Konuralp Journal of Mathematics
Volume 4 No. 1 pp. 68-79 (2016) ©KJM

AN ALTERNATIVE TECHNIQUE FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

NEŞE DERNEK, FATIH AYLIKÇI, AND SEVIL KIVRAK

Abstract

In this paper, a new method for solving ordinary differential equations is given by using the generalized Laplace transform \mathcal{L}_{n}. Firstly, the authors introduce a differential operator $\bar{\delta}$ that is called the $\bar{\delta}$-derivative. A relation between the \mathcal{L}_{n}-transform of the δ-derivative of a function and the \mathcal{L}_{n} transform of the function itself are derived. Then, the convolution theorem is proven. Using obtained theorems, a few initial-value problems for ordinary differential equations are solved as illustrations.

1. Introduction, definitions and preliminaries

The Laplace transform is defined by

$$
\begin{equation*}
\mathcal{L}\{f(x) ; y\}=\int_{0}^{\infty} \exp (-x y) f(x) d x \tag{1.1}
\end{equation*}
$$

The following Laplace-type the \mathcal{L}_{2} transform

$$
\begin{equation*}
\mathcal{L}_{2}\{f(x) ; y\}=\int_{0}^{\infty} x \exp \left(-x^{2} y^{2}\right) f(x) d x, \tag{1.2}
\end{equation*}
$$

was introduced by Yurekli and Sadek [10]. After then Aghili, Ansari and Sedghi [1] derived the following complex inversion formula

$$
\begin{equation*}
\mathcal{L}_{2}^{-1}\left\{\mathcal{L}_{2}\{f(x) ; y\}\right\}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} 2 \mathcal{L}_{2}\{f(x) ; \sqrt{y}\} \exp \left(y x^{2}\right) d y, \tag{1.3}
\end{equation*}
$$

where $\mathcal{L}_{2}\{f(x) ; \sqrt{y}\}$ has a finite number of singularities in the left half plane $\operatorname{Re}(y) \leq c$. The generalized Laplace transform \mathcal{L}_{n} and the inverse generalized

[^0]Laplace transform \mathcal{L}_{n}^{-1} were introduced by Dernek and Aylıkçı in

$$
\begin{gather*}
\mathcal{L}_{n}\{f(x) ; y\}=\int_{0}^{\infty} x^{n-1} \exp \left(-x^{n} y^{n}\right) f(x) d x \tag{1.4}\\
\mathcal{L}_{n}^{-1}\{F(y) ; x\}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} n \mathcal{L}_{n}\left\{f(x) ; y^{\frac{1}{n}}\right\} \exp \left(y x^{n}\right) d y \tag{1.5}
\end{gather*}
$$

respectively. The \mathcal{L}_{n}-transform is related to the Laplace transform with

$$
\begin{equation*}
\mathcal{L}_{n}\{f(x) ; y\}=\frac{1}{n} \mathcal{L}\left\{f\left(x^{\frac{1}{n}}\right) ; y^{n}\right\} \tag{1.6}
\end{equation*}
$$

Definition 1.1. The $\bar{\delta}$ differential operator $\bar{\delta}$ that we call the $\bar{\delta}$-derivative is defined as

$$
\begin{equation*}
\bar{\delta}_{x}=\frac{1}{x^{n-1}} \frac{d}{d x}, \quad(n \in \mathbb{N}) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\delta}_{x}^{2}=\bar{\delta}_{x} \bar{\delta}_{x}=\frac{1}{x^{2 n-2}} \frac{d^{2}}{d x^{2}}-\frac{(n-1)}{x^{2 n-1}} \frac{d}{d x} . \tag{1.8}
\end{equation*}
$$

The $\bar{\delta}$ derivative operator can be successively applied in a similar fashion for any positive integer power.

Definition 1.2. The convolution of $f(x)$ and $g(x)$ is defined by

$$
\begin{equation*}
f(x) * g(x)=\int_{0}^{x} \tau^{n-1} g(\tau) f\left(\left(x^{n}-\tau^{n}\right)^{1 / n}\right) d \tau \tag{1.9}
\end{equation*}
$$

The above integral is often referred to as the convolution integral.

2. The main Results

In this section we will give some properties of the \mathcal{L}_{n}-transform that will be used to solve the initial-boundary-value problems for ordinary differential equations.

Here we will derive a relation between the \mathcal{L}_{n}-transform of the $\bar{\delta}$-derivative of a function (1.7) and the \mathcal{L}_{n}-transform of the function itself.

Theorem 2.1. If $f, f^{\prime}, \ldots, f^{(k-1)}$ are all continuous functions with a piecewise continuous derivative $f^{(k)}$ on the interval $[0, \infty)$, and if all functions are of exponential order $\exp \left(\alpha^{n} x^{n}\right)$ as $x \rightarrow \infty$ for some constant α then

$$
\begin{gather*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x}^{k} f(x) ; y\right\}=\left(n y^{n}\right)^{k} \mathcal{L}_{n}\{f(x) ; y\}-\left(n y^{n}\right)^{k-1} f\left(0^{+}\right) \\
-\left(n y^{n}\right)^{k-2}\left(\bar{\delta}_{x} f\right)\left(0^{+}\right)-\ldots-n y^{n}\left(\bar{\delta}_{x}^{k-2} f\right)\left(0^{+}\right)-\left(\bar{\delta}_{x}^{k-1} f\right)\left(0^{+}\right) \tag{2.1}
\end{gather*}
$$

for $k \geq 1, k$ is a positive integer.
Proof. Suppose that $f(x)$ is a continuous function with a piecewise continuous derivative $f^{\prime}(x)$ on the interval $[0, \infty)$. Also, suppose that f and f^{\prime} are of exponential
order $\exp \left(\alpha^{n} x^{n}\right)$ as $x \rightarrow \infty$ where α is a constant. With using the definitions of \mathcal{L}_{n}-transform and the $\bar{\delta}$ derivative and integration by parts, we obtain

$$
\begin{gather*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x} f(x) ; y\right\}=\int_{0}^{\infty} \exp \left(-y^{n} x^{n}\right) f^{\prime}(x) d x \tag{2.2}\\
\int_{0}^{\infty} \exp \left(-y^{n} x^{n}\right) f^{\prime}(x) d x=\left.\lim _{b \rightarrow \infty} f(x) \exp \left(-y^{n} x^{n}\right)\right|_{0} ^{b} \\
\quad+n y^{n} \int_{0}^{\infty} x^{n-1} \exp \left(-y^{n} x^{n}\right) f(x) d x \tag{2.3}
\end{gather*}
$$

