
Konuralp Journal of Mathematics
Volume 4 No. 1 pp. 275–281 (2016) c©KJM

TRANSLATION SURFACES IN THE 3-DIMENSIONAL SIMPLY

ISOTROPIC SPACE I13 SATISFYING ∆IIIxi = λixi

BAHADDIN BUKCU, DAE WON YOON, AND MURAT KEMAL KARACAN

Abstract. In this paper, we classify translation surfaces in the three dimen-
sional simply isotropic space I13 satisfying some algebraic equations in terms of

the coordinate functions and the Laplacian operators with respect to the third
fundamental form of the surface. We also give explicit forms of these surfaces.

1. Introduction

Let x : M→Em be an isometric immersion of a connected n-dimensional man-
ifold in the m-dimensional Euclidean space Em. Denote by H and ∆ the mean
curvature and the Laplacian of M with respect to the Riemannian metric on M in-
duced from that of Em, respectively. Takahashi ([19]) proved that the submanifolds
in Em satisfying ∆x = λx, that is, all coordinate functions are eigenfunctions of the
Laplacian with the same eigenvalue λ ∈ R are either the minimal submanifolds of
Em or the minimal submanifolds of hypersphere Sm−1 in Em.

As an extension of Takahashi theorem, Garay studied in [12] hypersurfaces in Em
whose coordinate functions are eigenfunctions of the Laplacian, but not necessarily
associated to the same eigenvalue. He considered hypersurfaces in Em satisfying
the condition

(1.1) ∆x = Ax,

where A ∈Mat (m,R) is an m×m- diagonal matrix, and proved that such hyper-
surfaces are minimal (H = 0) in Em and open pieces of either round hyperspheres
or generalized right spherical cylinders.

Related to this, Dillen, Pas and Verstraelen ([10]) investigated surfaces in E3

whose immersions satisfy the condition

(1.2) ∆x = Ax + B,

where A ∈Mat (3,R) is a 3 × 3-real matrix and B ∈ R3. In other words, each
coordinate function is of 1-type in the sense of Chen ([9]). For the Lorentzian
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version of surfaces satisfying (1.2), Alias, Ferrandez and Lucas ([1]) proved that
the only such surfaces are minimal surfaces and open pieces of Lorentz circular
cylinders, hyperbolic cylinders, Lorentz hyperbolic cylinders, hyperbolic spaces or
pseudo-spheres.

The notion of an isometric immersion x is naturally extended to smooth functions
on submanifolds of Euclidean space or pseudo-Euclidean space. The most natural
one of them is the Gauss map of the submanifold. In particular, if the submanifold
is a hypersurface, the Gauss map can be identified with the unit normal vector
field to it. Dillen, Pas and Verstraelen ([11]) studied surfaces of revolution in the
3-dimensional Euclidean space E3 such that its Gauss map G satisfies the condition

(1.3) ∆G = AG,

where A ∈ Mat (3,R). Baikoussis and Verstraelen ([4]) studied the helicoidal sur-
faces in E3. Choi ([7]) completely classified the surfaces of revolution satisfying
the condition (1.3) in the 3- dimensional Minkowski space E3

1. The authors ([8,
20]) classified surfaces of revolution satisfying (1.2) and (1.3) in the 3-dimensional
Minkowski space and pseudo-Galilean space. The authors ([21]) classified the trans-
lation surfaces in the 3-dimensional Galilean space under the condition ∆xi = λixi,
where λi ∈ R.The authors ([6]) classified translation surfaces in the 3-dimensional
space satisfying ∆IIIri= µiri. The authors ([13]) classified surfaces of revolution in
the 3-dimensional Minkowski space satisfying ∆IIIr = Ar, where A ∈ Mat (3,R).
The authors ([14]) classified the translation surfaces in the 3-dimensional simply
isotropic space under the condition ∆jxi = λixi, where λi ∈ R and j = I, II,

The main purpose of this paper is to complete classification of translation sur-
faces in the three dimensional simply isotropic space I13 in terms of the position
vector field and the Laplacian operator.

