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AN ALTERNATIVE TECHNIQUE FOR SOLVING ORDINARY

DIFFERENTIAL EQUATIONS

NEŞE DERNEK, FATIH AYLIKÇI, AND SEVIL KIVRAK

Abstract. In this paper, a new method for solving ordinary differential equa-

tions is given by using the generalized Laplace transform Ln. Firstly, the

authors introduce a differential operator δ that is called the δ-derivative. A
relation between the Ln-transform of the δ-derivative of a function and the Ln-

transform of the function itself are derived. Then, the convolution theorem

is proven. Using obtained theorems, a few initial-value problems for ordinary
differential equations are solved as illustrations.

1. Introduction, definitions and preliminaries

The Laplace transform is defined by

(1.1) L{f(x); y} =

∞∫
0

exp(−xy)f(x)dx.

The following Laplace-type the L2 transform

(1.2) L2{f(x); y} =

∞∫
0

x exp(−x2y2)f(x)dx,

was introduced by Yurekli and Sadek [10]. After then Aghili, Ansari and Sedghi [1]
derived the following complex inversion formula

(1.3) L−1
2 {L2{f(x); y}} =

1

2πi

c+i∞∫
c−i∞

2L2{f(x);
√
y} exp(yx2)dy,

where L2{f(x);
√
y} has a finite number of singularities in the left half plane

Re(y) ≤ c. The generalized Laplace transform Ln and the inverse generalized
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Laplace transform L−1
n were introduced by Dernek and Aylıkçı in

(1.4) Ln{f(x); y} =

∞∫
0

xn−1 exp(−xnyn)f(x)dx

(1.5) L−1
n {F (y);x} =

1

2πi

c+i∞∫
c−i∞

nLn{f(x); y
1
n } exp(yxn)dy,

respectively. The Ln-transform is related to the Laplace transform with

(1.6) Ln{f(x); y} =
1

n
L{f(x

1
n ); yn}.

Definition 1.1. The δ differential operator δ that we call the δ-derivative is defined
as

(1.7) δx =
1

xn−1

d

dx
, (n ∈ N)

and

(1.8) δ
2

x = δxδx =
1

x2n−2

d2

dx2
− (n− 1)

x2n−1

d

dx
.

The δ derivative operator can be successively applied in a similar fashion for any
positive integer power.

Definition 1.2. The convolution of f(x) and g(x) is defined by

(1.9) f(x) ∗ g(x) =

x∫
0

τn−1g(τ)f((xn − τn)1/n)dτ.

The above integral is often referred to as the convolution integral.

2. The main results

In this section we will give some properties of the Ln-transform that will be used
to solve the initial-boundary-value problems for ordinary differential equations.

Here we will derive a relation between the Ln-transform of the δ-derivative of a
function (1.7) and the Ln-transform of the function itself.

Theorem 2.1. If f, f ′, ..., f (k−1) are all continuous functions with a piecewise con-
tinuous derivative f (k) on the interval [0,∞), and if all functions are of exponential
order exp(αnxn) as x→∞ for some constant α then

Ln{δ
k

xf(x); y} = (nyn)kLn{f(x); y} − (nyn)k−1f(0+)

(2.1) −(nyn)k−2(δxf)(0+)− ...− nyn(δ
k−2

x f)(0+)− (δ
k−1

x f)(0+)

for k ≥ 1, k is a positive integer.

Proof. Suppose that f(x) is a continuous function with a piecewise continuous de-
rivative f ′(x) on the interval [0,∞). Also, suppose that f and f ′ are of exponential
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order exp(αnxn) as x → ∞ where α is a constant. With using the definitions of
Ln-transform and the δ derivative and integration by parts, we obtain

(2.2) Ln{δxf(x); y} =

∞∫
0

exp(−ynxn)f ′(x)dx,

∞∫
0

exp(−ynxn)f ′(x)dx = lim
b→∞

f(x) exp(−ynxn)|b0

(2.3) +nyn
∞∫

0

xn−1 exp(−ynxn)f(x)dx.

Since f is of exponential order exp(αnxn) as x→∞, it follows

(2.4) lim
x→∞

exp(−ynxn)f(x) = 0

and consequently,

(2.5) Ln{δxf(x); y} = nynLn{f(x); y} − f(0+).