Since f is of exponential order $\exp \left(\alpha^{n} x^{n}\right)$ as $x \rightarrow \infty$, it follows

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \exp \left(-y^{n} x^{n}\right) f(x)=0 \tag{2.4}
\end{equation*}
$$

and consequently,

$$
\begin{equation*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x} f(x) ; y\right\}=n y^{n} \mathcal{L}_{n}\{f(x) ; y\}-f\left(0^{+}\right) \tag{2.5}
\end{equation*}
$$

Similarly, if f and f^{\prime} are continuous functions with a piecewise continuous derivative $f^{\prime \prime}$ on the interval $[0, \infty)$. If all three functions are of exponential order $\exp \left(\alpha^{n} x^{n}\right)$ as $x \rightarrow \infty$, we can use (1.8) to obtain

$$
\begin{equation*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x}^{2} f(x) ; y\right\}=n^{2} y^{2 n} \mathcal{L}_{n}\{f(x) ; y\}-n y^{n} f\left(0^{+}\right)-\bar{\delta}_{x} f\left(0^{+}\right) \tag{2.6}
\end{equation*}
$$

Using (2.5) and (2.6), we get

$$
\begin{gather*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x}^{3} f(x) ; y\right\}=n^{3} y^{3 n} \mathcal{L}_{n}\{f(x) ; y\}-n^{2} y^{2 n} f\left(0^{+}\right) \\
-n y^{n} \bar{\delta}_{x} f\left(0^{+}\right)-\bar{\delta}_{x}^{2} f\left(0^{+}\right) \tag{2.7}
\end{gather*}
$$

With repeated application of (2.5) and (2.7), we obtain the identity (2.1) of Theorem 1.

Theorem 2.2. If f is piecewise continuous on the interval $[0, \infty)$ and is of exponential order $\exp \left(\alpha^{n} x^{n}\right)$ as $x \rightarrow \infty$, then the following relation holds true:

$$
\begin{equation*}
\mathcal{L}_{n}\left\{x^{k n} f(x) ; y\right\}=\frac{(-1)^{k}}{n^{k}} \bar{\delta}_{y}^{k} \mathcal{L}_{n}\{f(x) ; y\} \tag{2.8}
\end{equation*}
$$

for $k \geq 1, k$ is a positive integer.
Proof. The $\mathcal{L}_{n}\{f(x) ; y\}$ defined by (1.4) is an analytic function in the half plane $\operatorname{Re}(y)>\alpha$. It has derivatives of all orders and the derivatives can be formally obtained by differentiating (1.4). Applying the $\bar{\delta}$ with respect to the variable y, we obtain

$$
\begin{gather*}
\bar{\delta}_{y} \mathcal{L}_{n}\{f(x) ; y\}=\frac{1}{y^{n-1}} \frac{d}{d y} \int_{0}^{\infty} x^{n-1} \exp \left(-y^{n} x^{n}\right) f(x) d x \\
=\frac{1}{y^{n-1}} \int_{0}^{\infty} x^{n-1}\left(-x^{n} n y^{n-1} \exp \left(-y^{n} x^{n}\right)\right) f(x) d x=-n \mathcal{L}_{n}\left\{x^{n} f(x) ; y\right\} . \tag{2.9}
\end{gather*}
$$

If we keep taking the $\bar{\delta}$-derivative of (1.4) with respect to the variable y, then we deduce

$$
\begin{equation*}
\bar{\delta}_{y}^{k} \mathcal{L}_{n}\{f(x) ; y\}=\int_{0}^{\infty} x^{n-1} \bar{\delta}_{y}^{k} \exp \left(-y^{n} x^{n}\right) f(x) d x \tag{2.10}
\end{equation*}
$$

for $k \in \mathbb{N}$. Where

$$
\left.\begin{array}{c}
\int_{0}^{\infty} x^{n-1} \bar{\delta}_{y}^{k} \exp \left(-y^{n} x^{n}\right) f(x) d x=\int_{0}^{\infty} x^{n-1} \bar{\delta}_{y}^{k-1}\left[(-n) x^{n} \exp \left(-y^{n} x^{n}\right)\right] f(x) d x \\
=\int_{0}^{\infty} x^{n-1} \bar{\delta}_{y}^{k-2}\left[(-n)^{2} x^{2 n} \exp \left(-y^{n} x^{n}\right)\right] f(x) d x \\
\ldots \tag{2.11}
\end{array}\right\}
$$

Thus we obtain the relation (2.8).
Theorem 2.3. Let $\mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\}$ be an analytic function of y except at singular points each of which lies to the left of the vertical line Re $y=a$ and they are finite numbers. Suppose that $y=0$ is not a branch point and $\lim _{y \rightarrow \infty} \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\}=0$ in the left plane Re $y \leq a$ then, the following identity

$$
\begin{gather*}
\mathcal{L}_{n}^{-1}\left\{\mathcal{L}_{n}\{f(x) ; y\}\right\}=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) d y \\
=\sum_{k=1}^{m}\left[\operatorname{Res}\left\{n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) ; y=y_{k}\right\}\right] \tag{2.12}
\end{gather*}
$$

holds true for m singular points.
Proof. We take a vertical closed semi-circle as contour of integration. Using residues theorem and boundedness of $\mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\}$, we show that the identity (2.12) of Theorem 3 is valid. When $y=0$ is a branch point we take key-hole contour instead of simple vertical semi-circle.