2. Preliminaries

A simply isotropic space I13 is a Cayley–Klein space defined from the three di-
mensional projective space P(R3) with the absolute figure which is an ordered
triple (w, f1, f2), where w is a plane in P(R3) and f1, f2 are two complex-conjugate
straight lines in w. The homogeneous coordinates in P(R3) are introduced in such
a way that the absolute plane w is given by x0 = 0 and the absolute lines f1, f2 by
x0 = x1 + ix2 = 0, x0 = x1− ix2 = 0. The intersection point F(0 : 0 : 0 : 1) of these
two lines is called the absolute point. The group of motions of the simply isotropic
space is a six-parameter group given in the affine coordinates x = x1

x0
, y = x2

x0
, z = x3

x0

by

(2.1) x = a+ x cos θ − y sin θ

y = b+ x sin θ + y cos θ

z = c+ c1x+ c2y + z,

where a, b, c, c1, c2, θ ∈ R. Such affine transformations are called isotropic con-
gruence transformations or i-motions [15, 17].

Isotropic geometry has different types of lines and planes with respect to the
absolute figure. A line is called non-isotropic (resp. completely isotropic) if its
point at infinity does not coincide (coincides) with the point F. A plane is called
non-isotropic (resp. isotropic) if its line at infinity does not contain F. Completely
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isotropic lines and isotropic planes in this affine model appear as vertical, i.e.,
parallel to the z-axis. Finally, the metric of the simply isotropic space I13 is given
by

ds2 = dx2 + dy2.

A surface M immersed in I13 is called admissible if it has no isotropic tangent
planes. For such a surface, the coefficients E,F,G of its first fundamental form are
calculated with respect to the induced metric and the coefficients L,M,N of the
second fundamental form, with respect to the normal vector field of a surface which
is always completely isotropic. The (isotropic) Gaussian and mean curvature are
defined by

(2.2) K = k1k2 =
LN −M2

EG− F 2
, 2H = k1 + k2 =

EN − 2FM +GL

EG− F 2
,

where k1, k2 are principal curvatures, i.e., extrema of the normal curvature deter-
mined by the normal section (in completely isotropic direction) of a surface. Since
EG−F 2 > 0, for the function in the denominator we often put W 2 = EG−F 2.The
surface M is said to be isotropic flat (resp. isotropic minimal ) if K (resp. H) van-
ishes [17].

It is well known in terms of local coordinates {u, v} of M the Laplacian operator
∆III of the third fundamental form on M is defined by ([13])

(2.3) ∆IIIx = −
√
EG− F 2

LN −M2

 ∂
∂u

(
Zxu−Y xv

(LN−M2)
√
EG−F 2

)
−

∂
∂v

(
Y xu−Xxv

(LN−M2)
√
EG−F 2

)  ,
where

X = EM2 − 2FLM +GL2,

Y = EMN − FLN +GLM − FM2,

Z = GM2 − 2FNM + EN2.

3. Translation Surfaces in I13
In order to describe the isotropic analogues of translation surfaces of constant

curvatures, we consider translation surfaces obtained by translating two planar
curves. The local surface parametrization is given by

(3.1) x(u, v) = α(u) + β(v).

Since there are, with respect to the absolute figure, different types of planes in
I13 , there are in total three different possibilities for planes that contain translated
curves: the translated curves can be curves in isotropic planes (which can be chosen,
by means of isotropic motions, as y = 0, resp. x = 0); or one curve is in a non-
isotropic plane (z = 0) and one curve in an isotropic plane (y = 0); or both curves
are curves in non-isotropic perpendicular planes (y − z = π, resp. y + z = π).
Therefore, the obtained translation surfaces allow the following parametrizations:

Type 1: The surface M is parametrized by

(3.2) x(u, v) = (u, v, f(u) + g(v)) ,

and the translated curves are α(u) = (u, 0, f(u)), β(v) = (0, v, g(v)) .
Type 2: The surface M is parametrized by

(3.3) x(u, v) = (u, f(u) + g(v), v) ,
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and the translated curves are α(u) = (u, f(u), 0), β(v) = (0, g(v), v) . In order to
obtain admissible surfaces, g′(v) 6= 0 is assumed (i.e. g(v) 6=const.).

