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Abstract 

Objective: Accurate and efficient use of International Classification of Diseases 

Clinical Modification Codes (ICD-10) in neurology is vital for healthcare 

reimbursement, research, and patient health surveillance. However, manually 

extracting these codes from physician reports is both time-consuming and 

prone to errors. This study evaluates the performance of several large language 

models (LLMs) in automatically predicting ICD-10 diagnosis codes specifically 

from Turkish neurology physician reports. 

Method: The study evaluates the performance of ten LLMs (ChatGPT, Cohere 

Coral, Claude, DeepSeek, Qwen, Groq, Gemini, Meta Llama, Mistral, and 

Perplexity) on a dataset of 51 de-identified neurology doctor reports. A 

standardized prompt was used to instruct each LLM to extract ICD-10 codes 

relevant to the diagnoses documented in the reports. The LLM-generated codes 

were then compared to a gold standard set of codes assigned by certified 

neurology coding specialists. Performance metrics such as accuracy, precision, 

recall and F1-score, were used to assess the models' effectiveness. 

Results: Among the LLMs, ChatGPT emerged as the top performer with an 

accuracy of 68.6% and an F1-score of 0.812, demonstrating strong precision 

(0.686) and perfect recall (1.0). It excelled in identifying common neurological 

conditions such as migraines (G45.9), transient ischemic attacks (TIA), and motor 

neuron disorders. Gemini followed closely with 58.8% accuracy (F1-score: 0.750), 

while Qwen and Claude showed moderate performance (54.9% and 49.0% 

accuracy, respectively). Conversely, Groq and Meta AI exhibited significant 

limitations, with accuracies of 25.5% and 27.5%, respectively. 

Conclusion: While LLMs show promise for automating ICD-10 coding from 

neurology reports, there is considerable variability in their performance. High-

performing models like ChatGPT demonstrate strong potential, but further 

refinement is needed to improve the accuracy and reliability of lower-performing 

systems. Future research should focus on enhancing training datasets, 

incorporating rule-based algorithms, and integrating human oversight to 

address discrepancies, particularly in complex or rare neurological cases. 
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INTRODUCTION 

The International Classification of Diseases (ICD), 

published by the World Health Organization 

(WHO), serves as a globally recognized medical 

classification system that categorizes diseases, 

disorders, injuries, and other health-related 

conditions (WHO, 2015). Since its inception in 

1893, the ICD has evolved into an indispensable 

tool for healthcare management, insurance 

processes, medical research, and public health 

surveillance (Barrit et al, 2025). In neurology, 

accurate assignment of ICD-10 codes is 

particularly critical for reimbursement, clinical 

research, and patient health monitoring. 

However, the current manual process of 

assigning these codes is labor-intensive, time-

consuming, and prone to human error (Puts et al., 

2025). 

In most healthcare settings, certified professional 

coders dedicate significant time to reviewing 

extensive medical records on a case-by-case basis 

to assign ICD-10 codes manually (Soroush et al., 

2024). While this approach ensures high accuracy 

when performed by experienced coders, it is 

inherently inefficient for large-scale applications. 

Additionally, in outpatient scenarios, physicians 

often perform the coding themselves, which may 

further increase the likelihood of inaccuracies 

due to limited familiarity with coding guidelines 

(Kocaman, 2024). 

To address these challenges, there has been 

growing interest in leveraging Natural Language 

Processing (NLP) and Large Language Models 

(LLMs) to automate the extraction of ICD-10 

codes from clinical documentation (Lee & 

Lindsey, 2024). Automated medical coding holds 

the potential to significantly improve the 

efficiency and reliability of healthcare 

administration processes. However, achieving 

this goal is not without its complexities. 

Previous studies have shown that LLMs face 

significant challenges when tasked with 

generating accurate ICD codes from clinical notes 

or descriptions (Stanfill et al., 2010). For instance, 

Dai et al. (2024) demonstrated that even state-of-

the-art LLMs struggle with understanding the 

nuances of medical terminology and adhering to 

strict coding guidelines (Dai et al., 2024). 

Similarly, Dong (2022) highlighted that while 

LLMs can extract relevant information from 

clinical notes, their performance degrades when 

dealing with ambiguous or complex cases (Dong 

et al., 2022). 