We assume that $\mathcal{L}_{n}\left\{f(x), y^{1 / n}\right\}$ has a finite number of singularities in the left half plane Rey $\leq a$. Let $\gamma=\gamma_{1}+\gamma_{2}$ be the closed contour consisting of the vertical line segment γ_{1}, which is defined from $a-i R$ to $a+i R$ and vertical semi-circle γ_{2}, that is defined as $|y-a|=R$. Let γ_{2} lie to the left of vertical line γ_{1}. The radius R can be taken large enough so that γ encloses all the singularities of the $\mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\}$. Hence, by the residues theorem we have

$$
\begin{gathered}
\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) d y \\
=\frac{1}{2 \pi i} \int_{\gamma_{1}} n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) d y-\frac{1}{2 \pi i} \int_{\gamma_{2}} n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) d y
\end{gathered}
$$

$$
\begin{gather*}
=\sum_{k=1}^{m}\left[\operatorname{Res}\left\{n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) ; y=y_{k}\right\}\right] \\
-\frac{1}{2 \pi i} \int_{\gamma_{2}} n \mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\} \exp \left(y x^{n}\right) d y \tag{2.13}
\end{gather*}
$$

where $y_{1}, y_{2}, \ldots, y_{m}$ are all the singularities of $\mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\}$. Taking the limit from both sides of the relation (2.13) as R tends to $+\infty$, because of the Jordan's Lemma, the second integral in the right tends to zero.

Even $\mathcal{L}_{n}\left\{f(x) ; y^{1 / n}\right\}$ has one branch point at $y=0$, we can use the identity (2.12). The proof of the proposition is similar to the proof of the Main Theorem in the paper [1], where we take $n=2$.

If the number of singularities is infinite, we take the semi-circles γ_{m} which is centered at point a, with radius $R_{m}=\pi^{2} m^{2}, m \in \mathbb{N}$.

We illustrate the above Theorem with showing the following examples.
Example 2.1. We show

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{2 n}+a^{2 n}} ; x\right\}=\frac{n}{a^{n}} \sin \left(a^{n} x^{n}\right) \tag{2.14}
\end{equation*}
$$

where Re $a>0$.
Using the assertion (2.12) of Theorem 3, we obtain

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{2 n}+a^{2 n}} ; x\right\}=\sum_{k=1}^{2} \operatorname{Res}\left[n \frac{1}{y^{2}+a^{2 n}} \exp \left(y x^{n}\right) ; y=y_{k}\right] \tag{2.15}
\end{equation*}
$$

where the singular points are $y_{k}=\mp i a^{n}, k=1,2$. Then we have

$$
\begin{equation*}
\operatorname{Res}\left[\frac{n \exp \left(y x^{n}\right)}{y^{2}+a^{2 n}} ; i a^{n}\right]=\lim _{y \rightarrow i a^{n}} \frac{n\left(y-i a^{n}\right) \exp \left(y x^{n}\right)}{y^{2}+a^{2 n}}=\frac{n \exp \left(i a^{n} x^{n}\right)}{2 i a^{n}} \tag{2.16}
\end{equation*}
$$

and similarly we have

$$
\begin{equation*}
\operatorname{Res}\left[n \frac{1}{y^{2}+a^{2 n}} \exp \left(y x^{n}\right) ;-i a^{n}\right]=-n \frac{\exp \left(-i a^{n} x^{n}\right)}{2 i a^{n}} \tag{2.17}
\end{equation*}
$$

Using the relations (2.16) and (2.17), we find the formula (2.14) from (2.15) as follows:

$$
\begin{align*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{2 n}+a^{2 n}} ; x\right\} & =\frac{n}{a^{n}} \frac{\exp \left(i a^{n} x^{n}\right)-\exp \left(-i a^{n} x^{n}\right)}{2 i} \\
& =\frac{n}{a^{n}} \sin \left(a^{n} x^{n}\right) \tag{2.18}
\end{align*}
$$

Example 2.2. We show

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{n}} \exp \left(-\frac{a^{n}}{y^{n}}\right) ; x\right\}=n J_{0}\left(2 a^{n / 2} x^{n / 2}\right) \tag{2.19}
\end{equation*}
$$

where J_{0} is the Bessel function of order zero.
Using the assertion (2.12) of Theorem 3, we have

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{n}} \exp \left(-\frac{a^{n}}{y^{n}}\right) ; x\right\}=\operatorname{Res}\left[n \frac{1}{y} \exp \left(-\frac{a^{n}}{y}\right) \exp \left(y x^{n}\right), y=y_{k}\right] \tag{2.20}
\end{equation*}
$$

