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Abstract
Today, the agricultural sector faces significant challenges due to
population growth and limited resources. Enhancing productivity and
minimizing losses is of great importance for the sustainability of
agriculture. Therefore, leveraging technological advancements plays a
critical role, particularly in the development of sustainable farming
practices. Among these advancements, artificial intelligence (AI) stands
out with its potential to contribute significantly to agricultural production.
The primary objective of this study is to provide farmers with fast and
accurate information regarding plant health, thereby preventing the spread
of diseases and optimizing agricultural output. In line with this goal, Al-
based image processing techniques were employed. Specifically, this
study focuses on detecting grapevine leaf diseases namely powdery
mildew (Erysiphe necator), downy mildew (Plasmopara viticola), and
grapevine rust mite (Eriophyes vitis) using Al. Disease detection was
ORCID of the Authors carri.ed out using leaf images, Whi.Ch were th.en qsed for cla§siﬁcatiqn. A
F Y- 0000-0002-1006-2227 hybrld dataset was constructed using a comblnatlop of publicly available
RY: 0009-0004-2047-4323 images and manually collected samples captured via smartphone cameras
in vineyards, fields, and gardens. This diverse and balanced dataset was
used to train several CNN-based transfer learning models, including
AlexNet, DarkNet53, Inception-ResNet-V2, Inception-V3, MobileNet-
V3, ResNet50, ResNetl01, VGG16, and VGG19 architectures. Among
these, Inception-ResNet-V2 achieved the best performance with an
accuracy of 97.45%, a training loss of 8.19%, a test accuracy of 93.00%,
and a test loss of 20.60%. These results demonstrate that the model
performs well in detecting diseases from grapevine leaves during both
training and testing phases.

Corresponding Author
Fatih YUCALAR
fatih.yucalar@cbu.edu.tr

Received: 24.07.2025

Accepted: 06.10.2025 Keywords: Artificial intelligence, transfer learning, plant disease

detection, grape leaf diseases, convolutional neural networks

Aktarimh Ogrenme Yéntemleri ile Uziim Bitkisi Yapragindan Hastahk Tespiti

Oz
'Manisa Celal Bayar University,  Giiniimiizde tarim sektorii, niifus artis1 ve kaynaklarin smirli olmas: gibi
Hasan Ferdi Turgutlu Technology  zorluklardan etkilenmektedir. Tarim sektdrii igin verimliligi artirmak ve
Faculty, Department of Software  kayiplar1 en aza indirmek biiyilk 6nem tasimaktadir. Bu nedenle,
Engineering teknolojinin getirdigi yeniliklerden yararlanmak, 6zellikle siirdiiriilebilir
tarim uygulamalarinin gelistirilmesinde kritik bir rol oynamaktadir. Yapay
zekd, bu yeniliklerin basinda gelmekte olup, tarimsal iiretime katki
saglama potansiyeline sahiptir. Bu ¢alismanin temel amaci, bitki sagligi
konusunda ciftgilere hizli ve dogru bilgiler saglayarak, hastaliklarin
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yayilmasini 6nlemek ve tarimsal iiretimi optimize etmektir. Bu hedef
dogrultusunda, yapay zeka tabanli goriintii isleme tekniklerinden
yararlanilmigtir. Bu kapsamda, iiziim bitkisi yapragi iizerinden bag
kiillemesi (Erysiphe necator), mildiyo (Plasmopara viticola) ve bag
uyuzu (Eriophyes vitis) hastaliklarinin yapay zeka ile tespiti saglanmaistir.
Hastalik tespiti i¢in yaprak gorintiileri kullanilmis ve bu goriintiiler
iizerinden smiflandirma gerceklestirilmistir. Calisma kapsaminda, bir
kism1 hazir olarak temin edilen, bir kismi ise bag, tarla, bahce gibi
ortamlardan cep telefonu kamerasi ile manuel olarak elde edilen ¢esitli ve
dengeli oOrneklerden olusan bir karma veri seti olusturulmustur.
Olusturulan bu karma veri seti, CNN tabanhi aktarimli 6grenme
yontemlerinden AlexNet, DarkNet53, Inception-ResNet-V2, Inception-
V3, MobileNet-V3, ResNet50, ResNet101, VGG16 ve VGG19 mimarileri
tizerinde egitilmistir. Egitim ve test islemleri sonucunda; %97.45
dogruluk, %8.19 egitim kaybi, %93.00 test dogrulugu ve %20.60 test
kayb1 degerleri ile en basarili model olarak Inception-ResNet-V2
belirlenmistir. Bu sonug, modelin hem egitim hem de test verilerinde
liziim bitkisi yapragi tizerinden hastalik tespiti i¢in yiliksek performans