Furthermore, the heterogeneity and ambiguity of 

medical language, particularly within specialized 

fields like neurology, present additional hurdles 

for automated coding systems (Reshma et al., 

2025). Neurological diagnoses frequently involve 

intricate descriptions of symptoms, signs, and 

anatomical locations, demanding a high level of 

linguistic and medical domain expertise for 

accurate code assignment (Kalani & Anjankar, 

2024). Puts et al. (2024) emphasized that LLMs 

often fail to capture the subtleties of clinical 

context, leading to misclassification of conditions 

such as migraines, transient ischemic attacks 

(TIAs), and motor neuron disorders. 

Recent evaluations of LLM performance in 

medical coding have revealed varying degrees of 

success. For example, Schumacher et al. (2025) 

found that models like ChatGPT 4 and Gemini 

exhibit strong performance in identifying 

common neurological conditions but falter when 

faced with rare or less frequent diagnoses 

(Schumacher et al., 2025). Conversely, lower-

performing models, such as Groq and Meta AI, 

consistently underperform in both common and 

rare cases, highlighting the need for more robust 

training methodologies (Albassam et al., 2025). 

Building upon these findings, this study aims to 

benchmark the performance of seven leading 

LLMs in automatically predicting ICD-10 codes for 

neurology diagnosis from de-identified neurology 

physician reports (Simmons et al., 2024). By 

comparing their outputs against a gold standard 

set of codes assigned by certified neurology 

coding specialists, we aim to provide a 

comprehensive assessment of the current 

capabilities and limitations of LLMs in this 
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specialized coding task. Our findings will inform 

future research on refining LLM-based coding 

systems and contribute to the ongoing 

development of more accurate and efficient 

automated medical coding solutions in 

neurology. 

METHOD 

This study utilized a dataset consisting of 51 

neurology physician patient reports. Each report 

included detailed descriptions of patient 

symptoms, physical examination findings, 

laboratory results, and diagnoses. These reports 

covered a wide range of neurological conditions, 

making them suitable for evaluating the accuracy 

of ICD-10 code predictions. 

The gold standard for comparison was 

established by certified neurology coding 

specialists who manually assigned ICD-10 codes 

to each report. This set of expert-assigned codes 

served as the benchmark for assessing the 

performance of the LLMs. 

Ten LLMs were evaluated in this study: 

•ChatGPT 4o 

•Claude 3.7 Sonnet 

•Cohere Coral 

•Groq 

•DeepSeek R1 

•Gemini 1.5 Pro 

•Qwen3 

•Mistral  

•Meta Llama 3 70B 

•Perplexity 

Each model was instructed using a standardized 

prompt designed to extract ICD-10 codes relevant 

to the diagnoses documented in the neurology 

reports. The prompt was structured as follows: 

"From the following neurology physician report, 

extract the ICD code(s) corresponding to the 

documented diagnosis: [You can review the 

supplementary file for detailed neurology 

physician reports.]" 

To ensure reproducibility, all LLMs were run with 

deterministic parameters (temperature = 0, top-

p = 1). A single standardized prompt was 

deliberately used to maintain comparability 

across models; however, future work will 

systematically explore multiple prompt variations 

to assess prompt sensitivity. 

The performance of the LLMs was assessed using 

the following metrics: 

•Accuracy: The proportion of correctly predicted 

codes out of all predictions. 

•Precision: The ratio of true positives (correctly 

predicted codes) to the total number of positive 

predictions (true positives + false positives). 

•Recall: The ratio of true positives to the total 

number of actual positives. In this study, recall 

was consistently 1.0 because FN (false negatives) 

was zero—each case had only one predefined 

correct code. 

•F1-Score: The harmonic mean of precision and 

recall, providing a balanced measure of a model's 

performance. 

RESULTS 

The evaluation of large language models (LLMs) in 

predicting International Classification of Diseases, 

10th Revision, Clinical Modification (ICD-10-CM) 

codes from Turkish neurology reports reveals 

significant insights into their performance and 

limitations. This section presents a detailed 

analysis of the accuracy, precision, recall, and F1-

scores achieved by the evaluated systems, 

highlighting their ability to handle both common 

and complex neurological diagnoses. By 

comparing the LLM-generated codes with the 

gold standard set by certified neurology coding 

specialists, we aim to identify the strengths and 

weaknesses of each model, providing a 

foundation for understanding their potential 

applications and areas requiring improvement in 

automated medical coding. The goal is to 

evaluate the performance of different AI LLMs 

systems in predicting ICD-10 codes for 51 patient 

cases. 

