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Artificial Intelligence Threatens Critical Thinking in 
Education Systems

Yapay Zekâ Eğitim Sistemlerinde Eleştirel Düşünmeyi Tehdit Ediyor

Mahmut ÖZER, Hande TANBERKAN, Matjaz PERC

ABSTRACT

We examine how the increasing use of artificial intelligence (AI) in education—through tools that generate and summarize text, translate 
languages, and produce visual content—impacts students’ critical thinking. While these technologies enhance personalized learning, 
broaden assessment strategies, and support data-driven policy decisions, we argue that their integration into the learning process carries 
unintended cognitive consequences. Specifically, we show that when students offload key tasks to AI systems, their cognitive load decreases 
in ways that weaken memory retention and reduce active engagement with content. This shift fosters a pattern of overreliance, as students 
increasingly depend on AI to perform intellectual tasks in their place. As a result, their ability to think critically, question information, and 
evaluate sources diminishes over time. We highlight this emerging dependency as a medium- to long-term threat to critical thinking and 
call for a more careful evaluation of how generative AI is used in education—not only in terms of its benefits, but also its influence on core 
cognitive processes. Finally, we propose targeted strategies to mitigate these effects and preserve students’ critical capacities in AI-rich 
learning environments. 
Keywords: Artificial intelligence, Education system, Critical thinking, Cognitive load, Memory

ÖZ

Bu çalışmada eğitimde metin üreten ve özetleyen, dilleri çeviren ve görsel içerik oluşturan araçlar yoluyla yapay zekânın giderek artan 
kullanımının öğrencilerin eleştirel düşünme becerileri üzerindeki etkisini inceliyoruz. Bu teknolojiler kişiselleştirilmiş öğrenmeyi 
geliştirse, değerlendirme stratejilerini çeşitlendirse ve veriye dayalı politika kararlarını desteklese de, öğrenme sürecine entegrasyonlarının 
istenmeyen bilişsel sonuçlar doğurduğunu savunuyoruz. Özellikle, öğrencilerin temel görevleri yapay zekâ sistemlerine devrettiğinde, 
bilişsel yükleri öyle bir şekilde azalıyor ki bu durum hem hafıza kalıcılığını zayıflatıyor hem de içeriğe yönelik aktif katılımı azaltıyor. 
Bu değişim, öğrencilerin entelektüel görevleri kendi yerlerine yapay zekânın gerçekleştirmesine giderek daha fazla güvenmesiyle bir aşırı 
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INTRODUCTION
Artificial intelligence continues to transform every domain, 
from education to healthcare, from the financial sector to ser-
vice industries, and from the pharmaceutical industry to de-
fense (Ilikhan et al., 2024; 2025; Özer, 2024a; 2024b; 2024c; 
Perc et al., 2019; Suleyman, 2023). In particular, the wide-
spread adoption of generative AI applications such as ChatGPT 
and DeepSeek has significantly accelerated both its diffusion 
and the ensuing transformation. Unlike previous general-pur-
pose technological disruptions, this new breakthrough has rap-
idly permeated all aspects of life. Today, we are witnessing the 
construction of a powerful AI ecosystem.

As the proliferation of artificial intelligence increases, signifi-
cant disruptions have begun to emerge in the labor market. 
Expectations surrounding many occupations and job positions 
are changing rapidly. While the skill requirements for these 
roles continue to evolve, concerns about AI’s negative impact 
on employment are also growing (Özer et al., 2024a; 2024b). As 
with previous general-purpose technological transformations, 
the initial expectation was that the number of new jobs created 
would roughly match the number of jobs displaced. However, 
the rapid advancement of AI applications has cast this expecta-
tion in a more pessimistic light (Özer & Perc, 2024). Today, with 
the rapid acceleration of automation through AI, many existing 
occupations and job positions are becoming obsolete, while 
the skill demands for newly emerging roles are rising signifi-
cantly. Moreover, it is predicted that even these newly created 
roles will eventually be filled by AI (Suleyman, 2023). Conse-
quently, large segments of the population are being forced to 
acquire new skills in order to maintain their current jobs, while 
others—due to age or background—are gradually losing their 
jobs and are being pushed toward lower-skilled and therefore 
lower-paid employment. The massive wave brought by AI now 
stands as the most significant threat to the increasingly eroded 
middle class in many countries (Özer, 2024d).

