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Abstract 
Today, the agricultural sector faces significant challenges due to 

population growth and limited resources. Enhancing productivity and 

minimizing losses is of great importance for the sustainability of 

agriculture. Therefore, leveraging technological advancements plays a 

critical role, particularly in the development of sustainable farming 

practices. Among these advancements, artificial intelligence (AI) stands 

out with its potential to contribute significantly to agricultural production. 

The primary objective of this study is to provide farmers with fast and 

accurate information regarding plant health, thereby preventing the spread 

of diseases and optimizing agricultural output. In line with this goal, AI-

based image processing techniques were employed. Specifically, this 

study focuses on detecting grapevine leaf diseases namely powdery 

mildew (Erysiphe necator), downy mildew (Plasmopara viticola), and 

grapevine rust mite (Eriophyes vitis) using AI. Disease detection was 

carried out using leaf images, which were then used for classification. A 

hybrid dataset was constructed using a combination of publicly available 

images and manually collected samples captured via smartphone cameras 

in vineyards, fields, and gardens. This diverse and balanced dataset was 

used to train several CNN-based transfer learning models, including 

AlexNet, DarkNet53, Inception-ResNet-V2, Inception-V3, MobileNet-

V3, ResNet50, ResNet101, VGG16, and VGG19 architectures. Among 

these, Inception-ResNet-V2 achieved the best performance with an 

accuracy of 97.45%, a training loss of 8.19%, a test accuracy of 93.00%, 

and a test loss of 20.60%. These results demonstrate that the model 

performs well in detecting diseases from grapevine leaves during both 

training and testing phases. 

Keywords: Artificial intelligence, transfer learning, plant disease 

detection, grape leaf diseases, convolutional neural networks 
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Öz 
Günümüzde tarım sektörü, nüfus artışı ve kaynakların sınırlı olması gibi 

zorluklardan etkilenmektedir. Tarım sektörü için verimliliği artırmak ve 

kayıpları en aza indirmek büyük önem taşımaktadır. Bu nedenle, 

teknolojinin getirdiği yeniliklerden yararlanmak, özellikle sürdürülebilir 

tarım uygulamalarının geliştirilmesinde kritik bir rol oynamaktadır. Yapay 

zekâ, bu yeniliklerin başında gelmekte olup, tarımsal üretime katkı 

sağlama potansiyeline sahiptir. Bu çalışmanın temel amacı, bitki sağlığı 

konusunda çiftçilere hızlı ve doğru bilgiler sağlayarak, hastalıkların 
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Introduction 

Agriculture remains one of the fundamental pillars of the global economy. Millions of people worldwide 

are directly employed in the agricultural sector, and economies of many countries rely heavily on it. In 

developing countries, agriculture contributes significantly to GDP and provides a large share of 

employment. However, the sector faces several challenges, including climate change, diminishing water 

resources, declining soil fertility, and plant diseases. These issues threaten not only agricultural output 

but also food security and farmers’ income. Among these, plant diseases pose a major risk to 

productivity [1]. They can hinder growth, reduce quality and yield, and sometimes cause total crop loss. 

Therefore, early detection and effective treatment are critical to minimize losses and improve 

productivity. Integrating modern technologies, particularly AI-based analytical methods, into 

agriculture offers new solutions for managing these diseases [2]. Studying grapevines is highly relevant 

in this context. Grapes are widely cultivated and have substantial economic value. They are consumed 

fresh and used in processed products such as wine, vinegar, and dried fruit. Under certain environmental 

conditions, grapevine leaves are susceptible to various diseases. Common diseases include powdery 

mildew (Erysiphe necator), downy mildew (Plasmopara viticola), and grapevine rust mite (Eriophyes 

vitis) [3]. These diseases, caused by fungi or mites, can spread rapidly, especially under humid 

conditions, reducing both quality and yield. Timely and accurate diagnosis is therefore essential for 

effective intervention. Leaves are among the most important indicators for early disease detection. 

Visual symptoms such as discoloration, spots, drying, and vein disruptions provide diagnostic clues. 