Overview 

Table 1 presents a comparison of various AI 

systems based on the number of correct 
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predictions each has made. ChatGPT leads the 

pack with the highest number of correct 

predictions (35), showcasing its superiority in 

delivering accurate results compared to other 

systems. Following closely are Gemini and Qwen 

, with 30 and 28 correct predictions, respectively, 

indicating their strong performance as well. On 

the other hand, systems like Groq and Meta AI lag 

significantly behind, with only 13 and 14 correct 

predictions, respectively, highlighting their lower 

effectiveness in this context. The remaining AI 

systems (DeepSeek , Claude , Perplexity , Mistral , 

and Cohere Coral) fall somewhere in between, 

demonstrating moderate performance levels. 

Overall, this data clearly illustrates the varying 

degrees of accuracy among the different AI 

systems, with ChatGPT emerging as the most 

reliable model based on the number of correct 

predictions. 

 

Table 1. The correct prediction counts for each LLMs 
 

LLMs Correct Predictions 

ChatGPT 35 

Gemini 30 

Qwen 28 

DeepSeek 26 

Claude 25 

Perplexity 23 

Mistral 21 

Cohere Coral 16 

Meta AI 14 

Groq 13 
 

Performance Metrics 

Accuracy 

Table 2 compares the performance of various AI 

systems based on two key metrics: true positives 

(TP) and accuracy (%). ChatGPT leads the pack 

with the highest number of true positives (35) 

and the best accuracy (68.6%), making it the top-

performing system in this evaluation. Following 

closely are Gemini and Qwen , which also 

demonstrate strong performance with accuracies 

of 58.80% and 54.90%, respectively. On the other 

hand, systems like Cohere Coral , Meta AI , and 

Groq show significantly lower accuracies, ranging 

from 25.50% to 31.40%, indicating weaker overall 

performance. While all systems correctly 

identified a certain number of true positives, their 

accuracy percentages reveal a clear divide 

between high-performing models such as 

ChatGPT and underperforming ones like Groq. 

This highlights the importance of selecting an AI 

system that not only identifies true positives 

effectively but also maintains a high overall 

accuracy. 

Accuracy is calculated as: 
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Table 2. LLMs' performance: true positives and accuracy rates 
 

LLMs TP Accuracy (%) 

ChatGPT 35 68.6% 

Gemini 30 58.80% 

Qwen 28 54.90% 

DeepSeek 26 51.00% 

Claude 25 49.00% 

Perplexity 23 45.10% 

Mistral 21 41.20% 

Cohere Coral 16 31.40% 

Meta AI 14 27.50% 

Groq 13 25.50% 

 

Precision 

Table 3 provides a performance analysis of 

various AI systems based on three key metrics: 

true positives (TP), false positives (FP), and 

precision. Precision is calculated as the ratio of 

true positives to the total number of predicted 

positives (TP + FP), indicating how reliable the 

system is when it makes a positive prediction. 

ChatGPT leads with the highest precision score of 

0.686, achieved by correctly identifying 35 true 

positives while generating only 16 false positives, 

demonstrating its effectiveness in minimizing 

errors. Following ChatGPT, Gemini and Qwen also 

show relatively strong performance with 

precision scores of 0.588 and 0.55, respectively. 

On the other hand, systems like Groq , Meta AI , 

and Cohere Coral struggle with significantly lower 

precision scores (ranging from 0.255 to 0.314), 

which is largely due to their higher false positive 

rates compared to true positives. This suggests 

that these models are more prone to incorrect 

positive predictions, making them less reliable in 

scenarios where high precision is critical. Overall, 

the data highlights a clear performance gap 

between top-tier systems such as ChatGPT and 

lower-performing ones like Groq and Meta AI. 