From the following Taylor expansions of the exponential functions in (2.20),

$$
\begin{align*}
& n \frac{1}{y} \exp \left(-\frac{a^{n}}{y}\right) \exp \left(y x^{n}\right)=\frac{n}{y} \sum_{m=0}^{\infty}(-1)^{m} \frac{a^{m n}}{m!y^{m}} \sum_{k=0}^{\infty} \frac{y^{k} x^{n k}}{k!} \\
& =\frac{n}{y}\left[1-\frac{a^{n}}{1!y}+\frac{a^{2 n}}{2!y^{2}}-\frac{a^{3 n}}{3!y^{3}}+\ldots\right]\left[1+\frac{x^{n} y}{1!}+\frac{x^{2 n} y^{2}}{2!}+\frac{x^{3 n}}{3!}+\ldots\right], \tag{2.21}
\end{align*}
$$

we find $\operatorname{Res}\left[n \frac{1}{y} \exp \left(-\frac{a^{n}}{y}\right) \exp \left(y x^{n}\right)\right]$ as the coefficient of the term $\frac{1}{y}$ as follows

$$
\begin{align*}
& \operatorname{Res}\left[n \frac{1}{y} \exp \left(-\frac{a^{n}}{y}\right) \exp \left(y x^{n}\right)\right]=n\left[1-\frac{a^{n} x^{n}}{(1!)^{2}}+\frac{a^{2 n} x^{2 n}}{(2!)^{2}}-\frac{a^{3 n} x^{3 n}}{(3!)^{2}}+\ldots\right] \\
& 2) \quad \begin{array}{l}
=n \sum_{m=0}^{\infty}(-1)^{m} \frac{(a x)^{m n}}{(m!)^{2}}=n J_{0}\left(2 a^{n / 2} x^{n / 2}\right) .
\end{array} \tag{2.22}
\end{align*}
$$

Thus, we obtain from (2.22) and the formula (2.20), the assertion (2.19) of Example 2.

Theorem 2.4. (Convolution Theorem)
If $\mathcal{L}_{n}\{f(x) ; y\}=F(y)$ and $\mathcal{L}_{n}\{g(x) ; y\}=G(y)$, then we have

$$
\begin{equation*}
\mathcal{L}_{n}\{f(x) * g(x) ; y\}=\mathcal{L}_{n}\{f(x) ; y\} \mathcal{L}_{n}\{g(x) ; y\}=F(y) G(y) \tag{2.23}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\{F(y) G(y) ; x\}=f(x) * g(x) \tag{2.24}
\end{equation*}
$$

where $f(x) * g(x)$ is called the convolution of $f(x)$ and $g(x)$ and it is defined by the relation (1.9).

Proof. We have, by definitions (1.4) and (1.9),

$$
\begin{equation*}
\mathcal{L}_{n}\{f(x) * g(x) ; y\}=\int_{0}^{\infty} x^{n-1} \exp \left(-x^{n} y^{n}\right) \int_{0}^{x} \tau^{n-1} g(\tau) f\left(\left(x^{n}-\tau^{n}\right)^{1 / n}\right) d \tau d x \tag{2.25}
\end{equation*}
$$

The integration in (2.25) is first performed with respect to τ from $\tau=0$ to $\tau=x$ of the vertical strip and then from $x=0$ to ∞ by moving the vertical strip from $x=0$ outwards to cover the whole region under the line $\tau=x$. We now change the order of integration so that we integrate first along the horizontal strip from $t=\tau$ to ∞ and then from $\tau=0$ to ∞ by moving the horizontal strip vertically from $\tau=0$ upwards. Evidently, (2.25) becomes

$$
\begin{gather*}
\mathcal{L}_{n}\{f(x) * g(x) ; y\} \\
=\int_{0}^{\infty} \tau^{n-1} g(\tau) \int_{\tau=x}^{\infty} x^{n-1} \exp \left(-x^{n} y^{n}\right) f\left(\left(x^{n}-\tau^{n}\right)^{1 / n}\right) d x d \tau \tag{2.26}
\end{gather*}
$$

which is, by the change of variable $x^{n}-\tau^{n}=u^{n}$,

$$
\mathcal{L}_{n}\{f(x) * g(x) ; y\}=\int_{0}^{\infty} \tau^{n-1} g(\tau) \int_{0}^{\infty} u^{n-1} \exp \left(-\left(u^{n}+\tau^{n}\right) y^{n}\right) f(u) d u d \tau
$$

$$
\begin{gather*}
=\left(\int_{0}^{\infty} \tau^{n-1} \exp \left(-\tau^{n} y^{n}\right) g(\tau) d \tau\right)\left(\int_{0}^{\infty} u^{n-1} \exp \left(-u^{n} y^{n}\right) f(u) d u\right) \\
=G(y) F(y) \tag{2.27}
\end{gather*}
$$

3. Application of the \mathcal{L}_{n}-TRANSFORM to ordinary differential EQUATIONS
Example 3.1. We solve the following ordinary differential equation

$$
\begin{equation*}
x z^{\prime \prime}-(2 v+n-3) z^{\prime}+x^{n-1} z=0, k \in \mathbb{N}, v \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

solution: Dividing (3.1) by x^{n-1}, adding and subtracting the term $\frac{n-1}{x^{n-1}} z^{\prime}$ we obtain

$$
\begin{equation*}
x^{n}\left(\frac{1}{x^{2 n-2}} z^{\prime \prime}-\frac{n-1}{x^{2 n-1}} z^{\prime}\right)+\frac{n-1}{x^{n-1}} z^{\prime}-\frac{2 v+n-3}{x^{n-1}} z^{\prime}+z=0 . \tag{3.2}
\end{equation*}
$$

Using the definition of the $\bar{\delta}$-derivative given in (1.7) and (1.8), we can express (3.2) as

$$
\begin{equation*}
x^{n} \bar{\delta}_{x}^{2} z(x)-2(v-1) \bar{\delta}_{x} z(x)+z(x)=0 \tag{3.3}
\end{equation*}
$$

Applying the \mathcal{L}_{n}-transform to (3.3), we find

$$
\begin{equation*}
\mathcal{L}_{n}\left\{x^{n} \bar{\delta}_{x}^{2} z ; y\right\}-2(v-1) \mathcal{L}_{n}\left\{\bar{\delta}_{x} z ; y\right\}+\mathcal{L}_{n}\{z(x) ; y\}=0 \tag{3.4}
\end{equation*}
$$