) o gosterdigini ortaya koymaktadir.
This work is licensed under a

Creative Commons Attribution Anahtar Kelimeler: Yapay zeka, transfer 6grenmesi, bitki hastaligi
4.0 International License tespiti, liziim yaprag1 hastaliklari, evrisimli sinir aglart

Introduction

Agriculture remains one of the fundamental pillars of the global economy. Millions of people worldwide
are directly employed in the agricultural sector, and economies of many countries rely heavily on it. In
developing countries, agriculture contributes significantly to GDP and provides a large share of
employment. However, the sector faces several challenges, including climate change, diminishing water
resources, declining soil fertility, and plant diseases. These issues threaten not only agricultural output
but also food security and farmers’ income. Among these, plant diseases pose a major risk to
productivity [1]. They can hinder growth, reduce quality and yield, and sometimes cause total crop loss.
Therefore, early detection and effective treatment are critical to minimize losses and improve
productivity. Integrating modern technologies, particularly Al-based analytical methods, into
agriculture offers new solutions for managing these diseases [2]. Studying grapevines is highly relevant
in this context. Grapes are widely cultivated and have substantial economic value. They are consumed
fresh and used in processed products such as wine, vinegar, and dried fruit. Under certain environmental
conditions, grapevine leaves are susceptible to various diseases. Common diseases include powdery
mildew (Erysiphe necator), downy mildew (Plasmopara viticola), and grapevine rust mite (Eriophyes
vitis) [3]. These diseases, caused by fungi or mites, can spread rapidly, especially under humid
conditions, reducing both quality and yield. Timely and accurate diagnosis is therefore essential for
effective intervention. Leaves are among the most important indicators for early disease detection.
Visual symptoms such as discoloration, spots, drying, and vein disruptions provide diagnostic clues.
However, these symptoms are not always easily detected by the human eye. In large vineyards,
inspecting all plants regularly is time-consuming and labor-intensive, increasing the likelihood of missed

symptoms. Here, Al-assisted image processing can significantly aid detection. Al methods analyze leaf
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features color, texture, shape at the pixel level and convert them into digital signals. These

representations are processed using Convolutional Neural Networks (CNNs) trained on labeled image
datasets [4]. CNNs can detect even microscopic changes that humans might miss. They automatically
learn features such as color variations, texture patterns, and morphology with high accuracy, identifying
both visible and subtle early-stage anomalies. CNNs have been successful due to their ability to learn
hierarchical relationships among image features [5]. They can differentiate disease types and recognize
disease progression stages. Classification results can be delivered to farmers in real-time via mobile apps
or cloud-based decision systems. This enables early intervention and reduces potential yield loss.
Compared to traditional inspection, Al-based methods are faster and more accurate. They form a vital
component of decision support systems, making early diagnosis more accessible and preserve plant
health. Early and accurate disease detection on grape leaves is crucial for timely intervention and
reduced crop loss. However, deep learning models require large, balanced datasets to perform well.
Creating such datasets in agriculture is time-consuming and costly. Environmental conditions, lighting
variations, and camera quality add further complexity, affecting model generalization. Transfer learning
addresses these issues [6]. It allows models pretrained on large datasets (e.g., ImageNet) to be retrained
for specific tasks [7]. Fundamental visual features learned by the model edges, textures, gradients can
then be reused, reducing training time and enabling high performance even with limited data. The
remainder of this paper is organized as follows. The next section reviews related work on plant disease
detection using deep learning and transfer learning. Materials and methods are then presented, covering
dataset preparation, augmentation, and model development. Experimental results from training and
evaluating various CNN architectures follow. The discussion highlights the approach’s strengths and

limitations, and the paper concludes with a summary and suggestions for future research.
Related Work