Precision measures the proportion of true 

positives among all positive predictions:  

 

Table 3. Evaluation of LLMs models based on precision, true positives, and false positives 

LLMs TP FP Precision 

ChatGPT 35 16 0.686 

Gemini 30 21 0.588 

Qwen 28 23 0.55 

DeepSeek 26 25 0.511 

Claude 25 26 0.49 

Perplexity 23 28 0.451 

Mistral 21 30 0.412 

Cohere Coral 16 35 0.314 

Meta AI 14 37 0.275 

Groq 13 38 0.255 
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Recall 

Recall measures the proportion of true positives 

among all actual positives. Since FN = 0 for all 

systems: 

Each patient has only one correct code and the 

system is supposed to predict that one code, then 

FN is zero because the system either predicted it 

(TP) or another code (FP). So in this setup, FN is 

always zero, leading to recall of 1. That's a 

possible explanation. 

Recall = 1.0  indicates that all correct ICD codes 

were identified by at least one system .  Since 

each patient report in the dataset was associated 

with only one predefined correct ICD-10 code, the 

models either predicted the correct code (true 

positive) or produced a different code (false 

positive). Consequently, false negatives (FN) were 

always zero, leading to a recall value of 1.0 for all 

systems. This methodological feature explains 

why recall remained constant across all models. 

 

 

 

 

 

F1-Score 

F1-Score combines Precision and Recall into a 

single metric:  

Table 4 presents a performance comparison of 

various AI systems based on three key metrics: 

precision, recall, and F1-score. Notably, all 

systems achieve a perfect recall score of 1, 

indicating that they successfully identify all 

positive cases without missing any. However, 

their precision scores vary significantly, which 

directly impacts their F1-scores, a metric that 

balances precision and recall. ChatGPT leads the 

pack with the highest precision (0.686) and F1-

score (0.812), making it the most effective system 

in this evaluation. Following ChatGPT, Gemini and 

Qwen also demonstrate strong performance with 

F1-scores of 0.75 and 0.714, respectively. On the 

other hand, systems like Cohere Coral , Meta AI , 

and Groq struggle with lower precision scores 

(ranging from 0.255 to 0.314), resulting in 

significantly lower F1-scores (between 0.408 and 

0.478). This highlights a clear divide between 

high-performing models such as ChatGPT and 

underperforming ones like Groq, emphasizing the 

importance of selecting an appropriate AI system 

based on its precision and overall effectiveness. 

 

Table 4. Comparison of LLMs systems based on precision, recall, and F1-score 

LLMs Precision Recall F1-Score 

ChatGPT 0.686 1 0.812 

Gemini 0.588 1 0.75 

Qwen 0.55 1 0.714 

DeepSeek 0.511 1 0.678 

Claude 0.49 1 0.658 

Perplexity 0.451 1 0.615 

Mistral 0.412 1 0.578 

Cohere Coral 0.314 1 0.478 

Meta AI 0.275 1 0.441 

Groq 0.255 1 0.408 
  

0
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0,4
0,6
0,8

1
1,2

Precision Recall F1-Score



____________________Northern Journal of Health Sciences, 1(3),190-201, 2025_______________ 

 

196________________________________________________________North J Health Sci______ 

Summary Tables 

Table 5 provides a comprehensive comparison of 

various AI systems based on critical performance 

metrics such as correct predictions, accuracy, 

precision, recall, and F1-score. Among these 

systems, ChatGPT stands out as the top 

performer, achieving the highest accuracy 

(68.60%) and F1-score (0.812). Its strong balance 

between precision (0.686) and recall (1) makes it 

particularly effective in delivering accurate and 

reliable results. Following ChatGPT, Qwen and 

Gemini also demonstrate notable performance, 

with accuracies of 54.90% and 58.80%, 

respectively. Both systems maintain high recall 

values (1), ensuring that they do not miss any 

positive cases, while their F1-scores (0.714 for 

Qwen and 0.75 for Gemini) indicate a reasonable 

trade-off between precision and recall. On the 

other hand, systems like DeepSeek , Claude , and 

Perplexity show moderate performance, with 

accuracies ranging from 45.10% to 51.00%. These 

models still achieve perfect recall but struggle 

with lower precision, which affects their overall 

effectiveness. 

