HYERS-ULAM-RASSIAS TYPE STABILITY OF POLYNOMIAL EQUATIONS

N. EGHBALI

Abstract. In this paper we introduce the concept of Hyers-Ulam-Rassias stability of polynomial equations and then we show that if \(x \) is an approximate solution of the equation \(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \), then there exists an exact solution of the equation near to \(x \).

1. Introduction

The basic problem of the stability of functional equations had been first raised by Ulam [7] which Hyers in [3] gave a partial solution of Ulam’s problem for the case of approximately additive mappings. And then Rassias provided a generalization of the Hyers theorem for additive and linear mappings in [6].

Moreover the approximately mappings have been studied extensively in several papers (See for instance [4], [5]).

Li and Hua [2] investigated the Hyers-Ulam stability of the polynomial equation \(x^n + \alpha x + \beta = 0 \) on \([-1, 1]\). Later Bikhdam et al. in [1] proved that if \(|a_1|\) is large and \(|a_0|\) is small enough, then every approximate zero of the polynomial of degree \(n \), \(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a = 0 \), can be approximated by a true zero within a good error bound.

In this paper, we prove the Hyers-Ulam-Rassias stability for the following two equations

\[
a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a = 0
\]

\[
e^x + \alpha x + \beta = 0
\]

on a Banach space \(X \) with real coefficients.

Date: August 1, 2015 and, in revised form, October 4, 2015.
2000 Mathematics Subject Classification. Primary 46S40; Secondary 39B52, 39B82, 26E50.
Key words and phrases. Hyers-Ulam stability, Hyers-Ulam-Rassias stability; Polynomial equation; power series equation.
2. Preliminaries

In this section, we provide a collection of definitions and related results which are essential and used in the next discussions.

Definition 2.1. One says that the equation
\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a = 0 \]
has the Hyers-Ulam stability if there exists a constant \(K > 0 \) with the following property:
for every \(\varepsilon > 0, y \in [-1, 1] \), if
\[|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a| \leq \varepsilon \]
then there exists some \(y \in [-1, 1] \) satisfying
\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a = 0 \]
such that \(|x - y| \leq K \varepsilon \). One call such \(K \) a Hyers-Ulam stability constant for 2.1.

Theorem 2.1. For a given integer \(n > 1 \), let the constants \(a_0, a_1, \ldots, a_n \in \mathbb{R} \) satisfy
\[|a_1| > 2|a_2| + 3|a_3| + \ldots + (n-1)|a_{n-1}| + n|a_n| \]
and \(|a_0| < |a_1| - (|a_2| + |a_3| + \ldots + |a_n|) \).
If \(v \in [-1, 1] \) satisfies the inequality
\[|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0| \leq \varepsilon \]
for some \(\varepsilon > 0 \), then there exists a zero \(y \in [-1, 1] \) of polynomial 2.1 such that
\[|y - v| \leq K \varepsilon . \]

Proof. [1] \(\square \)

3. Hyers-Ulam-Rassias Stability of power series equations

We start our work with definition of Hyers-Ulam-Rassias stability of power series equations.

Definition 3.1. Let \(X \) be a complex Banach algebra with unit. The equation
\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a = 0 \]
from \(X \) into \(X \) with constant coefficient, has the Hyers-Ulam-Rassias stability if there exists a constant \(K > 0 \) with the following property:
for every \(\varepsilon > 0, p \in \mathbb{R} \) and \(y \in X \), if
\[|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0| \leq \varepsilon ||X||^n p \]
then there exists some \(x \in X \) satisfying
\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a = 0 \]
such that \(||x - y|| \leq K \varepsilon \). One call such \(K \) a Hyers-Ulam-Rassias stability constant for 2.1.

Theorem 3.1. Let \(X \) be a complex Banach algebra with unit, the constants \(a_0, a_1, \ldots, a_n \in \mathbb{R} \) and \(r \in \mathbb{R}^+ \) satisfy
\[|a_1| r > |a_0| + r^2 |a_2| + \ldots + nr^{n-1} |a_n| , \]
and
\[|a_0| < r^2 |a_2| + 3r^3 |a_3| + \ldots + (n-1)r^n |a_n|). \]
Let for some polynomial 2.1 such that

\[\|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0\| \leq \varepsilon \|x\|^{np} \]

for some \(\varepsilon > 0 \) and \(p \in \mathbb{R} \), then there exists a zero \(x_0 \in \{ x \in X; \|x\| \leq r \} \) of polynomial 2.1 such that

\[\|x - x_0\| \leq \frac{\varepsilon r^{np}}{(1 - \lambda)|a_1|} \]

where \(\lambda = \frac{2|a_2| + 3|a_3| + \ldots + (n-1)|a_{n-1}| + n|a_n|}{|a_1|} \) is a positive constant less than 1 and it is independent of \(\varepsilon \) and \(x_0 \).

