened in Golden Delicious 
type apples increased 1.2 Log at 0°C within 10 days, 
and 1.4 log at 5, 10 and 20°C [10] indicating that cold 
storage may not necessarily suppress yeast growth 
entirely. 
 
In this study, the initial number of yeast cells in the 
inoculum statistically influenced the survivability of the 
yeast in the apple wounds (p<0.05). Specifically, when 
the inoculum level was either 6 or 11 log CFU/mL, a 
reduction of approximately 1 to 2 log units was observed 
by the end of the 14-day storage period (p<0.05). 
However, when the initial concentration was 9 log 
CFU/mL, no statistically significant change was detected 
(p>0.05), indicating that this concentration may 
represent an optimal level for maintaining yeast viability 
during storage. This finding underscores the critical role 
of initial inoculum density in determining the competitive 
success of biocontrol agents like C. albidus. At lower 
concentrations (6 log CFU/mL), the yeast may be at a 
competitive disadvantage, especially when co-
inoculated with a pathogen such as P. expansum, which 
was also present at a similar level in this study. In such 
scenarios, the limited resources and spatial constraints 
within apple wounds favor the organism with the faster 
growth rate or more aggressive colonization strategy. 
This aligns with previous findings highlighting the 
importance of initial population size in microbial 
competition and antagonism [24]. Interestingly, although 
a higher inoculum level (11 log CFU/mL) might initially 
seem advantageous, it did not support sustained 
survival. In fact, the yeast population declined 
significantly at this concentration. This could be 
attributed to nutrient depletion and limited space within 
the wound microenvironment, which may have created 
intense intraspecific competition among yeast cells. 
Particularly at higher storage temperatures, the 
metabolic demand may exceed the available resources, 
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leading to cell death or reduced proliferation. This 
suggests that over-inoculation may paradoxically 
compromise biocontrol persistence, especially under 
suboptimal storage conditions. 
 
The observation that 9 log CFU/mL supported both 
stable survival and effective competition suggests a 
balance point where C. albidus has sufficient numbers 
to outcompete pathogens like P. expansum, without 

triggering excessive nutrient stress. This finding 
emphasizes the need for careful optimization of 
inoculum levels in practical biocontrol applications. It 
also reinforces the concept that biocontrol efficacy is a 
dynamic outcome shaped not only by microbial 
antagonism but also by environmental constraints such 
as temperature, RH, nutrient availability, and spatial 
limitations. 

 

Figure 2. The survival of three different inocluation levels on the apples during 14 days of storage at 4, 10, 15 and 
25°C at two different RH (85 and 95%). (a) 11 log10 CFU/mL, 85% RH, and (b) 11 log10 CFU/mL, 95% RH, (c) 9 log10 
CFU/mL , 85% RH, (d) 9 log10 CFU/mL, 95% RH, (e)  6 log10 CFU/mL, 85% RH, (f)  6 log10 CFU/mL, 95% RH (mean 
(n = 3) ± standard deviation) 
 
According to the analysis of variance, storage 
temperature, time, and yeast inoculum level -individually 
and in interaction- significantly affected the survival of C. 
albidus (p<0.05), highlighting the importance of 
optimizing these parameters for effective biocontrol 
(Table 1). In particular, temperature affects yeast 
metabolism and its competitive behavior within apple 
wounds, while the initial inoculum level plays a key role 
in the yeast’s ability to establish itself and maintain 
viability over time. Interestingly, RH did not show a 

significant effect (p>0.05), either alone or in combination 
with other factors, suggesting that C. albidus may 
tolerate moderate RH fluctuations due to the inherently 
moist microenvironment of fruit tissue. These findings 
indicate that storage temperature and inoculum density 
are critical factors in ensuring the stability and 
performance of C. albidus during postharvest 
application, whereas RH within the tested range plays a 
less decisive role. 
 

 

(e) (f) 
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Table 1. Analysis of variance on the effect of different parameters and their interactions on the 
survival of C. albidus in apples (p-values for independent variables and interactions*). 