 

Table 5. Performance comparison of LLMs 

LLMs 
Correct 

Predictions 
Accuracy (%) Precision Recall F1-Score 

ChatGPT 35 68.60% 0.686 1 0.812 

Gemini 30 58.80% 0.588 1 0.75 

Qwen 28 54.90% 0.55 1 0.714 

DeepSeek 26 51.00% 0.511 1 0.678 

Claude 25 49.00% 0.49 1 0.658 

Perplexity 23 45.10% 0.451 1 0.615 

Mistral 21 41.20% 0.412 1 0.578 

Cohere Coral 16 31.40% 0.314 1 0.478 

Meta AI 14 27.50% 0.275 1 0.441 

Groq 13 25.50% 0.255 1 0.408 

In contrast, several systems exhibit significantly 

weaker performance. For instance, Groq , Cohere 

Coral , and Meta AI have accuracies below 32%, 

making them less reliable in practical 

applications. Groq, with an accuracy of just 

25.50% and an F1-score of 0.408, ranks as one of 

the least effective systems in this evaluation. 

Similarly, Cohere Coral and Meta AI, with 

accuracies of 31.40% and 27.50%, respectively, 

also struggle to deliver consistent results. Despite 

having perfect recall, these systems suffer from 

low precision, indicating a higher likelihood of 

false positives. This imbalance between precision 

and recall leads to lower F1-scores, which is a 

critical metric for evaluating the overall 

effectiveness of a model. Overall, the data 

underscores the significant performance gap 

between leading systems like ChatGPT and 

underperforming ones like Groq, highlighting the 

importance of selecting the right model for 

specific tasks (Table 5). 

Table 6 divides the AI systems into three distinct 

categories. 1.Top Performers, 2. Mid-Range 

Performers, and 3. Low Performers based on their 

accuracy and F1-score. ChatGPT emerges as the 

leading system with the highest accuracy (68.6%) 

and F1-score (0.812), demonstrating its superior 

balance between precision and recall. Following 

closely are Gemini and Qwen , which occupy the 

second and third positions, respectively, with 

accuracies of 58.8% and 54.9%, and F1-scores of 

0.750 and 0.714. These top performers excel in 

delivering reliable and accurate results. 
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In the Mid-Range Performers category, systems 

like Claude, Perplexity, and Mistral show 

moderate performance, with accuracies ranging 

from 41.2% to 49.0% and F1-scores between 

0.578 and 0.658. While these systems are not as 

strong as the top performers, they still provide 

reasonable results for less demanding tasks. 

Finally, the Low Performers category includes 

Meta AI , Groq , and Cohere Coral , which exhibit 

the weakest performance among the evaluated 

systems. Meta AI and Groq, in particular, have the 

lowest accuracy and F1-score values (27.5% and 

25.5% accuracy, respectively), indicating 

significant room for improvement in their 

precision and recall capabilities. Cohere Coral 

performs slightly better than these two but still 

lags behind the mid-range and top performers 

(Table 6). 

 

Table 6. Evaluation of LLMs models by performance categories 

Category LLMs Accuracy (%) F1-Score 

Top Performers ChatGPT 68.6 0.812 

 Gemini 58.8 0.75 

 Qwen 54.9 0.714 

Mid-Range Performers Claude 49 0.658 

 Perplexity 45.1 0.615 

 Mistral 41.2 0.578 

Low Performers Meta AI 27.5 0.441 

 Groq 25.5 0.408 

 Cohere Coral 31.4 0.478 

Distribution of Correct ICD Codes 

Table 7 represents a classification of various 

health conditions and diseases using an 

international system. These codes are used to 

describe patients' health status, diseases, and 

symptoms. 

From a class-level perspective, common 

neurological conditions such as G43.9 (migraine, 

unspecified), G20 (Parkinson’s disease), and 

G40.9 (epilepsy) were consistently predicted 

across high-performing models. In contrast, rare 

or less frequently observed diagnoses, including 

G12.20 (amyotrophic lateral sclerosis, 

unspecified) and G04.8 (encephalitis), showed 

lower prediction consistency. This highlights that 

while LLMs are effective for frequent conditions, 

their accuracy declines for less common 

diagnoses. 

It becomes apparent that a significant portion of 

the codes relate to neurological conditions and 

symptoms. For instance, codes such as G20 

(Parkinson's disease), G35 (multiple sclerosis), 

G40.9 (epilepsy), and G44.2 (tension-type 

headache) fall under this category. Additionally, 

codes like I63.5 and I63.9 describe cerebral 

infarction (brain hemorrhage) and transient 

cerebral ischemia (brain vessel occlusion), 

respectively. 

Table 7 also includes codes related to symptoms. 