Proof. If we set \(g(x) = \frac{-1}{a_1} (a_0 + a_2 x^2 + a_3 x^3 + \ldots + a_{n-1} x^{n-1} + a_n x^n) \), for \(x \in \{ x \in X; \|x\| \leq r \} \), then we have

\[\|g(x)\| = \frac{1}{|a_1|} \|a_0 + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n x^n\| \leq r. \]

Now, we show that \(g \) is a contraction map:

\[\|g(x) - g(y)\| = \left| \frac{1}{a_1} (a_0 + a_2 x^2 + \ldots + a_n x^n) - \frac{1}{a_1} (a_0 + \ldots + a_n y^n) \right| \leq \frac{1}{|a_1|} |x - y| \left\{ |a_2| \|x + y\| + \ldots + |a_n| \|x^{n-1} + \ldots + y^{n-1}\| \right\} \leq \frac{1}{|a_1|} |x - y| \left\{ 2r |a_2| + 3r^2 |a_3| + \ldots + nr^{n-1} |a_n| \right\}. \]

Here, with \(\lambda = \frac{2|a_2| + 3|a_3| + \ldots + (n-1)|a_{n-1}| + n|a_n|}{|a_1|} < 1 \), \(g \) is a contraction map. By the Banach contraction mapping theorem, there exists a unique \(x_0 \in \{ x \in X; \|x\| \leq 1 \} \) such that \(g(x_0) = x_0 \). It follows from (3.1) and (3.2) that

\[\|x - x_0\| \leq \|x - g(x)\| + \|g(x) - g(x_0)\| \leq |x - \frac{1}{a_1} (-a_0 - a_2 x^2 - \ldots - a_1 x + a_0) + \lambda \|x - x_0\| = \frac{1}{|a_1|} \|a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0\| + \lambda \|x - x_0\|. \]

Thus we have

\[\|x - x_0\| \leq \frac{1}{|a_1| |1 - \lambda|} \varepsilon \|x\|^{np} \leq \frac{\varepsilon r^{np}}{(1 - \lambda)|a_1|}. \]

\[\square \]

Theorem 3.2. Let \(X \) be a complex Banach algebra with unit, \(r \in \mathbb{R}^+ \), \(|\alpha| > Max\{\sum_{n=1}^{\infty} \frac{n \alpha^n}{n!}, \frac{e^x + |\beta|}{r}\} \) and \(x \in \{ x \in X; \|x\| \leq r \} \) satisfies

\[|e^x + \alpha x + \beta| \leq \varepsilon \|x\|^{np}. \]

Then \(e^x + \alpha x + \beta = 0 \) has a unique solution \(x_0 \in \{ x \in X; \|x\| \leq r \} \), such that

\[\|x - x_0\| \leq \frac{\varepsilon r^{np}}{|\alpha||1 - \lambda|}, \] where \(\lambda = \sum_{n=1}^{\infty} \frac{n \alpha^n}{n!} \).

Proof. We define the function \(g(x) = \frac{-1}{\alpha} (e^x + \beta) \). It follows that \(\|g(x)\| \leq \frac{1}{|\alpha| |1 + |\beta||} (e^x + |\beta|) \leq r. \) Now, we have

\[\|g(x) - g(y)\| \leq \frac{1}{|\alpha|} \|e^x - e^y\| \leq \frac{1}{|\alpha|} \sum_{n=1}^{\infty} \frac{x^n - y^n}{n!} \leq \frac{1}{|\alpha|} \sum_{n=2}^{\infty} \frac{x - y}{x - y} \|x^{n-1} + x^n - y + \ldots + xy^{n-2} + y^n - 1\| \leq \frac{1}{|\alpha|} \sum_{n=2}^{\infty} \frac{n \alpha^{n-1}}{n!} \|x - y\|. \]

By putting \(\lambda = \sum_{n=1}^{\infty} \frac{n \alpha^{n-1}}{n!} \) and Banach's contraction mapping theorem, \(g \) has a unique fixed point. So

\[\|x - x_0\| \leq \|x - g(x)\| + \|g(x) - g(x_0)\| \leq \frac{1}{|\alpha|} \varepsilon \|x\|^{np} + \lambda \|x - x_0\|. \]
Therefore $\|x - x_0\| \leq \frac{\epsilon r^n p}{|\alpha|(1-\lambda)}$.

References