Automated detection of grapevine leaf diseases is crucial for maintaining agricultural productivity and
crop quality. However, research in this area remains limited in number and scope compared to other
plant species. The existing, albeit limited, studies show that deep learning and transfer learning
techniques yield promising results in identifying grape leaf diseases. Despite these positive outcomes,
there's a clear need to develop more comprehensive and effective methods, including larger datasets and
extensive model comparisons. In this context, methods developed by various researchers for different
plant species and leaf diseases can provide valuable insights for studies specifically focusing on grape
leaves. This section aims to summarize the current literature in this field. Fang et al. [8] utilized a
Convolutional Neural Network (CNN), a deep learning algorithm, for the detection of apple leaf
diseases. Specifically, they opted for VGG16, a CNN-based architecture commonly used in deep
learning and known for its successful performance in complex visual recognition tasks, to enhance

classification accuracy. The researchers combined the center loss function with the softmax loss function
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during model training. This approach is frequently employed to improve classification performance by

making the distinctions between classes more pronounced. The dataset used in their study comprised
5373 images of diseased apple leaves and 1683 images of healthy leaves. The diseased leaf images
included common ailments such as anthracnose blight, cedar rust, leaf rust, gray spot, black spot, and
black rot. This diversity allowed for the evaluation of the model's ability to recognize various disease
types. The results demonstrated that the VGG16 architecture offered high classification success, with
the model's accuracy rates ranging from 95% to 99.70% [8]. In their research, Yaman and Tuncer [9]
combined deep learning and machine learning methods to identify diseases in tree and plant leaves.
They collected a dataset of 726 images of walnut leaves, categorized into two classes: healthy and
diseased. Deep learning models were then used to extract meaningful features from these images. The
study tested 17 different deep learning models, ultimately selecting DarkNet53 and ResNet101 as the
two highest-performing models. The features extracted by these two models were then combined to
create a hybrid feature set, offering a more robust representation. These hybrid features were
subsequently evaluated using machine learning classifiers, achieving a high success rate of 99.58% [9].
Sladojevi¢ et al. [10] developed a CNN-based model capable of accurately identifying both healthy
plants and 13 different diseased plant species from leaf images. To enhance classification accuracy, their
study included a class for background images in addition to plant leaves. This approach allowed the
model to produce more robust results when faced with visual complexity. A total of 30880 images were
used for training, and 2589 images for testing. The Caffe deep learning framework was used to develop
the CNN, and the model architecture was designed with 8 learning layers: 5 convolutional layers and 3
fully connected layers. The results demonstrated that the model achieved precision values ranging from
91% to 98% and an overall accuracy rate of 96.3% [10]. Wagle et al. [11] developed a deep learning
model for detecting diseases in tomato plants, leveraging data augmentation techniques. For this
purpose, they used healthy and diseased tomato leaf images from the PlantVillage dataset, with disease
categories selected based on their agricultural prevalence and impact in India. During the model
development process, transfer learning architectures such as ResNet50, ResNet18, and ResNet101 were
integrated with a softmax classification layer. The dataset was enhanced by applying various data
augmentation techniques, including noise, blur, positional shifts, and color variations. This significantly
improved the model's generalization ability and reduced the risk of overfitting. It was observed that the
applied data augmentation methods considerably increased classification accuracy. The ResNet101
model, trained with the augmented dataset, demonstrated the best performance, achieving 99.99%
training accuracy and 95.83% test accuracy [11]. Rao et al. [12] investigated the detrimental effects of
agriculturally significant microbial diseases on food security in the Indian agricultural sector. Within
this scope, they focused on grape and mango plants, performing automatic plant disease detection from
raw images using deep learning and transfer learning techniques. Their study successfully detected

diseases in grape and mango leaves using a balanced dataset comprising 8438 images of both diseased
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and healthy leaves. For automatic feature extraction and classification, they applied the AlexNet transfer

learning model, which achieved an accuracy of 99% for grape leaves and 89% for mango leaves. They
subsequently developed an Android application named “JIT CROPFIX” to make this research accessible
to farmers. This application aims to enhance agricultural productivity by providing farmers with a quick
and practical means of identifying plant diseases [12]. In the study conducted by Ajra et al. [13], a
method involving the AlexNet and ResNet-50 models was proposed for disease detection using image
data of tomato and potato leaves. The leaf images obtained from the Kaggle dataset were subjected to
preprocessing, data augmentation, and feature extraction before classification. Experimental results
demonstrated that the ResNet-50 model achieved an accuracy of 97.3%, while the AlexNet model
reached 95.9%. This study aims to contribute to the early protection of plant health and the improvement
of agricultural production [13]. Nader et al. [14] developed a deep learning-based ensemble approach
for the classification of grapevine leaf diseases. Their study focused on three significant and commonly
observed diseases in grapevines: Black Measles, Black Rot, and Leaf Blight. To achieve this, pre-trained
VGG16, VGG19, and Xception models from ImageNet were employed using transfer learning and
retrained on grape leaf images from the PlantVillage dataset. The developed ensemble model combined
the strengths of these CNN architectures, resulting in a more robust classification performance with
higher accuracy. Furthermore, data preprocessing and data augmentation techniques were applied to
improve the overall performance of the model. The experimental results demonstrated that the proposed
ensemble structure outperformed both the individual models and other methods in the literature,