For example, R26.0 (ataxic gait), R41.0 

(disturbances of skin sensation), R41.3 (other and 

unspecified disturbances of consciousness), R42 

(dizziness and giddiness), and R47.0 (aphasia) 

describe various symptoms. Furthermore, the list 

contains codes for infectious diseases, such as 

B02.9 (herpes simplex infection). Analyzing ICD 

codes is crucial for planning healthcare services, 

managing diseases, and effectively managing 

symptoms. 

Table 7 provides an overview of the distribution 

of ICD codes across various categories. The most 

common category is neurological diseases and 

symptoms. Other categories, such as circulatory 

system, eye and adnexa, digestive system, and 

more, also contain codes. This table serves as a 

useful tool for understanding the classification 

and meaning of ICD codes. This information is 
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essential for planning healthcare services, 

managing diseases, and effectively managing 

symptoms. Even high-performance models 

yielding inconsistent results in rare diagnoses 

(e.g., G12.20 - Amyotrophic lateral sclerosis) 

underscores the critical need for expert oversight 

in such complex cases. For example, a mix of 

transient ischemic attack (G45.9) and migraine 

(G43.9) carries the potential to cause significant 

deviations in patient management and treatment 

planning due to miscoding. 

 

Table 7. Distribution of correct ICD code categories and descriptions 

1. Certain infectious and parasitic diseases: None in your list. 

2. Neoplasms: None in your list. 

3. Blood and blood-forming organs: None in your list. 

4. Endocrine, nutritional, and metabolic diseases: None in your list. 

5. Mental and behavioural disorders: 

▪ F02.80: Mental disorder due to known physiological condition, unspecified, with other 
specified behavioral disturbance 

▪ F05: Delirium not induced by psychoactive substances 

▪ F41.0: Tension-type headache 

6. Nervous system: 

▪ B02.9: Herpes simplex without complication (infections) 

▪ G04.8: Other specified encephalitis 

▪ G12.2: Amyotrophic lateral sclerosis 

▪ G12.20: Amyotrophic lateral sclerosis, unspecified 

▪ G20: Parkinson's disease 

▪ G31.83: Other specified degenerative diseases of the nervous system 

▪ G35: Multiple sclerosis 

▪ G40.9: Epilepsy, unspecified 

▪ G43.0: Migraine without aura 

▪ G43.9: Migraine, unspecified 

▪ G44.2: Tension-type headache 

▪ G44.209: Other specified headache syndromes, not elsewhere classified 

▪ G44.4: Cluster headache and related syndromes 

▪ G44.81: Other headache syndromes 

▪ G44.89: Other specified headache disorders 

▪ G45.9: Transient cerebral ischemic attack, unspecified 

▪ G50.0: Trigeminal neuralgia 

▪ G51.0: Bell's palsy 

▪ G56.0: Mononeuropathy of upper limb 

▪ G61.0: Idiopathic neuropathy 

7. Eye and adnexa: 

▪ H46.9: Optic neuritis, unspecified 

▪ H49.1: Paresis of eyelid 

▪ H49.2: Blepharoptosis 

▪ H53.40: Unspecified visual field defect 

8. Circulatory system: 

▪ I61.9: Nontraumatic intracerebral hemorrhage, unspecified 

▪ I63.5: Cerebral infarction due to unspecified occlusion or stenosis of cerebral arteries 
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▪ I63.9: Cerebral infarction, unspecified 

9. Respiratory system: None in your list. 

10. Digestive system: 

▪ J34.89: Other specified diseases of nose and sinuses 

11. Symptoms, signs, and abnormal findings: 

▪ R26.0: Ataxic gait 

▪ R41.0: Disturbances of skin sensation 

▪ R41.3: Other and unspecified disturbances of consciousness 

▪ R42: Dizziness and giddiness 

▪ R43.1: Disturbances of smell 

▪ R47.0: Aphasia 

 

 

DISCUSSION 

This study aimed to evaluate the performance of 

large language models (LLMs) in assigning 

accurate and consistent ICD-10 diagnostic codes 

based on clinical narratives derived from real 

patient cases presenting with diverse 

neurological symptoms. The dataset included 51 

patient records encompassing detailed medical 

histories, physical examination findings, and 

neurologic assessments. Ten different LLMs were 

tested for their ability to extract relevant 

diagnostic information and map it correctly to 

standardized ICD-10 codes. 