Given these circumstances, it is the education systems that 
are naturally the most affected by this wave (Özer, 2024a). 
Today, education systems face a two-dimensional challenge. 
First, due to AI’s impact on the labor market and the result-
ing shifts in the skills demanded by occupations, education 
systems are now required to train human capital in alignment 
with these new skill expectations. On the one hand, they are 
being pressured to rapidly implement changes that align with 
the current transformation; on the other hand, they must also 
respond to the far more complex challenge of preparing indi-
viduals for jobs that do not yet exist but may emerge in the fu-

ture. Second, just as AI technologies are transforming business 
processes across every sector, education systems now bear an 
additional responsibility: figuring out how to integrate these 
technologies into learning environments while also mitigating 
their potential risks.

As with previous general-purpose technological transforma-
tions, the benefits brought by the AI revolution have taken 
center stage. Expectations have steadily grown that these ap-
plications will transform educational processes for students, 
teachers, and administrators alike—particularly that genera-
tive AI tools will enrich learning environments and significant-
ly expand the availability of personalized education options. 
Consequently, this sense of anticipation has rapidly spread to 
encompass all stakeholders in education, including students, 
teachers, school administrators, and families. 

Notably, students across all levels of the education system have 
begun actively using these tools. In fact, in many countries, it is 
known that students are using AI applications much more fre-
quently than teachers. In some contexts, this widespread use 
initially raised concerns among education administrators, lead-
ing to temporary bans on AI tools in schools and on campuses. 
However, given the evident benefits of these technologies and 
the difficulty of resisting such a profound transformation, the 
focus has increasingly shifted from prohibition to developing 
frameworks that enhance their advantages while mitigating 
their associated risks.

The capabilities of generative AI applications—such as text 
generation, text summarization, academic writing, cross-lin-
gual translation, and the creation of graphics, images, and 
videos—have significantly supported students in fulfilling their 
academic responsibilities (Özer, 2024a). In particular, the po-
tential of these tools to enhance personalized learning options 
quickly captured the attention not only of students, but also 
of teachers and education administrators (Ambele et al., 2022; 
Grassini, 2023; Kasneci et al., 2023). Actively leveraging per-
sonalized learning opportunities presents a critical chance to 
address one of the most persistent challenges in education 
systems: reducing achievement gaps between schools and 
strengthening educational equity. Furthermore, generative AI 
offers significant opportunities to enhance the quality of for-
eign language, music, and fine arts education as well (Gangad-
harbatla, 2022; Özer, 2024a; Wang et al., 2023; Zylinska, 2023).

AI applications also hold the potential to significantly transform 
the traditional roles of teachers. In particular, the additional 
materials generated through these tools have made it increas-

bağımlılık örüntüsünü teşvik ediyor. Sonuç olarak, eleştirel düşünme, bilgiyi sorgulama ve kaynakları değerlendirme becerileri zamanla 
zayıflıyor. Bu gelişen bağımlılığı, eleştirel düşünme açısından orta ve uzun vadeli bir tehdit olarak vurguluyor ve üretken yapay zekânın 
eğitimde nasıl kullanıldığının yalnızca faydaları açısından değil, temel bilişsel süreçler üzerindeki etkileri bakımından da dikkatlice 
değerlendirilmesi gerektiğini savunuyoruz. Son olarak, bu etkileri azaltmaya ve yapay zekâ yoğun öğrenme ortamlarında öğrencilerin 
eleştirel kapasitesini korumaya yönelik stratejiler öneriyoruz.
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ingly feasible to enrich learning environments and ensure the 
active participation of all students (Atlas, 2023). Moreover, pro-
viding targeted support to students with learning gaps within 
a classroom has become much easier thanks to personalized 
learning aids. As a result, teachers are now expected to move 
beyond their conventional roles and adopt new responsibili-
ties—much like conductors—guiding each student to contrib-
ute at an equal level to the educational “orchestra” (Rudolph 
et al., 2023; Özer, 2024a). By using intelligent tutoring systems 
(ITS), teachers can now generate individualized instructional 
content tailored to help each student engage at a compara-
ble level (Rudolph et al., 2023; Zawacki-Richter et al., 2019). 
Furthermore, these tools have also simplified the creation of 
alternative assessment formats, enabled rapid evaluation, and 
facilitated timely feedback for students (Grassini, 2023; Khan 
et al., 2023; Suna & Özer, 2025; Tanberkan et al., 2024; Wang 
et al., 2023).