achieving an impressive accuracy rate of 99.82% [14].
Materials and Methods

This section outlines the materials and methodological steps employed in the study, including the
preparation of the dataset, the generation of an augmented hybrid dataset using data augmentation

techniques, and the development of the deep learning model.
Preparation of the Dataset

The preparation of the dataset used in this study involved a two-stage process. In the first stage, previous
research on grapevine leaf diseases was reviewed. From these studies, existing datasets containing
images of both diseased and healthy grapevine leaves were gathered [15—18]. These pre-existing datasets
served as the initial data source for model training. In the second stage, in addition to the existing
datasets, various natural cultivation areas such as vineyards, gardens, and orchards were visited. High-
resolution images were manually captured using a mobile phone. Specifically, the image acquisition
process was carried out using an iPhone 11 smartphone camera. Photographs were taken in daylight
under sunny and well-lit conditions, ensuring natural illumination of the leaves. Images were captured
at close range to clearly highlight leaf texture, color, and vein details, with a resolution consistent with

the default camera settings of the device. These conditions were chosen to minimize shadows and
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improve the visibility of disease-related symptoms. The collected images were then classified according

to the disease types examined in this study, ensuring the inclusion of samples from both diseased and
healthy grapevine leaves. All of the collected data were combined to create a more diverse and balanced

hybrid dataset, encompassing both real-world field data and pre-existing datasets.
Replication of a Hybrid Dataset Through Data Augmentation

A data augmentation method was employed to enhance the generalization capability of the training
model to enrich the hybrid dataset generated from the data collection process, and thereby overfitting
was prevented. In this context, various transformation operations such as rotation, horizontal and vertical
shifting, zooming, and brightness adjustment were applied using the “ImageDataGenerator” class
provided by the Keras library. These operations aimed to improve the model's robustness when
confronted with different variations of the images. As illustrated in Figure 1, these augmentation
techniques generated diverse variations of the same leaf sample, thereby further enhancing the

robustness of the dataset.

Original Image 1

Data Augmentation

Figure 1. Data augmentation example

In this study, data augmentation techniques were applied to all four classes Powdery Mildew, Downy
Mildew, Grapevine Rust Mite, and Healthy Leaves. Since the number of images per class was nearly
balanced after data collection, augmentation was performed uniformly across classes to maintain this
balance. Specifically, each original image was augmented by generating two additional transformed
samples using random combinations of rotation (£25°), horizontal/vertical shifting (up to 10%),
zooming (up to 15%), and brightness variation (£20%). As a result, the dataset size for each class
approximately tripled, ensuring both diversity and balance across the four classes. Following the
application of data augmentation methods, the resulting hybrid dataset was divided into four distinct
classes. The distribution of training and test data for each class was determined as follows:

o Powdery Mildew (Erysiphe Necator) class: A total of 903 images, with 801 for training and 102

for testing.
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o  Downy Mildew (Plasmopara Viticola) class: A total of 898 images, with 797 for training and 101

for testing.
o Grapevine Rust Mite (Eriophyes Vitis) class: A total of 897 images, with 797 for training and 100
for testing.

o Healthy Leaf class: A total of 907 images, with 806 for training and 101 for testing.