Similarly, if f and f ′ are continuous functions with a piecewise continuous derivative
f ′′ on the interval [0,∞). If all three functions are of exponential order exp(αnxn)
as x→∞, we can use (1.8) to obtain

(2.6) Ln{δ
2

xf(x); y} = n2y2nLn{f(x); y} − nynf(0+)− δxf(0+).

Using (2.5) and (2.6), we get

Ln{δ
3

xf(x); y} = n3y3nLn{f(x); y} − n2y2nf(0+)

(2.7) −nynδxf(0+)− δ2

xf(0+).

With repeated application of (2.5) and (2.7), we obtain the identity (2.1) of Theorem
1.

Theorem 2.2. If f is piecewise continuous on the interval [0,∞) and is of expo-
nential order exp(αnxn) as x→∞, then the following relation holds true:

(2.8) Ln{xknf(x); y} =
(−1)k

nk
δ
k

yLn{f(x); y}

for k ≥ 1, k is a positive integer.

Proof. The Ln{f(x); y} defined by (1.4) is an analytic function in the half plane
Re(y) > α. It has derivatives of all orders and the derivatives can be formally
obtained by differentiating (1.4). Applying the δ with respect to the variable y, we
obtain

δyLn{f(x); y} =
1

yn−1

d

dy

∞∫
0

xn−1 exp(−ynxn)f(x)dx

(2.9) =
1

yn−1

∞∫
0

xn−1(−xnnyn−1 exp(−ynxn))f(x)dx = −nLn{xnf(x); y}.
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If we keep taking the δ-derivative of (1.4) with respect to the variable y, then we
deduce

(2.10) δ
k

yLn{f(x); y} =

∞∫
0

xn−1δ
k

y exp(−ynxn)f(x)dx

for k ∈ N. Where
∞∫

0

xn−1δ
k

y exp(−ynxn)f(x)dx =

∞∫
0

xn−1δ
k−1

y [(−n)xn exp(−ynxn)]f(x)dx

=

∞∫
0

xn−1δ
k−2

y [(−n)2x2n exp(−ynxn)]f(x)dx

. . .

(2.11) =

∞∫
0

xn−1[(−n)kxkn exp(−ynxn)]f(x)dx = (−n)kLn{xknf(x); y}.

Thus we obtain the relation (2.8).

Theorem 2.3. Let Ln{f(x); y1/n} be an analytic function of y except at singular
points each of which lies to the left of the vertical line Re y = a and they are finite
numbers. Suppose that y = 0 is not a branch point and lim

y→∞
Ln{f(x); y1/n} = 0 in

the left plane Re y ≤ a then, the following identity

L−1
n {Ln{f(x); y}} =

1

2πi

a+i∞∫
a−i∞

nLn{f(x); y1/n} exp(yxn)dy

(2.12) =

m∑
k=1

[Res{nLn{f(x); y1/n} exp(yxn); y = yk}]

holds true for m singular points.

Proof. We take a vertical closed semi-circle as contour of integration. Using residues
theorem and boundedness of Ln{f(x); y1/n}, we show that the identity (2.12) of
Theorem 3 is valid. When y = 0 is a branch point we take key-hole contour instead
of simple vertical semi-circle.

We assume that Ln{f(x), y1/n} has a finite number of singularities in the left
half plane Rey ≤ a. Let γ = γ1 +γ2 be the closed contour consisting of the vertical
line segment γ1, which is defined from a − iR to a + iR and vertical semi-circle
γ2, that is defined as |y − a| = R. Let γ2 lie to the left of vertical line γ1. The
radius R can be taken large enough so that γ encloses all the singularities of the
Ln{f(x); y1/n}. Hence, by the residues theorem we have

1

2πi

a+i∞∫
a−i∞

nLn{f(x); y1/n} exp(yxn)dy

=
1

2πi

∫
γ1

nLn{f(x); y1/n} exp(yxn)dy − 1

2πi

∫
γ2

nLn{f(x); y1/n} exp(yxn)dy
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=

m∑
k=1

[Res{nLn{f(x); y1/n} exp(yxn); y = yk}]

(2.13) − 1

2πi

∫
γ2

nLn{f(x); y1/n} exp(yxn)dy

where y1, y2, . . . , ym are all the singularities of Ln{f(x); y1/n}. Taking the limit
from both sides of the relation (2.13) as R tends to +∞, because of the Jordan’s
Lemma, the second integral in the right tends to zero.