Using Theorem 1 for $k=1$ and $k=2$ in (3.4) and performing necessary calculations we obtain

$$
\begin{gather*}
-\frac{1}{n} \bar{\delta}_{y} \mathcal{L}_{n}\left\{\bar{\delta}_{x}^{2} z ; y\right\}-2(v-1) \mathcal{L}_{n}\left\{\bar{\delta}_{x} z ; y\right\}+\mathcal{L}_{n}\{z ; y\}=0 \tag{3.5}\\
-\frac{1}{n} \frac{1}{y^{n-1}} \frac{d}{d y}\left(n^{2} y^{2 n} \bar{z}(y)-n y^{n} z\left(0^{+}\right)-\bar{\delta}_{x} z\left(0^{+}\right)\right) \\
-2(v-1)\left(n y^{n} \bar{z}(y)-z\left(0^{+}\right)\right)+\bar{z}(y)=0 \tag{3.6}
\end{gather*}
$$

where $\bar{z}(y)=\mathcal{L}_{n}\{z(x) ; y\}$. We assume that $z\left(0^{+}\right)=0$. Thus, we obtain the following first order differential equation:

$$
\begin{equation*}
\bar{z}^{\prime}(y)+\left(2(n+v-1) \frac{1}{y}-\frac{1}{n y^{n+1}}\right) \bar{z}(y)=0 . \tag{3.7}
\end{equation*}
$$

Solving the first order differential equation (3.7), we have

$$
\begin{equation*}
\bar{z}(y)=C \sum_{m=0}^{\infty}(-1)^{m} \frac{1}{m!n^{2 m} y^{m n+2 n+2 v-2}} \tag{3.8}
\end{equation*}
$$

Applying the \mathcal{L}_{n}^{-1} transform, we obtain

$$
\begin{equation*}
z(x)=C \sum_{m=0}^{\infty}(-1)^{m} \frac{x^{m n+n+2 v-2}}{m!\Gamma\left(m+\frac{n+2 v-2}{n}+1\right) n^{2 m-1}} \tag{3.9}
\end{equation*}
$$

where we use the following relations

$$
\begin{equation*}
\mathcal{L}_{n}\left\{x^{k} ; y\right\}=\frac{\Gamma\left(\frac{k}{n}+1\right)}{n y^{n+k}}, k=m n+n+2 v-2 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{m n+n+2 v-2+n}} ; x\right\}=\frac{n x^{m n+n+2 v-2}}{\Gamma\left(m+1+\frac{2 v-2}{n}+1\right)} \tag{3.11}
\end{equation*}
$$

Setting $\alpha=\frac{2 v+n-2}{n}, C=n^{-\frac{2 v-2}{n}-2}$, we obtain the solution of the ordinary differential equation (3.1),

$$
\begin{equation*}
z(x)=x^{\frac{n \alpha}{2}} J_{\alpha}\left(\frac{2}{n} x^{\frac{n}{2}}\right) \tag{3.12}
\end{equation*}
$$

where $\alpha \in \mathbb{Z}$ because of the inequality $v>n(v, n \in \mathbb{N})$ and J_{α} is the Bessel function of the first kind of order α.

Example 3.2. We solve the following ordinary differential equation

$$
\begin{equation*}
x z^{\prime \prime}-\left(n^{2}-1\right) z^{\prime}+x^{n-1} z=0, n=0,1,2, \ldots \tag{3.13}
\end{equation*}
$$

solution: Dividing (3.13) by x^{n-1}, adding and subtracting the term $\frac{n-1}{x^{n-1}} z^{\prime}$ we obtain

$$
\begin{gather*}
x^{n}\left(\frac{1}{x^{2 n-2}} z^{\prime \prime}(x)-\frac{n-1}{x^{2 n-1}} z^{\prime}(x)\right)+\frac{n-1}{x^{n-1}} z^{\prime}(x) \\
-\left(n^{2}-1\right) \frac{1}{x^{n-1}} z^{\prime}(x)+z(x)=0 \tag{3.14}
\end{gather*}
$$

Using the definition of the $\bar{\delta}_{x}$-derivative (1.7) and (1.8), we can express (3.14) as

$$
\begin{equation*}
x^{n} \bar{\delta}_{x}^{2} z(x)-n(n-1) \bar{\delta}_{x} z(x)+z(x)=0 \tag{3.15}
\end{equation*}
$$

Considering the following relations;

$$
\begin{align*}
& \mathcal{L}_{n}\left\{x^{n} \bar{\delta}_{x}^{2} z(x) ; y\right\}=-\frac{1}{n} \bar{\delta}_{y} \mathcal{L}_{n}\left\{\bar{\delta}_{x}^{2} z(x) ; y\right\}=-2 n^{2} y^{n} \bar{z}(y)-n y^{n+1} \bar{z}^{\prime}(y)+n z\left(0^{+}\right) \tag{3.16}\\
& n(n-1) \mathcal{L}_{n}\left\{\bar{\delta}_{x} z(x) ; y\right\}=n(n-1)\left(n y^{n} \bar{z}(y)-z\left(0^{+}\right)\right) \\
& =n^{2}(n-1) y^{n} \bar{z}(y)-n(n-1) z\left(0^{+}\right) \tag{3.17}
\end{align*}
$$

and applying the \mathcal{L}_{n}-transform to (3.15), we obtain

$$
\begin{align*}
& \mathcal{L}_{n}\left\{x^{n} \bar{\delta}_{x}^{2} z(x) ; y\right\}-n(n-1) \mathcal{L}_{n}\left\{\bar{\delta}_{x} z(x) ; y\right\}+\mathcal{L}_{n}\{z(x) ; y\}=0 \tag{3.18}\\
& n y^{n+1} \bar{z}^{\prime}(y)+\left[n^{2}(n+1) y^{n}-1\right] \bar{z}(y)-n^{2} z\left(0^{+}\right)=0 \tag{3.19}
\end{align*}
$$

where $\bar{z}(y)=\mathcal{L}_{n}\{z(x) ; y\}$.
We may assume

$$
\begin{equation*}
z\left(0^{+}\right)=0 \tag{3.20}
\end{equation*}
$$

Solving the first order differential equation after substituting (3.20) into (3.19), we get

$$
\begin{equation*}
\bar{z}(y)=C y^{-n^{2}-n} \exp \left(-\frac{1}{n^{2} y^{n}}\right) \tag{3.21}
\end{equation*}
$$