On the other hand, the potential of AI applications to enrich 
the systemic perspectives of education administrators—from 
the school level to the national system level—has quickly be-
come apparent (Özer, 2024a). In this context, such tools can 
clarify the steps needed to enhance educational quality at the 
school level, from guiding students in course selection to mon-
itoring teacher and classroom performance; at the broader 
system level, they can also make significant contributions by 
enabling the development of evidence-based education poli-
cies through the effective use of big data (Chiu, 2023; Tsai et 
al., 2020; Villegas-Ch et al., 2020).

Although the enthusiasm surrounding the benefits of AI appli-
cations has so far overshadowed concerns, the risks associat-
ed with these technologies have increasingly begun to surface 
and spark debate (Suleyman, 2023). Chief among these risks—
just as in other domains—is data security. When the data gen-
erated through the widespread use of AI in education systems 
is not adequately protected, there is a real danger that indi-
viduals may become vulnerable, manipulable commercial ob-
jects, especially when this educational data is combined with 
personal data collected through other applications in everyday 
life (O’Neil, 2016; Özer, 2025). Another major risk lies in the 
reproduction of biases—either stemming from the assump-
tions embedded in algorithmic design or from the vast training 
data itself, which may contain biases based on religion, cul-
ture, race, and other factors (Obermeyer et al., 2019; Özer et 
al., 2024a; Ulnicane & Aden, 2023). Similarly, it has long been 
known that AI can experience “hallucinations,” generating in-
formation that appears coherent and credible but is actually 
incorrect (Özer, 2024c). The ability of AI to produce biased or 
inaccurate content stands out as one of the most critical risks 
for the education system.

On the other hand, recent studies indicating that artificial in-
telligence weakens critical thinking within education systems 
have raised growing concerns about what may be its most det-
rimental long-term impact. For this reason, the present study 
re-evaluates the threats posed by the integration of AI appli-
cations into education with a specific focus on their effects on 
critical thinking, and offers recommendations aimed at mitigat-
ing these risks.

Biased Content Is Becoming More Pervasive 

AI applications operate based on algorithms that learn from 
real-world data to optimize and generate content. The as-
sumptions made during algorithm design, as well as the biases 
embedded in training datasets, directly shape the nature of 
the content produced by AI. Consequently, biases related to 
religion, culture, race, gender, and other identity markers—
whether stemming from algorithmic assumptions or training 
data—pose a significant risk of becoming more widespread as 
these applications rapidly permeate everyday life. Excessive 
trust in AI-generated content facilitates the unchecked spread 
of these biases and contributes to the deepening of social in-
equalities.

Assumptions made during algorithm development often con-
tain inherent biases (O’Neil, 2016; Özer, 2025). When these as-
sumptions are biased, the content generated by the algorithm 
inevitably reproduces these biases. A notable example of bi-
ased assumptions in algorithms can be found in a widely used 
AI application in the United States designed to identify individ-
uals in need of advanced healthcare. A study revealed that this 
application used healthcare expenditures as a proxy to deter-
mine the need for advanced medical services (Obermeyer et 
al., 2019). According to this assumption, individuals who spend 
more on healthcare are presumed to have a greater need for 
advanced services. However, this overlooks structural inequal-
ities in access to healthcare and differences in socioeconomic 
status. As a result of this flawed assumption, white individu-
als—who tend to spend more on healthcare—were more likely 
to be identified as needing advanced care. In contrast, Black 
Americans, who may have had equal or even greater health-
care needs but lacked access to services or the financial means 
to incur such expenditures, were underrepresented. Thus, the 
AI system, based on a biased assumption, exacerbated existing 
disadvantages among already marginalized individuals.