Source Nparm DF Sum of Squares F Ratio Prob>F 

Trial 2 2 5.13142 3.4983 0.0330 
Inoculum Level (IL) 2 2 895.16 610.2616 <0.0001 
Temperature (T) 3 3 9.0709 4.1226 0.0078 
Relative Humidity (RH) 1 1 0.88685 1.2092 0.2734 
Storage Time (ST) 2 2 44.24535 30.1636 <0.0001 

ILT 6 6 15.67062 3.5611 0.0026 

ILRH 2 2 0.28668 0.1954 0.8227 

ILST 4 4 9.98052 3.402 0.0109 

TRH 3 3 4.93022 2.2407 0.0863 

TST 6 6 15.09707 3.4307 0.0035 

RHST 2 2 0.90485 0.6169 0.5411 

ILTRH 6 6 5.87084 1.3341 0.2461 

ILTST 12 12 11.10566 1.2619 0.2481 

ILRHST 4 4 1.3639 0.4649 0.7614 

TRHST 6 6 5.32049 1.2091 0.3053 

ILTRHST 12 12 22.71482 2.5809 0.0040 
 *significant at p<0.05; significant at p<0.001.  

 

Network Architecture Optimization 
 
As presented in Table 2, the MSE and coefficient of 
determination (R²) values varied across network 
architectures with hidden layers containing 2 to 8 nodes. 
These variations were expected due to the inherent 
randomness in data splitting and the stochastic 
initialization of network weights and biases. To minimize 
the influence of such randomness and improve 
reliability, each architecture was trained five times, and 
the average performance metrics were considered. 
Among the tested configurations, the architecture with 
six hidden nodes consistently demonstrated superior 
predictive accuracy, yielding the lowest MSE and 
highest R² values on average. This suggests that six 
nodes provided an optimal balance between under 
fitting and overfitting, capturing the underlying patterns 
in the dataset effectively without excessive model 
complexity. Simpler architectures may have lacked the 
capacity to represent the non-linear relationships in the 

growth dynamics of C. albidus, while more complex 
ones could have led to overfitting due to limited data. 
These results underscore the importance of 
systematically evaluating different network topologies 
and using repeated trials to identify robust and 
generalizable models, especially in biological systems 
where variability is high. 
 

Model Performance 
 
The network architecture with six hidden nodes yielded 
the lowest mean squared error (MSE=0.1401) and the 
highest coefficient of determination (R²=0.9941) during 
initial training (Table 2), indicating it was the most 
accurate and well-performing model developed in this 
study. The high-test accuracy (R²=0.99) further 
confirmed the model’s ability to generalize well to 
unseen data, demonstrating strong predictive capability 
for C. albidus growth under varying conditions. 

 
Table 2. The performance measures of the five-times trained network 
architectures had the various number of nodes in their hidden layers 

Trainings 

Nodes 1 2 3 4 5 Average 

MSE Values 

2 0.4661 0.4066 0.4644 0.4439 0.2596 0.4081 
3 0.4829 0.4293 0.3596 0.3008 0.3547 0.3855 
4 0.2225 0.6046 0.2323 0.4240 0.2837 0.3534 
5 0.2439 0.2751 0.4355 0.2692 0.4434 0.3334 
6 0.1401 0.1786 0.5159 0.3836 0.2518 0.2940 
7 0.3032 0.3613 0.2454 0.4772 0.5061 0.3786 
8 0.8843 0.2516 0.5847 0.3010 0.3116 0.4666 

   R2 values    

2 0.9843 0.9811 0.9883 0.9853 0.9888 0.9856 
3 0.9751 0.9870 0.9922 0.9938 0.9911 0.9878 
4 0.9869 0.9882 0.9939 0.9837 0.9866 0.9879 
5 0.9925 0.9905 0.9849 0.9951 0.9879 0.9902 
6 0.9941 0.9911 0.9900 0.9922 0.9916 0.9918 
7 0.9948 0.9907 0.9930 0.9732 0.9885 0.9880 
8 0.9631 0.9878 0.9727 0.9901 0.9880 0.9803 
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As illustrated in Figure 3, the optimal weights and biases 
were achieved at the 22nd epoch, corresponding to the 
point where the validation error reached its minimum. 
Although continued training reduced the training error 
further, the validation error began to increase, signaling 
the onset of overfitting where the model starts to 
memorize training data instead of learning generalizable 
patterns [25]. Recognizing this, training was stopped at 
the 22nd epoch, and the corresponding weights and 
biases were adopted as optimal. This outcome 
highlights the importance of early stopping as a 
regularization technique to enhance model 
generalization [26]. It also emphasizes that monitoring 
validation performance is essential for building reliable 
models in biological prediction tasks, where data can be 
noisy and complex [27]. The application of early 
stopping prevented overfitting effectively, thereby 
improving the robustness and predictive accuracy of the 
model. 
 