Calculating the Taylor expansion of the exponential function in (3.21), we have

$$
\begin{equation*}
\bar{z}(y)=C \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!n^{2 m}} \frac{1}{y^{n+n m+n^{2}}} \tag{3.22}
\end{equation*}
$$

Using the following relation,

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{y^{n+n m+n^{2}}} ; x\right\}=\frac{n x^{n m+n^{2}}}{\Gamma(m+n+1)} \tag{3.23}
\end{equation*}
$$

and applying the \mathcal{L}_{n}^{-1} transform to (3.22), we find

$$
\begin{equation*}
z(x)=C n^{n+1} x^{\frac{n^{2}}{2}} \sum_{m=0}^{\infty}(-1)^{m} \frac{1}{m!\Gamma(m+n+1)}\left(\frac{2 x^{n / 2}}{2 n}\right)^{2 m+n} . \tag{3.24}
\end{equation*}
$$

Setting $C=n^{-n-1}$ in (3.24), we obtain the solution of the equation (3.13)

$$
\begin{equation*}
z(x)=x^{\frac{n^{2}}{2}} J_{n}\left\{\frac{2}{n} x^{\frac{n}{2}}\right\} \tag{3.25}
\end{equation*}
$$

where J_{n} is the Bessel function of the first kind of order n.
Example 3.3. We solve the following initial-value problem:

$$
\begin{gather*}
u_{x x}-(n-1) \frac{1}{x} u_{x}-x^{n-1} u_{x}=x^{2 n-2} f(x), x>0 \tag{3.26}\\
u\left(0^{+}\right)=0, u_{x}\left(0^{+}\right)=0 \tag{3.27}
\end{gather*}
$$

solution: Dividing both sides of (3.26) by $x^{2 n-2}$, we get

$$
\begin{equation*}
x^{-2 n+2} u_{x x}-(n-1) x^{-2 n+1} u_{x}-x^{-n+1} u_{x}=f(x) \tag{3.28}
\end{equation*}
$$

We use the definitions (1.7) and (1.8), the equation (3.28) becomes

$$
\begin{equation*}
\bar{\delta}_{x}^{2} u-\bar{\delta}_{x} u=f(x) \tag{3.29}
\end{equation*}
$$

Applying the \mathcal{L}_{n}-transform on both sides of (3.29), we have

$$
\begin{equation*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x}^{2} u ; y\right\}-\mathcal{L}_{n}\left\{\bar{\delta}_{x} u ; y\right\}=\mathcal{L}_{n}\{f(x) ; y\} \tag{3.30}
\end{equation*}
$$

Using the definitions (1.7) and (1.8), we get

$$
\begin{equation*}
n^{2} y^{2 n} U-n y^{n} u\left(0^{+}\right)-\left(\bar{\delta}_{x} u\right)\left(0^{+}\right)-n y^{n} U+u\left(0^{+}\right)=F(y) \tag{3.31}
\end{equation*}
$$

where $\mathcal{L}_{n}\{u(x) ; y\}=U(y), \mathcal{L}_{n}\{f(x) ; y\}=F(y)$.
Applying the initial conditions (3.27), we get the following equation:

$$
\begin{equation*}
U(y)=\frac{1}{n y^{n}-1} F(y)-\frac{1}{n y^{n}} F(y) \tag{3.32}
\end{equation*}
$$

The inverse generalized Laplace transform (1.5) together with the Convolution Theorem (2.24) leads to the solution:

$$
\begin{equation*}
u(x)=\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}-1} ; x\right\} * f(x)-\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}} ; x\right\} * f(x) \tag{3.33}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}-1} ; x\right\}= & \lim _{y \rightarrow \frac{1}{n}}\left(y-\frac{1}{n}\right) \frac{n}{n y-1} \exp \left(y x^{n}\right)=\exp \left(x^{n} / n\right) \tag{3.34}\\
& \mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}} ; x\right\}=1 \tag{3.35}
\end{align*}
$$

and

$$
\begin{equation*}
u(x)=\left(\exp \left(x^{n} / n\right)-1\right) * f(x) \tag{3.36}
\end{equation*}
$$

By the definition of convolution for the \mathcal{L}_{n}-transform, we get the following formal solution:

$$
\begin{equation*}
u(x)=\int_{0}^{x} \tau^{n-1}\left[\exp \left(\frac{1}{n}\left(x^{n}-\tau^{n}\right)\right)-1\right] f(\tau) d \tau \tag{3.37}
\end{equation*}
$$

In particular, if we take $f(x)=A_{0}=$ constant then the solution (3.37) is reduced to

$$
\begin{equation*}
u(x)=A_{0}\left(\exp \left(x^{n} / n\right)-\frac{x^{n}}{n}-1\right) \tag{3.38}
\end{equation*}
$$