This balanced distribution ensured equal representation for each class during the model's learning

process, which was a crucial step towards improving classification performance.
Model Development

The model development process began with the selection of suitable transfer learning architectures and
continued with the tuning of appropriate hyperparameters for each model. Subsequently, training was
conducted on the selected deep learning architectures, and the classification performance of the models
was evaluated. It is important to note that techniques such as early stopping, dropout, or additional
regularization were not employed in this study. The primary objective was to perform a comparative
evaluation of different transfer learning architectures under identical training conditions. The use of
early stopping could have led to inconsistent results by allowing some models to terminate training
prematurely while others continued for a longer number of epochs. Similarly, applying dropout or other
regularization strategies would have required additional hyperparameter tuning, which might have
favored certain architectures and undermined the fairness of the comparison. Instead, overfitting was
mitigated through the construction of a balanced dataset and the application of extensive data
augmentation, ensuring that performance differences among models were primarily due to their intrinsic

architectural characteristics.
Selection of Transfer Learning Methods

Based on the information obtained through literature research, the transfer learning methods to be used
in training the project's artificial intelligence model were identified. The review focused particularly on
CNN-based transfer learning models, which have demonstrated the most successful results in the
classification of plant diseases. Accordingly, the architectures identified in the literature as exhibiting
high performance AlexNet [13], DarkNet53 [19], Inception-ResNet-V2 [20], Inception-V3 [21],
MobileNet-V3 [21], ResNet50 [13], ResNet101 [22], VGG16 [19], and VGG19 [20] were deemed
suitable for use in model training. These selected models possess the potential to meet the project's
requirements in terms of both classification accuracy and computational efficiency. Multiple criteria
influenced the selection of these models. First and foremost, their prior success in achieving high
accuracy in earlier studies was taken into account. Additionally, the architectural design, layer depth,
number of parameters, and computational costs vary among the models. This diversity allows for a

comprehensive comparison of model performances in terms of both accuracy and processing time. For
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instance, AlexNet offers a relatively simple architecture with advantages such as shorter training time

and lower computational cost. On the other hand, ResNet50 and ResNet101 architectures, with their
residual connections, effectively overcome learning difficulties even in deep network structures.
Inception-V3 and Inception-ResNet-V2 stand out with their modular designs and parameter efficiency,
enabling the model to learn more complex patterns with fewer parameters. MobileNet-V3, which is
highly suitable for mobile deployment, provides advantages in scenarios requiring low resource
consumption. Lastly, VGG16 and VGG19, with their fixed filter sizes and regular layer structures, offer
architectures that are easy to understand and implement, although they have higher computational costs
compared to other models. For all these reasons, using models with varying architectural characteristics
during the model training phase is expected to enhance the project's success and help determine which

architecture is best suited for the target problem.
Hyperparameter Optimization and Model Training

At this stage, the hyperparameters for all transfer learning models to be used were defined, and the model
training was conducted in a two-phase process. In the first phase, the models were trained for 10 epochs
to evaluate their general performance. Those that demonstrated satisfactory results were retrained for 20
epochs in the second phase for a more comprehensive analysis. Throughout both training phases, the
hyperparameters were kept constant: the batch size was set to 32, and the learning rate to 0.0001. The
input image size was configured as 299x299 pixels for the Inception-V3 and Inception-ResNet-V2
architectures, and 224x224 pixels for all other architectures. Since the dataset had already been split into
training and test subsets, validation was performed directly on the test data. The results of this training
process will be presented in detail in the following section, in terms of accuracy, loss, training time, and
classification performance. The training parameters used in this study are summarized in Table 1 to
ensure clarity and reproducibility of the experimental setup. These parameters were kept consistent

across all experiments unless otherwise stated.

Table 1. Training parameters used in the study

Parameter Value Description

. Selected for its adaptive learning rate
Optimizer Adam optimization and suitability for CNN training
Learning Rate 0.0001 Fixed throughout the training process
Batch Size 32 Number of images processed per training

1teration

Number of Phase 1: 10 epochs Initial evaluation in the first phase, extended
Epochs Phase 2: 20 epochs training in the second phase

299 x 299 (Inception-V3, Inception-
ResNet-V2) 224 x 224 (other CNN
models)

Input Image
Size

Adjusted according to the specific
requirements of each model
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Experimental Results

In the initial phase of model training, the augmented hybrid dataset was used to train all the selected
transfer learning models. Each model was trained under identical conditions to ensure that the resulting
performance outcomes were comparable. Model performance was evaluated based on key metrics such
as training accuracy, training loss, validation accuracy, and validation loss [23]. These metrics were
used to assess both the model’s effectiveness during training and its ability to generalize to unseen test
data. Training accuracy indicates the proportion of correct classifications on the training set, while
training loss reflects the magnitude of prediction errors. Likewise, validation accuracy represents the
model’s accuracy on the test set, and validation loss measures the prediction error on these unseen
samples [24]. Evaluating these metrics collectively provides comprehensive insight into the model’s
learning capacity, generalization performance, and potential risk of overfitting. Therefore, these core
metrics were used together to compare model performance. Table 2 summarizes the comparative results

obtained after 10 epochs of training.