Type 3: The surface M is parametrized by

(3.3) x(u, v) =
1

2
(f(u) + g(v), u− v + π, u+ v) ,

and the translated curves are

α(u) =
1

2

(
f(u), u+

π

2
, u− π

2

)
, β(v) =

(
g(v),

π

2
− v, π

2
+ v
)
.

In order to obtain admissible surfaces, f ′(u) + g′(v) 6= 0 is assumed (i.e. f ′(u) 6=
−g′(v) = a =constant.) ([17]).

In this paper, we will investigate the surface Type 1.

4. Translation Surfaces Satisfying ∆IIIxi= λixi

In this section, we classify translation surface in I13 satisfying the equation

(4.1) ∆IIIxi= λixi,

where λi∈R, i=1, 2, 3 and

∆IIIx =
(
∆IIIx1,∆

IIIx2,∆
IIIx3

)
,

where
x1 = u, x2 = v, x3 = f(u) + g(v).

For the translation surface is given by (3.2), the coefficients of the first and second
fundamental form are

(4.2) E = 1, F = 0, G = 1,

(4.3) L = f ′′,M = 0, N = g′′,

respectively. The Gaussian curvature K and the mean curvature H are

(4.4) K = f ′′(u)g′′(v), H =
f ′′(u) + g′′(v)

2
,

respectively.
Suppose that the surface has non zero Gaussian curvature, so f ′′(u)g′′(v) 6=

0,∀u ∈ I. By a straightforward computation, the Laplacian operator on M with
the help of (4.2),(4.3) and (2.3) turns out to be

(4.5) ∆IIIx =

(
f ′′′

f ′′3
,
g′′′

g′′3
,
−f ′′3g′′2 − f ′′2g′′3 + f ′g′′

3

f ′′′ + g′f ′′
3

g′′′

f ′′3g′′3

)
.

Equation (4.1) by means of (4.5) gives rise to the following system of ordinary
differential equations

(4.6)

(
f ′′′

f ′′3

)
= λ1u,

(4.7)

(
g′′′

g′′3

)
= λ2v,

(4.8)
−f ′′3g′′2 − f ′′2g′′3 + f ′g′′

3

f ′′′ + g′f ′′
3

g′′′

f ′′3g′′3
= λ3 (f(u) + g(v)) ,
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where λ1, λ2 and λ3 ∈ R.This means that M is at most of 3- types. Combining
equations (4.6), (4.7) and (4.8), we have

(4.9) − 1

f ′′
+ λ1uf

′ − λ3f =
1

g′′
− λ2vg

′ + λ3g.

Here u and v are independent variables, so each side of (4.9) is equal to constant,
call it a. Hence, we have

(4.10) − 1

f ′′
+ λ1uf

′ − λ3f = a =
1

g′′
− λ2vg

′ + λ3g.

If we choose a = 0, then we get

(4.11) − 1

f ′′
+ λ1uf

′ − λ3f = 0 =
1

g′′
− λ2vg

′ + λ3g,

where ci, λi ∈ R. If we solve (4.10) and (4.11), there are no any suitable solutions.
If we differentiate both sides of (4.10) respect to u and v, respectively, we get the
following

(4.12) f ′′′ + λ1uf
′′3 + f ′f ′′

2

(λ1 − λ3) = 0,

g′′′ + λ2vg
′′3 + g′g′′

2

(λ2 − λ3) = 0.