Algorithmic bias is also present in assumptions based on ac-
ademic achievement. It has long been established that there 
is a strong correlation between academic success and a stu-
dent’s socioeconomic status (Özer & Suna, 2022; Suna et al., 
2020; Suna & Özer, 2021; Suna et al., 2021; Suna & Özer, 2022; 
Suna & Özer, 2024). Therefore, when academic transitions 
within the education system or admissions to different institu-
tions rely solely on academic performance indicators—such as 
GPA or standardized test scores like the SAT or ACT—the algo-
rithm’s output implicitly ends up ranking applicants according 
to their socioeconomic background (Sackett et al., 2009). We 
know that as socioeconomic status (SES) increases, students 
tend to perform better on high-stakes exams such as the SAT or 
ACT (Özer et al., 2024a). A recent and well-known example oc-
curred in the United Kingdom during the COVID-19 pandemic, 
when an algorithm used to assign student grades sparked pub-
lic outrage. The algorithm awarded higher grades to students 
from socioeconomically advantaged backgrounds while assign-
ing lower grades to disadvantaged students, leading to wide-
spread societal backlash (Heaton et al., 2023; Idowu, 2024).
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the use of AI in education is its ability to generate content that 
is unrelated to the given prompt or factually incorrect, even 
though it may appear coherent and internally consistent (Özer, 
2024b). This phenomenon is referred to as AI hallucination (Ji 
et al., 2023). For instance, studies have shown that many of 
the references produced by AI during the drafting of academic 
papers are fabricated and do not exist in reality (Athaluri et 
al., 2023). It is argued that this hallucinatory behavior arises 
when the AI loses its connection to the original training data-
set (Berberette et al., 2024). Most critically, once the AI begins 
generating inaccurate content based on such behavior, it tends 
to maintain this consistency—continuing to hallucinate in a 
seemingly logical manner. This escalating effect is known as the 
“snowball effect of hallucination” (Zhang & Press et al., 2023).

It has been suggested that AI systems are particularly prone to 
hallucination when faced with conflicting information within 
their training data, leading to a kind of cognitive tension during 
response generation (Özer, 2024c). Regardless of the source, 
this behavior indicates that AI-generated content may contain 
inaccurate or false information. Therefore, as with the biased 
content discussed above, users should avoid accepting AI-gen-
erated information at face value. Instead, it is essential to ac-
tively engage critical thinking skills—filtering, evaluating, and, 
if necessary, discarding information—to ensure accuracy and 
reliability.

Increases Cognitive Cost

Recent studies suggest that beyond the risks mentioned above, 
artificial intelligence poses serious threats specifically to criti-
cal thinking. For example, recent research conducted with uni-
versity students has found that a significant portion of student 
laziness is linked to the use of AI applications (Ahmad et al., 
2023). Moreover, a large number of students acknowledged 
that due to these tools, they focus less on solving problems 
independently, which in turn has weakened their critical think-
ing capacity (Mohammadkarimi & Omar, 2025). Both studies 
indicate that AI applications are taking over a substantial part 
of students’ responsibilities, rendering them more passive in 
the learning process and ultimately diminishing their ability to 
think critically.

Further support for the claim that AI applications weaken crit-
ical thinking comes from a recent study. This study examined 
the relationship between the use of AI tools and critical thinking 
skills through the lens of the phenomenon of cognitive offload-
ing. The findings reveal that AI tools indeed diminish critical 
thinking capabilities, with cognitive offloading playing a pivotal 
role in this decline (Gerlich, 2025). Excessive reliance on these 
tools increases cognitive offloading and reduces individuals’ 
active engagement in cognitive processes. Notably, younger 
participants—who exhibited higher levels of dependency on AI 
tools compared to older participants—scored lower in critical 
thinking assessments. This serves as a significant early warn-
ing about long-term challenges we may face. In addition, the 
study found that participants with higher levels of education 
still demonstrated stronger critical thinking skills, highlighting 
the critical role of education in mitigating this negative effect.