Even Ln{f(x); y1/n} has one branch point at y = 0, we can use the identity
(2.12). The proof of the proposition is similar to the proof of the Main Theorem in
the paper [1], where we take n = 2.

If the number of singularities is infinite, we take the semi-circles γm which is
centered at point a, with radius Rm = π2m2,m ∈ N.

We illustrate the above Theorem with showing the following examples.

Example 2.1. We show

(2.14) L−1
n

{ 1

y2n + a2n
;x
}

=
n

an
sin(anxn)

where Re a > 0.
Using the assertion (2.12) of Theorem 3, we obtain

(2.15) L−1
n

{ 1

y2n + a2n
;x
}

=

2∑
k=1

Res
[
n

1

y2 + a2n
exp(yxn); y = yk

]
where the singular points are yk = ∓ian , k = 1, 2. Then we have

(2.16) Res
[n exp(yxn)

y2 + a2n
; ian

]
= lim
y→ian

n(y − ian) exp(yxn)

y2 + a2n
=
n exp(ianxn)

2ian

and similarly we have

(2.17) Res
[
n

1

y2 + a2n
exp(yxn);−ian

]
= −nexp(−ianxn)

2ian
.

Using the relations (2.16) and (2.17), we find the formula (2.14) from (2.15) as
follows:

L−1
n

{ 1

y2n + a2n
;x
}

=
n

an
exp(ianxn)− exp(−ianxn)

2i

(2.18) =
n

an
sin(anxn).

Example 2.2. We show

(2.19) L−1
n

{ 1

yn
exp

(
− an

yn

)
;x
}

= nJ0(2an/2xn/2)

where J0 is the Bessel function of order zero.
Using the assertion (2.12) of Theorem 3, we have

(2.20) L−1
n {

1

yn
exp

(
− an

yn

)
;x} = Res

[
n

1

y
exp

(
− an

y

)
exp(yxn), y = yk

]
.
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From the following Taylor expansions of the exponential functions in (2.20),

n
1

y
exp

(
− an

y

)
exp(yxn) =

n

y

∞∑
m=0

(−1)m
amn

m!ym

∞∑
k=0

ykxnk

k!

(2.21) =
n

y

[
1− an

1!y
+
a2n

2!y2
− a3n

3!y3
+ ...

][
1 +

xny

1!
+
x2ny2

2!
+
x3n

3!
+ ...

]
,

we find Res[n 1
y exp(−a

n

y ) exp(yxn)] as the coefficient of the term 1
y as follows

Res
[
n

1

y
exp

(
− an

y

)
exp(yxn)

]
= n

[
1− anxn

(1!)2
+
a2nx2n

(2!)2
− a3nx3n

(3!)2
+ ...

]

(2.22) = n

∞∑
m=0

(−1)m
(ax)mn

(m!)2
= nJ0(2an/2xn/2).

Thus, we obtain from (2.22) and the formula (2.20), the assertion (2.19) of Example
2.

Theorem 2.4. (Convolution Theorem)
If Ln{f(x); y} = F (y) and Ln{g(x); y} = G(y), then we have

(2.23) Ln{f(x) ∗ g(x); y} = Ln{f(x); y}Ln{g(x); y} = F (y)G(y).

Or equivalently,

(2.24) L−1
n {F (y)G(y);x} = f(x) ∗ g(x),

where f(x) ∗ g(x) is called the convolution of f(x) and g(x) and it is defined by the
relation (1.9).

Proof. We have, by definitions (1.4) and (1.9),

(2.25) Ln{f(x) ∗ g(x); y} =

∞∫
0

xn−1 exp(−xnyn)

x∫
0

τn−1g(τ)f((xn− τn)1/n)dτdx.