The results demonstrated varying levels of 

accuracy among the models. ChatGPT achieved 

the highest overall accuracy rate at 68.6%, 

followed by Gemini and Qwen, which also 

performed significantly well. These models 

showed a relatively strong capability in 

interpreting complex clinical narratives, 

identifying key symptom patterns, and aligning 

them with appropriate diagnostic categories. In 

contrast, Groq, Cohere Coral, and Meta AI 

exhibited lower accuracy, highlighting limitations 

in understanding nuanced medical terminology 

or contextual clues within Turkish clinical texts. 

Notably, discrepancies between the correct ICD-

10 codes and model-generated outputs were 

often due to overlapping symptomatology across 

multiple conditions, such as stroke, migraine, 

Parkinson’s disease, multiple sclerosis, and 

peripheral nerve disorders. For instance, some 

models misclassified transient ischemic attack 

(TIA)-like presentations as migraines or vice 

versa, indicating challenges in distinguishing 

between similar clinical syndromes without 

explicit temporal or imaging markers. 

A key limitation of this study is the relatively small 

dataset of 51 reports, all drawn from Turkish 

neurology practice. This restricts the 

generalizability of the findings. Future studies 

should include larger and more diverse datasets 

from multiple institutions and specialties to 

validate the outcomes. Another limitation is the 

reliance on a single standardized prompt. While 

this ensured comparability among models, 

prompt engineering is known to significantly 

influence LLM performance. Therefore, future 

work will systematically test multiple prompt 

variations. Finally, although deterministic 

parameters (temperature = 0, top-p = 1) were 

applied, LLMs may still exhibit minor variability in 

outputs, and this inherent non-determinism 

should be considered when deploying such 

systems in clinical workflows.  

Furthermore, incorrect coding can not only create 

statistical performance differences, but can also 

directly affect patient care. For example, 

confusing transient ischemic attack (G45.9) with 

migraine (G43.9) can lead to significant 

differences in patient diagnosis and treatment. 

Similarly, in rare but critically important 
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conditions such as amyotrophic lateral sclerosis 

(G12.20), incorrect coding can lead to delayed 

early intervention and appropriate care. These 

findings demonstrate the vital importance of 

accurate coding in a clinical context as well as 

high accuracy rates. 

Future research should focus on expanding the 

dataset with a broader range of clinical cases, 

incorporating multimodal inputs (e.g., MRI 

reports, lab results), and fine-tuning models on 

Turkish medical corpora to enhance linguistic and 

semantic comprehension. Additionally, 

integrating LLMs into clinical decision support 

systems could provide valuable assistance in 

streamlining diagnostic coding, reducing clerical 

burden, and improving documentation 

consistency provided they are used under 

physician supervision. Moreover, LLM-based 

automatic coding contributes to clinical processes 

not only in neurology but also in other disciplines 

such as cardiology, psychiatry, and internal 

medicine. 

CONCLUSION 

In conclusion, while LLMs like ChatGPT 

demonstrate considerable potential in 

supporting ICD-10 coding tasks in neurology, they 

cannot replace expert clinical judgment. Their 

role should be seen as complementary—offering 

efficient, scalable, and intelligent assistance 

rather than autonomous decision-making. With 

further refinement and validation, these models 

can become integral components of modern 

healthcare informatics, contributing to more 

accurate diagnoses, improved patient care, and 

enhanced health data management. 

Limitations of the Study 

Despite these promising results, several 

limitations must be acknowledged. First, the 

sample size was relatively small and limited to 

Turkish clinical narratives, which may affect the 

generalizability of the findings. Second, the 

presence of ambiguous or incomplete clinical 

descriptions posed interpretational challenges 

even for human experts, further complicating 

model evaluation. Third, the current versions of 

LLMs do not have access to real-time diagnostic 

reasoning tools such as laboratory data or 

radiological images, which are crucial for 

definitive diagnosis in neurology. Furthermore 

the dataset size (51 reports) is relatively small, 

which may limit the generalizability of the 

findings, the reports are in Turkish. 

Additionally, although deterministic parameters 

were applied (temperature = 0, top-p = 1), LLMs 

may still produce slightly different outputs across 

repeated runs. The use of a single standardized 

prompt, while ensuring fairness across models, 

limited exploration of prompt sensitivity. Future 

research should therefore address both 

reproducibility and prompt variability in greater 

depth. 
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