Similar biases are also reproduced from the data on which AI 
applications are trained. Since AI algorithms learn from train-
ing datasets, and these datasets function as a form of memory, 
any biases embedded in that memory inevitably permeate the 
content generated by such systems. Unlike algorithmic design 
flaws, the biases found in training datasets are not mere tech-
nical errors; rather, they reflect the underlying power struc-
tures, socioeconomic conditions, and political systems of so-
ciety (Ulnicane & Aden, 2023). For example, numerous studies 
in the U.S. context have revealed that AI systems used to de-
termine sentencing durations based on recidivism risk exhibit 
systemic discrimination against Black Americans, recommend-
ing harsher penalties compared to those suggested for white 
defendants (Angwin et al., 2016; Dressel & Farid, 2018). Similar 
patterns have been observed in AI applications used to guide 
daily police patrol routes (Lum & Isaac, 2016). Because crime 
records often originate from areas predominantly inhabited by 
low-income individuals, Black communities, and minorities, al-
gorithms trained on such data tend to disproportionately direct 
police patrols to these same areas—neglecting other regions 
with similar potential for crime. In this way, the advantages and 
disadvantages embedded in real-world data are reproduced by 
AI systems, exacerbating the very inequalities they reflect. In 
other words, such systems deepen existing social disparities.

A similar phenomenon can be observed in the texts generated 
by AI. Generative AI systems learn from vast datasets and pro-
duce new texts based on that learning; in this sense, the exist-
ing data serves as a kind of memory embedded in the newly 
generated content. This is particularly evident in the context 
of Orientalism. Orientalism, by establishing cultural hegemony, 
denies the non-Western world the agency to represent itself 
and confines it within representations produced by the West 
(Said, 1979). Given that a vast body of Orientalist literature 
has been built up over the past two centuries, generative AI 
systems tend to reproduce this same historical memory when 
generating content about the non-Western world. AI applica-
tions often fail to produce culturally accurate representations 
and instead tend to remove content from its original context or 
assemble it through a patchwork approach. This indicates that 
generative AI continues to reflect an Orientalist tone, wherein 
Western and white perspectives dominate as cultural defaults 
(Ghosh et al., 2024; Qadri et al., 2023). In this way, AI technol-
ogies risk reinforcing and disseminating Orientalist discourses.

In short, the assumptions made during the development of AI 
applications, along with the data on which they are trained, are 
directly reflected in the outputs they generate. For this reason, 
users must approach AI-generated content with caution, ac-
tively identify and filter out biases, and, most importantly, rec-
ognize that not all information produced by AI is accurate. It is 
essential to foster a habit of critically evaluating AI-generated 
content. However, the continual reinforcement of overreliance 
on these tools weakens critical thinking and contributes to the 
unchecked spread of biased information.

AI Hallucinates

In this context, another major risk to critical thinking posed by 
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details from them. Participants in the LLM group—which re-
quired the least cognitive engagement—reported the lowest 
levels of ownership toward the essays they had written. More-
over, there was a direct correlation between the sense of own-
ership and memory recall: as the sense of ownership declined, 
participants remembered significantly fewer details from the 
essay they had just written. These findings align closely with 
those reported by Stadler et al. (2024) regarding cognitive off-
loading.

When these studies are evaluated collectively, they reveal a 
clear pattern: when external technological tools used in the 
learning process demand less active cognitive engagement 
from individuals, brain activity decreases, cognitive load is re-
duced, cognitive offloading increases, learning becomes more 
superficial, critical thinking weakens, and ultimately, the con-
nection to what is produced—i.e., memory—is diminished. 
This same risk applies in the long term when such tools are 
used within the education system. Students’ overreliance on 
AI tools pushes them toward passive rather than active partic-
ipation in fulfilling their academic responsibilities. In this way, 
the external tool meant to assist them ends up acting as a sub-
stitute, but this substitution carries a high cognitive cost. As a 
result, students not only miss the opportunity to identify and 
address their own learning gaps—since they mask success as 
if it were their own—but also experience a gradual decline in 
their critical thinking and independent problem-solving skills. 
The weakening of these core skills, in turn, reinforces behav-
ioral dependency on AI tools.

DISCUSSION

Just as AI tools are transforming other sectors, they are rapid-
ly reshaping the education system as well. While these tools 
offer numerous benefits to students, teachers, and education 
administrators, the risks they pose—both current and poten-
tial—are equally critical. This study has focused on the possible 
negative impacts of the widespread use of AI tools in educa-
tion, particularly on students’ critical thinking skills.