We discuss four cases according to constants λ1, λ2, λ3.
Case 1: Let λ1 = λ2 = λ3 = λ 6= 0, from (4.12), we obtain

(4.13) f ′′′(u) + λuf ′′
3

(u) = 0,

g′′′(v) + λvg′′
3

(u) = 0,

and their general solutions are

(4.14) f(u) = c1 + uc2 +

√
λu2 − 2c3

λ
±
u ln

(
λu+

√
λ (λu2 − 2c3)

)
√
λ

,

g(v) = c4 + vc5 +

√
λv2 − 2c6

λ
±
v ln

(
λv +

√
λ (λv2 − 2c6)

)
√
λ

,

where λ, ci ∈ R. In this case, M is parametrized by

(4.15) x(u, v) =



u,
v,(

c1 + uc2 +
√
λu2−2c3
λ ±

u ln
(
λu+
√
λ(λu2−2c3)

)
√
λ

)
+

(
c4 + vc5 +

√
λv2−2c6
λ ±

v ln
(
λv+
√
λ(λv2−2c6)

)
√
λ

)

 .

Case 2: Let λ1 = λ2 = 0, λ3 6= 0, from (4.12), we obtain

(4.16) f ′′′(u)− λ3f
′(u)f ′′

2

(u) = 0,

g′′′(v)− λ3g
′(v)g′′

2

(v) = 0.

Differential equation (4.16) admits the particular solutions

(4.17) f(u) = c1 or f(u) = c1u+ c2,

g(v) = c2 or g(v) = c3v + c4,



280 BAHADDIN BUKCU, DAE WON YOON, AND MURAT KEMAL KARACAN

where ci ∈ R. Using the solutions (4.17) give rise a contradiction with our assump-
tion saying that the solution must be non-degenerate second fundamental form. In
the other cases, there are no any suitable solutions

Case 3: Let λ1 6= 0, λ2 6= 0, λ3 = 0, from (4.12), we obtain

(4.18) f ′′′(u) + λ1uf
′′3(u) + λ1f

′(u)f ′′
2

(u) = 0,

g′′′(v) + λ2vg
′′3(v) + λ2g

′(v)g′′
2

(v) = 0.

Differential equation (4.18) admits the particular solutions

(4.19) f(u) = c1 or f(u) = c1u+ c2,

g(v) = c2 or g(v) = c3v + c4,

where ci ∈ R. Using the solutions (4.19) give rise a contradiction with our assump-
tion saying that the solution must be non-degenerate second fundamental form. In
the other cases, there are no any suitable solutions.

Case 4: Let λ1 = λ2 = 0 = λ3 = 0, from (4.12), we obtain

(4.20) f ′′′(u) = 0,

g′′′(v) = 0,

and their general solutions are

(4.21) f(u) = c1u
2 + c2u+ c3,

g(v) = c4v
2 + c5v + c6,

where ci ∈ R. In this case, M is parametrized by

(4.22) x(u, v) =
(
u, v,

(
c1u

2 + c2u+ c3
)

+
(
c4v

2 + c5v + c6
))
.

Definition 4.1. A surface of in the three dimensional simple isotropic space is said
to be III-harmonic if it satisfies the condition ∆IIIx = 0.

Theorem 4.1. Let M be a translation surface given by (3.2) in the three dimen-
sional simply isotropic space I13. If M is III-harmonic, then it is congruent to an
open part of the following surface

x(u, v) =
(
u, v,

(
c1u

2 + c2u+ c3
)

+
(
c4v

2 + c5v + c6
))
.

where ci ∈ R.

Theorem 4.2. (Classification)Let M be a translation surface with non-degenerate
second fundamental form given by (3.2) in the three dimensional simply isotropic
space I13. The surfaces M satisfies the condition ∆IIIxi=λixi, where λi∈R, then it
is congruent to an open part of the fallowing surface

x(u, v) =



u,
v,(

c1 + uc2 +
√
λu2−2c3
λ ±

u ln
(
λu+
√
λ(λu2−2c3)

)
√
λ

)
+

(
c4 + vc5 +

√
λv2−2c6
λ ±

v ln
(
λv+
√
λ(λv2−2c6)

)
√
λ

)

 ,

where λ, ci ∈ R.
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