The integration in (2.25) is first performed with respect to τ from τ = 0 to τ = x
of the vertical strip and then from x = 0 to ∞ by moving the vertical strip from
x = 0 outwards to cover the whole region under the line τ = x. We now change
the order of integration so that we integrate first along the horizontal strip from
t = τ to ∞ and then from τ = 0 to ∞ by moving the horizontal strip vertically
from τ = 0 upwards. Evidently, (2.25) becomes

Ln{f(x) ∗ g(x); y}

(2.26) =

∞∫
0

τn−1g(τ)

∞∫
τ=x

xn−1 exp(−xnyn)f((xn − τn)1/n)dxdτ,

which is, by the change of variable xn − τn = un,

Ln{f(x) ∗ g(x); y} =

∞∫
0

τn−1g(τ)

∞∫
0

un−1 exp(−(un + τn)yn)f(u)dudτ
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=
( ∞∫

0

τn−1 exp(−τnyn)g(τ)dτ
)( ∞∫

0

un−1 exp(−unyn)f(u)du
)

(2.27) = G(y)F (y).

3. Application of the Ln-transform to ordinary differential
equations

Example 3.1. We solve the following ordinary differential equation

(3.1) xz′′ − (2v + n− 3)z′ + xn−1z = 0, k ∈ N, v ∈ N.
solution: Dividing (3.1) by xn−1, adding and subtracting the term n−1

xn−1 z
′ we obtain

(3.2) xn
( 1

x2n−2
z′′ − n− 1

x2n−1
z′
)

+
n− 1

xn−1
z′ − 2v + n− 3

xn−1
z′ + z = 0.

Using the definition of the δ-derivative given in (1.7) and (1.8), we can express (3.2)
as

(3.3) xnδ
2

xz(x)− 2(v − 1)δxz(x) + z(x) = 0.

Applying the Ln-transform to (3.3), we find

(3.4) Ln{xnδ
2

xz; y} − 2(v − 1)Ln{δxz; y}+ Ln{z(x); y} = 0.

Using Theorem 1 for k = 1 and k = 2 in (3.4) and performing necessary calculations
we obtain

(3.5) − 1

n
δyLn{δ

2

xz; y} − 2(v − 1)Ln{δxz; y}+ Ln{z; y} = 0,

− 1

n

1

yn−1

d

dy
(n2y2nz(y)− nynz(0+)− δxz(0+))

(3.6) −2(v − 1)(nynz(y)− z(0+)) + z(y) = 0

where z(y) = Ln{z(x); y}. We assume that z(0+) = 0. Thus, we obtain the
following first order differential equation:

(3.7) z′(y) +
(

2(n+ v − 1)
1

y
− 1

nyn+1

)
z(y) = 0.

Solving the first order differential equation (3.7), we have

(3.8) z(y) = C

∞∑
m=0

(−1)m
1

m!n2mymn+2n+2v−2
.

Applying the L−1
n transform, we obtain

(3.9) z(x) = C

∞∑
m=0

(−1)m
xmn+n+2v−2

m!Γ(m+ n+2v−2
n + 1)n2m−1

where we use the following relations

(3.10) Ln{xk; y} =
Γ( kn + 1)

nyn+k
, k = mn+ n+ 2v − 2

and

(3.11) L−1
n

{ 1

ymn+n+2v−2+n
;x
}

=
nxmn+n+2v−2

Γ(m+ 1 + 2v−2
n + 1)

.
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Setting α = 2v+n−2
n , C = n−

2v−2
n −2, we obtain the solution of the ordinary differ-

ential equation (3.1),

(3.12) z(x) = x
nα
2 Jα

( 2

n
x
n
2

)
,

where α ∈ Z because of the inequality v > n (v, n ∈ N) and Jα is the Bessel function
of the first kind of order α.

Example 3.2. We solve the following ordinary differential equation

(3.13) xz′′ − (n2 − 1)z′ + xn−1z = 0, n = 0, 1, 2, ...,

solution: Dividing (3.13) by xn−1, adding and subtracting the term n−1
xn−1 z

′ we
obtain

xn
( 1

x2n−2
z′′(x)− n− 1

x2n−1
z′(x)

)
+
n− 1

xn−1
z′(x)

(3.14) −(n2 − 1)
1

xn−1
z′(x) + z(x) = 0.

Using the definition of the δx-derivative (1.7) and (1.8), we can express (3.14) as

(3.15) xnδ
2

xz(x)− n(n− 1)δxz(x) + z(x) = 0.