Example 3.4. We solve the following initial-value problem:

$$
\begin{gather*}
u_{x x}-\frac{n-1}{x} u_{x}+x^{n-1} u_{x}=x^{2 n-2} f(x), x>0 \tag{3.39}\\
u\left(0^{+}\right)=0, u_{x}\left(0^{+}\right)=0 \tag{3.40}
\end{gather*}
$$

solution: Dividing both sides of (3.39) by $x^{2 n-2}$, we have

$$
\begin{equation*}
\frac{1}{x^{2 n-2}} u_{x x}-\frac{n-1}{x^{2 n-1}} u_{x}+\frac{1}{x^{n-1}} u_{x}=f(x) \tag{3.41}
\end{equation*}
$$

Using the definitions of $\bar{\delta}_{x}$ and $\bar{\delta}_{x}^{2}$-derivatives (1.7,1.8), we get

$$
\begin{equation*}
\bar{\delta}_{x}^{2} u+\bar{\delta}_{x} u=f(x) \tag{3.42}
\end{equation*}
$$

Applying the \mathcal{L}_{n}-transform to both sides of (3.42), we obtain

$$
\begin{equation*}
\mathcal{L}_{n}\left\{\bar{\delta}_{x}^{2} u ; y\right\}+\mathcal{L}_{n}\left\{\bar{\delta}_{x} u ; y\right\}=\mathcal{L}_{n}\{f(x) ; y\} \tag{3.43}
\end{equation*}
$$

Using the formulas (2.5) and (2.6) of Theorem 1 and the initial conditions (3.40), we find the following equation:

$$
\begin{equation*}
U(y)=\frac{1}{n y^{n}} F(y)-\frac{1}{n y^{n}+1} F(y) \tag{3.44}
\end{equation*}
$$

Applying the \mathcal{L}_{n}^{-1}-inverse transform to both sides of (3.44) and using the Convolution Theorem, we get

$$
\begin{gather*}
u(x)=\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}} F(y) ; x\right\}-\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}+1} F(y) ; x\right\} \tag{3.45}\\
u(x)=\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}} ; x\right\} * f(x)-\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}+1} ; x\right\} * f(x) \tag{3.46}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}} ; x\right\}=1 \text { and } \mathcal{L}_{n}^{-1}\left\{\frac{1}{n y^{n}+1} ; x\right\}=\exp \left(-x^{n} / n\right) \tag{3.47}
\end{equation*}
$$

Substituting the relations in (3.47) into (3.46), we find

$$
\begin{equation*}
u(x)=\left(1-\exp \left(-x^{n} / n\right)\right) * f(x) \tag{3.48}
\end{equation*}
$$

From the definition (1.9) of convolution for the \mathcal{L}_{n}-transform, we have the following formal solutions:

$$
\begin{equation*}
u(x)=\int_{0}^{x} \tau^{n-1}\left(1-\exp \left(-\tau^{n} / n\right)\right) f\left(\left(x^{n}-\tau^{n}\right)^{1 / n}\right) d \tau \tag{3.49}
\end{equation*}
$$

or

$$
\begin{equation*}
u(x)=\int_{0}^{x} \tau^{n-1}\left(1-\exp \left(-\frac{1}{n}\left(x^{n}-\tau^{n}\right)\right)\right) f(\tau) d \tau \tag{3.50}
\end{equation*}
$$

In particular if $f(x)=A_{0}=$ constant, then the solution (3.49) reduces to

$$
\begin{equation*}
u(x)=A_{0}\left(\exp \left(-x^{n} / n\right)+\frac{x^{n}}{n}-1\right) \tag{3.51}
\end{equation*}
$$

Example 3.5. We solve the following initial-value problem:

$$
\begin{gather*}
x^{2} u_{x x}-n x u_{x}=f(x), x>0 \tag{3.52}\\
u\left(0^{+}\right)=0, u_{x}\left(0^{+}\right)=0 . \tag{3.53}
\end{gather*}
$$

solution: We can write the non-homogenous equation (3.52) the following form:

$$
\begin{equation*}
x^{2 n}\left(\frac{1}{x^{2 n-2}} u_{x x}-\frac{n-1}{x^{2 n-1}} u_{x}\right)-x^{n} \frac{1}{x^{n-1}} u_{x}=f(x) \tag{3.54}
\end{equation*}
$$

Using the definitions $\bar{\delta}_{x}$ and $\bar{\delta}_{x}^{2}$ differential operators (1.7,1.8), we have

$$
\begin{equation*}
x^{2 n} \bar{\delta}_{x}^{2} u-x^{n} \bar{\delta}_{x} u=f(x) \tag{3.55}
\end{equation*}
$$

Taking the \mathcal{L}_{n}-transform yields

$$
\begin{equation*}
\mathcal{L}_{n}\left\{x^{2 n} \bar{\delta}_{x}^{2} u ; y\right\}-\mathcal{L}_{n}\left\{x^{n} \bar{\delta}_{x} u ; y\right\}=\mathcal{L}_{n}\{f(x) ; y\} \tag{3.56}
\end{equation*}
$$

Using the relation 2.8 of Theorem 2 and the relation 2.1 of Theorem 1, we find

$$
\begin{gather*}
\frac{1}{n^{2}} \bar{\delta}_{y}^{2} \mathcal{L}_{n}\left\{\bar{\delta}_{x}^{2} u ; y\right\}+\frac{1}{n} \bar{\delta}_{y} \mathcal{L}_{n}\left\{\bar{\delta}_{x} u ; y\right\}=F(y) \tag{3.57}\\
\frac{1}{n^{2}}\left(\frac{1}{y^{2 n-2}} \frac{d^{2}}{d y^{2}}-\frac{n-1}{y^{2 n-1}} \frac{d}{d y}\right)\left[n^{2} y^{2 n} U-n y^{n} u\left(0^{+}\right)-\left(\bar{\delta}_{x} u\right)\left(0^{+}\right)\right] \\
+\frac{1}{n y^{n-1}} \frac{d}{d y}\left[n y^{n} U-u\left(0^{+}\right)\right]=F(y) \tag{3.58}
\end{gather*}
$$