Table 2. Model performance results after 10 epochs of training

Models Training Accuracy Training Loss Validation Accuracy Validation Loss
AlexNet 0.9317 0.1944 0.5875 2.3570
DarkNet53 0.9501 0.1415 0.2400 4.6175
g;:f;%‘; 0.9470 0.1704 0.9125 0.2817
InceptionV3 0.9275 0.2368 0.9075 0.3236
MobileNetV3 0.9166 0.3012 0.9025 0.2641
ResNet50 0.2851 1.4075 0.3250 1.3754
ResNet101 0.2866 1.4080 0.4300 1.3809
VGG16 0.9917 0.0293 0.9325 0.2905
VGG19 0.9774 0.0824 0.9200 0.2785

As seen in the Table 2, signs of overfitting were observed in the AlexNet, DarkNet53, ResNet50, and
ResNet101 models. This was clearly demonstrated by their relatively high training accuracy but poor
validation performance. Due to this negative impact on generalization ability, these models were
excluded from further evaluation in subsequent stages. Following the elimination of the overfitting
models, the remaining five models Inception-ResNet-V2, Inception-V3, MobileNet-V3, VGG16, and
VGG19 underwent a second training phase. In this stage, each model was retrained for 20 epochs, and
their performances on both the training and validation datasets were analyzed. Table 3 presents the
performance metrics obtained from these trainings, while Figure 2 illustrates the epoch-wise changes in

accuracy and loss for each model.
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Table 3. Model performance results after 20 epochs of training

Models Training Accuracy  Training Loss  Validation Accuracy Validation Loss
glggett‘{’,‘; 0.9745 0.0819 0.9300 0.2060
InceptionV3 0.9527 0.1673 0.9100 0.2853
MobileNetV3 0.9429 0.1799 0.9225 0.2124
VGG16 0.9717 0.0698 0.9475 0.2863
VGGI19 0.9932 0.0258 0.9275 0.2938

After examining Table 3 and Figure 2 following the 20-epoch training process, it was determined that
this training yielded more successful results compared to the 10-epoch training. In particular, a
noticeable improvement in overall performance was observed in some models alongside increases in
both training and validation accuracies. However, upon closer analysis of the VGG16 and VGG19
models, although both exhibited high accuracy and low loss values, the graphical evaluation revealed a
growing gap between training and validation metrics, indicating signs of overfitting. Consequently, the
VGG16 and VGG19 models were excluded from further evaluation, and the final assessment proceeded
only with models that did not exhibit overfitting. In this study, the dataset was carefully balanced, with
each class containing approximately equal numbers of samples. Therefore, the primary evaluation
metrics accuracy and loss were considered sufficient for assessing model performance. Accuracy
provides a direct measure of the proportion of correctly classified samples, while loss reflects the
magnitude of prediction errors during training and testing. It should be noted that if the dataset had been
imbalanced, accuracy alone might not have adequately represented the model’s true performance. In
such cases, additional metrics such as Precision, Recall, and F1-Score would be critical to evaluate the
model’s ability to correctly identify samples from minority classes. Since the current dataset is balanced,
these additional metrics were deemed supplementary rather than necessary for performance evaluation.
As depicted in Figure 2, VGG16 and VGG19 exhibited a widening gap between training and validation
curves, which is a strong indication of overfitting, whereas Inception-ResNet-V2 maintained stable

convergence.
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Figure 2. Model graphs after 20 epochs of training
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After the 20-epoch training process, the remaining models Inception-ResNet-V2, Inception-V3, and

MobileNet-V3 were re-evaluated based on the data presented in the tables and graphs. The analyses
revealed that the Inception-ResNet-V2 model demonstrated the best performance. Evaluation metrics
such as the Confusion Matrix [25] and the Receiver Operating Characteristic (ROC) curve [26] were
utilized to examine the classification success of this model in greater detail and to assess its accuracy

across different classes. These analyses are presented in Figure 3.