However, these symptoms are not always easily detected by the human eye. In large vineyards, 

inspecting all plants regularly is time-consuming and labor-intensive, increasing the likelihood of missed 

symptoms. Here, AI-assisted image processing can significantly aid detection. AI methods analyze leaf 
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yayılmasını önlemek ve tarımsal üretimi optimize etmektir. Bu hedef 

doğrultusunda, yapay zekâ tabanlı görüntü işleme tekniklerinden 

yararlanılmıştır. Bu kapsamda, üzüm bitkisi yaprağı üzerinden bağ 

küllemesi (Erysiphe necator), mildiyö (Plasmopara viticola) ve bağ 

uyuzu (Eriophyes vitis) hastalıklarının yapay zekâ ile tespiti sağlanmıştır. 

Hastalık tespiti için yaprak görüntüleri kullanılmış ve bu görüntüler 

üzerinden sınıflandırma gerçekleştirilmiştir. Çalışma kapsamında, bir 

kısmı hazır olarak temin edilen, bir kısmı ise bağ, tarla, bahçe gibi 

ortamlardan cep telefonu kamerası ile manuel olarak elde edilen çeşitli ve 

dengeli örneklerden oluşan bir karma veri seti oluşturulmuştur. 

Oluşturulan bu karma veri seti, CNN tabanlı aktarımlı öğrenme 

yöntemlerinden AlexNet, DarkNet53, Inception-ResNet-V2, Inception-

V3, MobileNet-V3, ResNet50, ResNet101, VGG16 ve VGG19 mimarileri 

üzerinde eğitilmiştir. Eğitim ve test işlemleri sonucunda; %97.45 

doğruluk, %8.19 eğitim kaybı, %93.00 test doğruluğu ve %20.60 test 

kaybı değerleri ile en başarılı model olarak Inception-ResNet-V2 

belirlenmiştir. Bu sonuç, modelin hem eğitim hem de test verilerinde 

üzüm bitkisi yaprağı üzerinden hastalık tespiti için yüksek performans 

gösterdiğini ortaya koymaktadır. 

Anahtar Kelimeler: Yapay zekâ, transfer öğrenmesi, bitki hastalığı 

tespiti, üzüm yaprağı hastalıkları, evrişimli sinir ağları 
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features color, texture, shape at the pixel level and convert them into digital signals. These 

representations are processed using Convolutional Neural Networks (CNNs) trained on labeled image 

datasets [4]. CNNs can detect even microscopic changes that humans might miss. They automatically 

learn features such as color variations, texture patterns, and morphology with high accuracy, identifying 

both visible and subtle early-stage anomalies. CNNs have been successful due to their ability to learn 

hierarchical relationships among image features [5]. They can differentiate disease types and recognize 

disease progression stages. Classification results can be delivered to farmers in real-time via mobile apps 

or cloud-based decision systems. This enables early intervention and reduces potential yield loss. 

Compared to traditional inspection, AI-based methods are faster and more accurate. They form a vital 

component of decision support systems, making early diagnosis more accessible and preserve plant 

health. Early and accurate disease detection on grape leaves is crucial for timely intervention and 

reduced crop loss. However, deep learning models require large, balanced datasets to perform well. 

Creating such datasets in agriculture is time-consuming and costly. Environmental conditions, lighting 

variations, and camera quality add further complexity, affecting model generalization. Transfer learning 

addresses these issues [6]. It allows models pretrained on large datasets (e.g., ImageNet) to be retrained 

for specific tasks [7]. Fundamental visual features learned by the model edges, textures, gradients can 

then be reused, reducing training time and enabling high performance even with limited data. The 

remainder of this paper is organized as follows. The next section reviews related work on plant disease 

detection using deep learning and transfer learning. Materials and methods are then presented, covering 

dataset preparation, augmentation, and model development. Experimental results from training and 

evaluating various CNN architectures follow. The discussion highlights the approach’s strengths and 

limitations, and the paper concludes with a summary and suggestions for future research. 