 

Figure 3. The fitting curves showing the consistency 
between the model predictions and the actual values 

 
As illustrated in Figure 4, the fitting curves for the 
training, validation, and test datasets, along with the 
overall fitting curve, demonstrate the model’s strong 
predictive performance. The dashed lines represent the 
ideal scenario, where the predicted values (Y) perfectly 
match the actual target values (T), while the solid lines 
indicate the actual fitting achieved by the model. The 
close alignment of these lines suggests a high degree of 
accuracy in capturing the underlying data patterns. 
Notably, the R² values for all individual datasets 
exceeded 0.99, indicating an exceptionally good fit 
between the model predictions and the experimental 
results. Such high R² values across all data splits 
confirm the robustness and consistency of the model, 
minimizing concerns of underfitting or overfitting. The 
particularly high accuracy on the test dataset (R²=0.99) 
further supports the model’s strong generalization 
capability, implying that it can reliably predict outcomes 
for new, unseen data. This is a crucial attribute in 
biological systems modeling, where variability is often 
high and data replication is limited. The results validate 
the effectiveness of the selected network architecture 
and training strategy and reinforce the model’s potential 
utility as a predictive tool for future studies or 
applications involving C. albidus growth behavior. 
 

 
Figure 4. The performance measures (MSE) of the most 
accurate model in Table 2 across the epoch number. 
The gray, black and dotted lines represent the training, 
validation, and test sets errors, respectively. 
 
Figure 5 shows the schematic diagram of the network 
architecture with six hidden nodes. The figure also 
provides the optimized weights and biases. The table 
columns with the W notation provide the weights. For 

instance, 𝑊1,1−6
(1)

 represents the weights for the 

relationship between the first parameter and the six 
hidden nodes. The biases (b) were provided in the table 
cells with the dashed borders. The diagram provides an 
algorithm and the optimized values for one to code a 
computer function. The function will take the four input 
parameters and calculate the number of C. albidus (log10 
CFU/g) by using Equations 1, 2, and 3 with the 
optimized values provided in the diagram. 
 

CONCLUSIONS 
 
In addition to its lethal effect against pathogens, the 
most important factors in the commercialization of 
antagonistic yeasts are their ability to colonize fruit 
surfaces and to survive as long as possible under 
storage conditions. The survival ability of C. albidus in 
the apple wounds was significantly affected by 
temperature, time and inoculum level (p<0.05) but RH. 
Optimum survival of C. albidus was observed with their 
number was not significantly reduced when their 
inoculum number was 9 log CFU/mL at all storage 
temperature. Increase or decrease of inoculum level 
was not significantly improved the survival (p>0.05). The 
ANNs model developed and optimized in this study had 
a superior prediction performance with an R2 of 0.99. 
The model predictions can help to understand the 
biocontrol mechanism and improve the efficiency of the 
biocontrol applications where C. albidus takes place. 
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Figure 5. The algorithm of the ANN model with the optimized weights and biases 
 
C. albidus is generally considered harmless saprophytic 
yeast; however, it has been occasionally reported to be 
associated with rare human infections in the literature 
[25]. Therefore, in cases where this biocontrol strategy 
is applied, it is recommended that apples are thoroughly 
washed under running water before consumption. 
Additionally, the use of edible fruit cleansers may further 
help reduce not only C. albidus but also other potential 
microbial contaminants. This precaution ensures the 
safety of the fruit for consumption and aligns with 
general food safety practices.  
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