Using the given initial conditions 3.53, we obtain the following differential equations:

$$
\begin{equation*}
y^{2} U_{y y}+(3 n+2) y U_{y}+n(2 n+1) U=F(y) \tag{3.59}
\end{equation*}
$$

Multiplying to $y^{2 n}$ of (3.59), we get

$$
\begin{equation*}
d\left(y^{2 n+2} U_{y}\right)+n d\left(y^{2 n+1} U\right)=y^{2 n} F(y) \tag{3.60}
\end{equation*}
$$

Integrating both sides of (3.60) and multiplying by y^{-n-2} both sides of the result, we have

$$
\begin{equation*}
y^{n} U_{y}+n y^{n-1} U=y^{-n-2} \int y^{2 n} F(y) d y+c_{1} y^{-n-2} \tag{3.61}
\end{equation*}
$$

and then,

$$
\begin{equation*}
d\left(y^{n} U\right)=y^{-n-2} \int y^{2 n} F(y) d y+c_{1} y^{-n-2} \tag{3.62}
\end{equation*}
$$

where c_{1} is an arbitrary constant.
Integrating both sides of (3.62) and multiplying y^{-n} both sides of the result, we obtain

$$
\begin{equation*}
U(y)=y^{-n} \int y^{-n-2}\left[\int y^{2 n} F(y) d y\right] d y-c_{1} \frac{y^{-2 n-1}}{n+1}+c_{2} y^{-n} \tag{3.63}
\end{equation*}
$$

where c_{2} is an arbitrary constant. If we take $f(x)=0$, then $\mathcal{L}_{n}\{f(x) ; y\}=F(y)=$ 0 . Making use the following relation:

$$
\begin{equation*}
\mathcal{L}_{n}\left\{x^{k n} ; y\right\}=\frac{\Gamma(k+1)}{n y^{n(k+1)}} \tag{3.64}
\end{equation*}
$$

the solution of the problem becomes

$$
\begin{equation*}
u(x)=n c_{2}-c_{1} \frac{n}{n+1} \frac{x^{n+1}}{\Gamma\left(2+\frac{1}{n}\right)} \tag{3.65}
\end{equation*}
$$

Conclusion: We conclude this investigation by remarking that many other available initial-boundary value problems can be solved in this manner by applying the above theorems. In some problems, this method is useful than the other methods.

References

[1] A.,Aghili, A.,Ansari, A.,Sedghi, An inversion technique for the \mathcal{L}_{2}-transform with applications, Int. J. Contemp. Math. Sciences, (2007), 2.28, 1387-1394.
[2] A.,Aghili, A.,Ansari, A new approach to solving SIEs and system of PFDEs using the \mathcal{L}_{2} transform, Differential Equations and Control Processes, (2010), N3, 1817-2172.
[3] L.,Debnath, The double Laplace Transforms and their properties with applications to functional, integral and partial differential equations, International Journal of Applied and Computational Mathematics, (2015), 1-19.
[4] N.,Dernek, F.,Aylıkcı, Identities for the Ln-transform, The $\mathcal{L}_{2 n}$-transform and the $\mathcal{P}_{2 n}$ transform and their applications, Journal of Inequality and Special Functions, (2014), 5.4, 1-16.
[5] N.,Dernek, F.,Aylıkcı, Laplace ve \mathcal{L}_{2} dnşmleriyle kısmi trevli denklemlerin çzmleri, Marmara University, (2014), Master Thesis.
[6] D.G.,Duffy, Transform methods for solving partial differential equations, Symbolic and Numeric Computation, (2004).
[7] A.,Erdelyi, W.,Magnus, F.,Oberhettinger, F.G.,Tricomi, Tables of integral transforms Vol. 1, (1954), New York,NY,USA, McGraw-Hill.
[8] A.,Erdelyi, W.,Magnus, F.,Oberhettinger, F.G.,Tricomi, Tables of integral transforms Vol. 2, (1954), New York,NY,USA, McGraw-Hill.
[9] O.,Yürekli, Theorems on \mathcal{L}_{2}-transform and its applications, (1983), Vol. 13 of Physical Sciences Data, Elsevier Scientific Publishing Co., Amsterdam.
[10] O.,Yürekli, I.,Sadek, A Parseval-Goldstein type theorem on the Widder potential transform and its applications, International Journal of Mathematics and Mathematical Sciences, (1991), 14.3, 517-524.
[11] O.,Yürekli, S.,Wilson, A new method of solving Bessel's differential equation using the \mathcal{L}_{2} transform, Applied Mathematics and Computation, (2002), 130.2, 587-591.
[12] O.,Yürekli, S.,Wilson, A new method of solving Hermite's differential equation using the \mathcal{L}_{2}-transform, Applied Mathematics and Computation, (2003), 145.2, 495-500.
[13] E.,Zauderer, Partial differential equations of applied mathematics, (2004), John Wiley and Sons, Inc.
(1) Department of Mathematics, Marmara University, TR-34722 Kadiköy, Istanbul, Turkey
(2) Department of Mathematical Engineering, Yildiz Technical University, TR-34220 Esenler, Istanbul, Turkey
(3) Department of Mathematics, Marmara University, TR-34722 Kadiköy, Istanbul, Turkey

E-mail address: ndernek@marmara.edu.tr

[^0]: 2000 Mathematics Subject Classification. 44A10, 44A15, 44A20, 34A30.
 Key words and phrases. The Laplace transform, The \mathcal{L}_{n}-transform, The \mathcal{L}_{n}^{-1}-transform and Linear ordinary differential equations.