Confusion Matrix ROC Curve
100
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-
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Figure 3. Confusion matrix and ROC curve of the Inception-ResNet-V2 Model

The confusion matrix in Figure 3 clearly shows that the Inception-ResNet-V2 model classified healthy
leaves and powdery mildew samples with high accuracy, while minor misclassifications occurred in
downy mildew and rust mite categories. Additionally, the ROC curve demonstrates strong

discriminative power, with AUC values approaching 1.0 across all classes.
Discussion

In this study, the classification of grape leaf diseases was carried out using various transfer learning-
based CNN architectures. Comparative analyses showed that the Inception-ResNet-V2 model was the
most successful, due to its high accuracy and stability. The model achieved a training accuracy of
97.45% and a test accuracy of 93.00%, demonstrating balanced and reliable performance in both
learning and generalization. These results show that, despite the relatively small dataset, transfer
learning methods can effectively address agricultural imaging problems where data availability is
limited. Performance differences among models were influenced by architectural depth, parameter
count, and hardware requirements. For example, deeper architectures such as VGG16, VGG19, and
ResNet101 achieved high training accuracy; however, their test accuracy declined, indicating
overfitting. This excessive adaptation to training data reduced their ability to generalize to new samples.
In contrast, Inception-ResNet-V2 combined high accuracy with strong generalization, benefiting from
both architectural depth and balanced parameter optimization. Although part of the dataset was manually

collected to increase diversity, variations in image quality created learning difficulties in certain classes.
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Differences in lighting, background, damaged leaves, or varying angles made accurate learning more

challenging. Additionally, class imbalance led to underrepresentation of some diseases during training,
as shown in Figure 3, resulting in decreased classification performance for those classes.
Misclassification rates were higher for classes with fewer samples. While data augmentation partially
mitigated these issues, class imbalance and image variability remain significant factors affecting model
success. Hardware limitations and long training times were another challenge. Despite using Manisa
Celal Bayar University laboratory facilities, each model required about five hours to train. This
underscores the importance of time management, particularly when evaluating multiple models. High
hardware demands also pose constraints for academic research with limited resources. In summary, the
success of deep learning models depends not only on architecture but also on data quality, class balance,

and computational resources.
Conclusion and Future Work

In this study, various CNN architectures based on transfer learning were compared for the detection of
grape leaf diseases. Taking into account both high accuracy and model stability, the Inception-ResNet-
V2 architecture was identified as the most suitable model. Its balanced and consistent performance on
both the training and test datasets was a decisive factor in its selection. The high accuracy results
obtained demonstrate that transfer learning methods can be effectively applied in domains such as
agriculture, where labeled data is often limited. The use of data augmentation techniques and the manual
collection of field data enhanced the model’s generalization capability, enabling it to make accurate
predictions on previously unseen samples. The Inception-ResNet-V2 model shows strong potential for
integration into future mobile applications. Through such an application, farmers could detect grape leaf
diseases quickly and accurately using their mobile devices, enabling early intervention and minimizing
crop losses. This approach would not only help reduce economic losses but also support the
sustainability of agricultural production. The study highlights the tangible benefits of artificial
intelligence-based solutions in the agricultural sector and provides a solid foundation for practical
implementation. In particular, the widespread adoption of such technologies in developing countries
could significantly enhance the effectiveness of digital agriculture practices. Future research could focus
on improving model accuracy by employing larger and more balanced datasets. Furthermore, ensemble
methods that combine multiple models rather than relying on a single architecture may yield more robust
and generalizable results. In previous studies, hybrid deep learning models that combine complementary
architectures have been reported to achieve higher classification accuracy. This indicates that such an
approach could also enhance the robustness of grapevine leaf disease detection. These methods leverage
the strengths of individual models while minimizing their limitations. Additionally, moving beyond
purely image-based CNN architectures to hybrid systems that incorporate time-series or sensor-based

data could further improve accuracy and broaden the system's applications. Similarly, the integration of
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multimodal data, such as image and sensor-based information, has been shown to improve recognition

performance in various domains. Extending the current dataset with sensor inputs may therefore provide
more reliable outcomes in future applications. Such systems could evolve into comprehensive decision-
support tools by considering environmental factors such as temperature, humidity, and soil properties.
Ultimately, the proposed model has significant potential not only for classifying leaf diseases but also

for integration into broader agricultural health monitoring and disease management systems.
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