Related Work 

Automated detection of grapevine leaf diseases is crucial for maintaining agricultural productivity and 

crop quality. However, research in this area remains limited in number and scope compared to other 

plant species. The existing, albeit limited, studies show that deep learning and transfer learning 

techniques yield promising results in identifying grape leaf diseases. Despite these positive outcomes, 

there's a clear need to develop more comprehensive and effective methods, including larger datasets and 

extensive model comparisons. In this context, methods developed by various researchers for different 

plant species and leaf diseases can provide valuable insights for studies specifically focusing on grape 

leaves. This section aims to summarize the current literature in this field. Fang et al. [8] utilized a 

Convolutional Neural Network (CNN), a deep learning algorithm, for the detection of apple leaf 

diseases. Specifically, they opted for VGG16, a CNN-based architecture commonly used in deep 

learning and known for its successful performance in complex visual recognition tasks, to enhance 

classification accuracy. The researchers combined the center loss function with the softmax loss function 
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during model training. This approach is frequently employed to improve classification performance by 

making the distinctions between classes more pronounced. The dataset used in their study comprised 

5373 images of diseased apple leaves and 1683 images of healthy leaves. The diseased leaf images 

included common ailments such as anthracnose blight, cedar rust, leaf rust, gray spot, black spot, and 

black rot. This diversity allowed for the evaluation of the model's ability to recognize various disease 

types. The results demonstrated that the VGG16 architecture offered high classification success, with 

the model's accuracy rates ranging from 95% to 99.70% [8]. In their research, Yaman and Tuncer [9] 

combined deep learning and machine learning methods to identify diseases in tree and plant leaves. 

They collected a dataset of 726 images of walnut leaves, categorized into two classes: healthy and 

diseased. Deep learning models were then used to extract meaningful features from these images. The 

study tested 17 different deep learning models, ultimately selecting DarkNet53 and ResNet101 as the 

two highest-performing models. The features extracted by these two models were then combined to 

create a hybrid feature set, offering a more robust representation. These hybrid features were 

subsequently evaluated using machine learning classifiers, achieving a high success rate of 99.58% [9]. 

Sladojević et al. [10] developed a CNN-based model capable of accurately identifying both healthy 

plants and 13 different diseased plant species from leaf images. To enhance classification accuracy, their 

study included a class for background images in addition to plant leaves. This approach allowed the 

model to produce more robust results when faced with visual complexity. A total of 30880 images were 

used for training, and 2589 images for testing. The Caffe deep learning framework was used to develop 

the CNN, and the model architecture was designed with 8 learning layers: 5 convolutional layers and 3 

fully connected layers. The results demonstrated that the model achieved precision values ranging from 

91% to 98% and an overall accuracy rate of 96.3% [10]. Wagle et al. [11] developed a deep learning 

model for detecting diseases in tomato plants, leveraging data augmentation techniques. For this 

purpose, they used healthy and diseased tomato leaf images from the PlantVillage dataset, with disease 

categories selected based on their agricultural prevalence and impact in India. During the model 

development process, transfer learning architectures such as ResNet50, ResNet18, and ResNet101 were 

integrated with a softmax classification layer. The dataset was enhanced by applying various data 

augmentation techniques, including noise, blur, positional shifts, and color variations. This significantly 

improved the model's generalization ability and reduced the risk of overfitting. It was observed that the 

applied data augmentation methods considerably increased classification accuracy. The ResNet101 

model, trained with the augmented dataset, demonstrated the best performance, achieving 99.99% 

training accuracy and 95.83% test accuracy [11]. Rao et al. [12] investigated the detrimental effects of 

agriculturally significant microbial diseases on food security in the Indian agricultural sector. Within 

this scope, they focused on grape and mango plants, performing automatic plant disease detection from 

raw images using deep learning and transfer learning techniques. Their study successfully detected 

diseases in grape and mango leaves using a balanced dataset comprising 8438 images of both diseased 
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and healthy leaves. For automatic feature extraction and classification, they applied the AlexNet transfer 

learning model, which achieved an accuracy of 99% for grape leaves and 89% for mango leaves. They 

subsequently developed an Android application named “JIT CROPFIX” to make this research accessible 