It is well known that students’ overreliance on AI applications 
often leads them to use these tools as substitutes for their own 
efforts. Recent studies indicate that this dependency, fueled by 
excessive trust, distances students from active engagement in 
the learning process, results in more superficial learning, and 
weakens memory retention. In fact, this outcome can be seen 
as a direct consequence of the fundamental nature of AI itself. 
The core promise of AI tools is to relieve humans of cognitive 
burdens by taking over certain tasks and producing seemingly 
reasonable responses quickly. During this process, human cog-
nitive load is reduced. Theoretically, such a reduction should 
allow individuals to better review the generated content or use 
the saved time for other productive activities. However, the 
actual outcome diverges significantly from this expectation. 
The very feature of AI that reduces cognitive effort encourages 
students to use it more frequently and with growing reliance. 
Ultimately, this excessive trust fosters a pattern of behavioral 
dependency.

The findings above indirectly highlight the critical importance 
of how much external technological tools used during educa-
tion encourage students’ active participation in learning pro-
cesses. As active engagement decreases, cognitive offloading 
increases, and as a result, students’ critical thinking skills fail 
to develop through new experiential learning. A recent study 
examining the relationship between active engagement in cog-
nitive processes and the nature of external tools also points 
to this connection (Stadler et al., 2024). In this study, which 
measured the impact of different external tools on university 
students’ ability to develop arguments on a given topic, two 
tools were used: large language models (LLMs) and traditional 
search engines. While LLMs directly provided compiled infor-
mation to students, traditional search engines only displayed 
relevant links requiring students to evaluate, analyze, and in-
corporate the information from those sources into their argu-
ments—thereby fostering deeper cognitive involvement.

The findings of the study indicate that students who used LLMs 
experienced lower cognitive load across all three dimensions—
namely intrinsic, extraneous, and germane cognitive load—
compared to those who used traditional search engines. This 
suggests that, by their very nature, LLMs assume a substantial 
portion of the user’s cognitive load, thereby reducing the level 
of active cognitive engagement in the learning process. This 
effect is also observable in the diversity of valid arguments stu-
dents developed. The study found that students using tradi-
tional search engines produced a greater variety of valid argu-
ments, whereas argument diversity was notably lower among 
those who used LLMs.

The most comprehensive study to date on how AI tools affect 
cognitive load—including brain activity recordings—was re-
cently published by a group of researchers from MIT (Kosmyna 
et al., 2025). The study focused on investigating the impact of 
external technological tools used during the learning process 
on brain activity. Participants were divided into three groups 
based on the type of tool they used: those who used large 
language models (LLMs), those who used traditional search 
engines, and those who did not use any external tools. Each 
participant was asked to write essays in four separate sessions 
using their assigned tools, while their brain activity was moni-
tored throughout the process.

The most striking finding of the study was that while brain activ-
ity differed significantly between groups, it remained relatively 
homogeneous within each group. In other words, brain activ-
ity varied according to the use and nature of the external tool 
employed. The highest levels of brain activity were observed 
among participants who did not use any external tools, where-
as the lowest levels were recorded in those who used LLMs 
while writing their essays. This finding suggests that the more 
a given tool demands active participation in cognitive process-
es, the greater the corresponding brain activity. Accordingly, 
AI applications—particularly LLMs—elicited the lowest level of 
cognitive demand in this context.

Another notable finding of the study concerned participants’ 
sense of ownership over their essays and their ability to recall 
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In this context, both the intensive individual use of AI tools by 
students and their broader integration into education systems 
necessitate a strong and continually reinforced foundation in 
AI literacy. The primary focus of this literacy should be on how 
to use these technologies ethically and responsibly. Students, 
teachers, and education administrators must be made aware 
of issues related to data security, the potential biases in AI-gen-
erated content, and the fact that such content may not always 
be accurate. They should be encouraged to critically assess and 
question the outputs produced by AI tools. Of course, while 
such educational efforts are essential, they are not sufficient 
on their own. Given that excessive use and overreliance on 
AI tools can foster dependency behaviors, interventions must 
also be introduced to prevent this type of misuse in education-
al settings. These interventions should aim to prevent AI tools 
from replacing students in the learning process. Instead, strat-
egies must be developed to employ AI as a supportive mech-
anism that enhances, rather than substitutes, students’ active 
participation in cognitive processes.
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