Considering the following relations;
(3.16)

Ln{xnδ
2

xz(x); y} = − 1

n
δyLn{δ

2

xz(x); y} = −2n2ynz(y)− nyn+1z′(y) + nz(0+),

n(n− 1)Ln{δxz(x); y} = n(n− 1)(nynz(y)− z(0+))

(3.17) = n2(n− 1)ynz(y)− n(n− 1)z(0+),

and applying the Ln-transform to (3.15), we obtain

(3.18) Ln{xnδ
2

xz(x); y} − n(n− 1)Ln{δxz(x); y}+ Ln{z(x); y} = 0

(3.19) nyn+1z′(y) + [n2(n+ 1)yn − 1]z(y)− n2z(0+) = 0

where z(y) = Ln{z(x); y}.
We may assume

(3.20) z(0+) = 0.

Solving the first order differential equation after substituting (3.20) into (3.19), we
get

(3.21) z(y) = Cy−n
2−n exp

(
− 1

n2yn

)
.

Calculating the Taylor expansion of the exponential function in (3.21), we have

(3.22) z(y) = C

∞∑
m=0

(−1)m

m!n2m

1

yn+nm+n2 .

Using the following relation,

(3.23) L−1
n

{ 1

yn+nm+n2 ;x
}

=
nxnm+n2

Γ(m+ n+ 1)
,
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and applying the L−1
n transform to (3.22), we find

(3.24) z(x) = Cnn+1x
n2

2

∞∑
m=0

(−1)m
1

m!Γ(m+ n+ 1)

(2xn/2

2n

)2m+n

.

Setting C = n−n−1 in (3.24), we obtain the solution of the equation (3.13)

(3.25) z(x) = x
n2

2 Jn

{ 2

n
x
n
2

}
where Jn is the Bessel function of the first kind of order n.

Example 3.3. We solve the following initial-value problem:

(3.26) uxx − (n− 1)
1

x
ux − xn−1ux = x2n−2f(x), x > 0,

(3.27) u(0+) = 0, ux(0+) = 0.

solution: Dividing both sides of (3.26) by x2n−2, we get

(3.28) x−2n+2uxx − (n− 1)x−2n+1ux − x−n+1ux = f(x).

We use the definitions (1.7) and (1.8), the equation (3.28) becomes

(3.29) δ
2

xu− δxu = f(x).

Applying the Ln-transform on both sides of (3.29), we have

(3.30) Ln{δ
2

xu; y} − Ln{δxu; y} = Ln{f(x); y}.
Using the definitions (1.7) and (1.8), we get

(3.31) n2y2nU − nynu(0+)− (δxu)(0+)− nynU + u(0+) = F (y)

where Ln{u(x); y} = U(y), Ln{f(x); y} = F (y).
Applying the initial conditions (3.27), we get the following equation:

(3.32) U(y) =
1

nyn − 1
F (y)− 1

nyn
F (y).

The inverse generalized Laplace transform (1.5) together with the Convolution The-
orem (2.24) leads to the solution:

(3.33) u(x) = L−1
n

{ 1

nyn − 1
;x
}
∗ f(x)− L−1

n

{ 1

nyn
;x
}
∗ f(x),

where

(3.34) L−1
n

{ 1

nyn − 1
;x
}

= lim
y→ 1

n

(
y − 1

n

) n

ny − 1
exp(yxn) = exp(xn/n),

(3.35) L−1
n

{ 1

nyn
;x
}

= 1

and

(3.36) u(x) = (exp(xn/n)− 1) ∗ f(x).

By the definition of convolution for the Ln-transform, we get the following formal
solution:

(3.37) u(x) =

x∫
0

τn−1
[

exp
( 1

n
(xn − τn)

)
− 1
]
f(τ)dτ.
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In particular, if we take f(x) = A0 =constant then the solution (3.37) is reduced
to

(3.38) u(x) = A0

(
exp(xn/n)− xn

n
− 1
)
.

Example 3.4. We solve the following initial-value problem:

(3.39) uxx −
n− 1

x
ux + xn−1ux = x2n−2f(x), x > 0

(3.40) u(0+) = 0, ux(0+) = 0.

solution: Dividing both sides of (3.39) by x2n−2, we have

(3.41)
1

x2n−2
uxx −

n− 1

x2n−1
ux +

1

xn−1
ux = f(x).

Using the definitions of δx and δ
2

x-derivatives (1.7,1.8), we get

(3.42) δ
2

xu+ δxu = f(x)

Applying the Ln-transform to both sides of (3.42), we obtain

(3.43) Ln{δ
2

xu; y}+ Ln{δxu; y} = Ln{f(x); y}.

Using the formulas (2.5) and (2.6) of Theorem 1 and the initial conditions (3.40),
we find the following equation:

(3.44) U(y) =
1

nyn
F (y)− 1

nyn + 1
F (y).

Applying the L−1
n -inverse transform to both sides of (3.44) and using the Convolu-

tion Theorem, we get

(3.45) u(x) = L−1
n

{ 1

nyn
F (y);x

}
− L−1

n

{ 1

nyn + 1
F (y);x

}
,

(3.46) u(x) = L−1
n

{ 1

nyn
;x
}
∗ f(x)− L−1

n

{ 1

nyn + 1
;x
}
∗ f(x),

where

(3.47) L−1
n

{ 1

nyn
;x
}

= 1 and L−1
n

{ 1

nyn + 1
;x
}

= exp(−xn/n).

Substituting the relations in (3.47) into (3.46), we find

(3.48) u(x) = (1− exp(−xn/n)) ∗ f(x).

From the definition (1.9) of convolution for the Ln-transform, we have the following
formal solutions:

(3.49) u(x) =

x∫
0

τn−1(1− exp(−τn/n))f((xn − τn)1/n)dτ

or

(3.50) u(x) =

x∫
0

τn−1
(

1− exp
(
− 1

n
(xn − τn)

))
f(τ)dτ.
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In particular if f(x) = A0 =constant, then the solution (3.49) reduces to

(3.51) u(x) = A0

(
exp(−xn/n) +

xn

n
− 1
)
.

Example 3.5. We solve the following initial-value problem:

(3.52) x2uxx − nxux = f(x), x > 0

(3.53) u(0+) = 0, ux(0+) = 0.

solution: We can write the non-homogenous equation (3.52) the following form:

(3.54) x2n
( 1

x2n−2
uxx −

n− 1

x2n−1
ux

)
− xn 1

xn−1
ux = f(x)

Using the definitions δx and δ
2

x differential operators (1.7,1.8), we have

(3.55) x2nδ
2

xu− xnδxu = f(x).

Taking the Ln-transform yields

(3.56) Ln{x2nδ
2

xu; y} − Ln{xnδxu; y} = Ln{f(x); y}.
Using the relation 2.8 of Theorem 2 and the relation 2.1 of Theorem 1, we find

(3.57)
1

n2
δ

2

yLn{δ
2

xu; y}+
1

n
δyLn{δxu; y} = F (y)

1

n2

( 1

y2n−2

d2

dy2
− n− 1

y2n−1

d

dy

)
[n2y2nU − nynu(0+)− (δxu)(0+)]

(3.58) +
1

nyn−1

d

dy
[nynU − u(0+)] = F (y)

Using the given initial conditions 3.53, we obtain the following differential equations:

(3.59) y2Uyy + (3n+ 2)yUy + n(2n+ 1)U = F (y).

Multiplying to y2n of (3.59), we get

(3.60) d(y2n+2Uy) + nd(y2n+1U) = y2nF (y).

Integrating both sides of (3.60) and multiplying by y−n−2 both sides of the result,
we have

(3.61) ynUy + nyn−1U = y−n−2

∫
y2nF (y)dy + c1y

−n−2

and then,

(3.62) d(ynU) = y−n−2

∫
y2nF (y)dy + c1y

−n−2

where c1 is an arbitrary constant.
Integrating both sides of (3.62) and multiplying y−n both sides of the result, we
obtain

(3.63) U(y) = y−n
∫
y−n−2[

∫
y2nF (y)dy]dy − c1

y−2n−1

n+ 1
+ c2y

−n

where c2 is an arbitrary constant. If we take f(x) = 0, then Ln{f(x); y} = F (y) =
0. Making use the following relation:

(3.64) Ln{xkn; y} =
Γ(k + 1)

nyn(k+1)
,
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the solution of the problem becomes

(3.65) u(x) = nc2 − c1
n

n+ 1

xn+1

Γ(2 + 1
n )
.

Conclusion: We conclude this investigation by remarking that many other
available initial-boundary value problems can be solved in this manner by apply-
ing the above theorems. In some problems, this method is useful than the other
methods.
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