to farmers. This application aims to enhance agricultural productivity by providing farmers with a quick 

and practical means of identifying plant diseases [12]. In the study conducted by Ajra et al. [13], a 

method involving the AlexNet and ResNet-50 models was proposed for disease detection using image 

data of tomato and potato leaves. The leaf images obtained from the Kaggle dataset were subjected to 

preprocessing, data augmentation, and feature extraction before classification. Experimental results 

demonstrated that the ResNet-50 model achieved an accuracy of 97.3%, while the AlexNet model 

reached 95.9%. This study aims to contribute to the early protection of plant health and the improvement 

of agricultural production [13]. Nader et al. [14] developed a deep learning-based ensemble approach 

for the classification of grapevine leaf diseases. Their study focused on three significant and commonly 

observed diseases in grapevines: Black Measles, Black Rot, and Leaf Blight. To achieve this, pre-trained 

VGG16, VGG19, and Xception models from ImageNet were employed using transfer learning and 

retrained on grape leaf images from the PlantVillage dataset. The developed ensemble model combined 

the strengths of these CNN architectures, resulting in a more robust classification performance with 

higher accuracy. Furthermore, data preprocessing and data augmentation techniques were applied to 

improve the overall performance of the model. The experimental results demonstrated that the proposed 

ensemble structure outperformed both the individual models and other methods in the literature, 

achieving an impressive accuracy rate of 99.82% [14]. 

Materials and Methods 

This section outlines the materials and methodological steps employed in the study, including the 

preparation of the dataset, the generation of an augmented hybrid dataset using data augmentation 

techniques, and the development of the deep learning model. 

Preparation of the Dataset 

The preparation of the dataset used in this study involved a two-stage process. In the first stage, previous 

research on grapevine leaf diseases was reviewed. From these studies, existing datasets containing 

images of both diseased and healthy grapevine leaves were gathered [15–18]. These pre-existing datasets 

served as the initial data source for model training. In the second stage, in addition to the existing 

datasets, various natural cultivation areas such as vineyards, gardens, and orchards were visited. High-

resolution images were manually captured using a mobile phone. Specifically, the image acquisition 

process was carried out using an iPhone 11 smartphone camera. Photographs were taken in daylight 

under sunny and well-lit conditions, ensuring natural illumination of the leaves. Images were captured 

at close range to clearly highlight leaf texture, color, and vein details, with a resolution consistent with 

the default camera settings of the device. These conditions were chosen to minimize shadows and 



Yücalar and Yıldırım                                                  Sinop Uni J Nat Sci 10(2): 497-512 (2025) 

  E-ISSN: 2564-7873 

 
502 

 

improve the visibility of disease-related symptoms. The collected images were then classified according 

to the disease types examined in this study, ensuring the inclusion of samples from both diseased and 

healthy grapevine leaves. All of the collected data were combined to create a more diverse and balanced 

hybrid dataset, encompassing both real-world field data and pre-existing datasets. 

Replication of a Hybrid Dataset Through Data Augmentation 

A data augmentation method was employed to enhance the generalization capability of the training 

model to enrich the hybrid dataset generated from the data collection process, and thereby overfitting 

was prevented. In this context, various transformation operations such as rotation, horizontal and vertical 

shifting, zooming, and brightness adjustment were applied using the “ImageDataGenerator” class 

provided by the Keras library. These operations aimed to improve the model's robustness when 

confronted with different variations of the images. As illustrated in Figure 1, these augmentation 

techniques generated diverse variations of the same leaf sample, thereby further enhancing the 

robustness of the dataset.  

 
Figure 1. Data augmentation example 

In this study, data augmentation techniques were applied to all four classes Powdery Mildew, Downy 

Mildew, Grapevine Rust Mite, and Healthy Leaves. Since the number of images per class was nearly 

balanced after data collection, augmentation was performed uniformly across classes to maintain this 

balance. Specifically, each original image was augmented by generating two additional transformed 

samples using random combinations of rotation (±25°), horizontal/vertical shifting (up to 10%), 

zooming (up to 15%), and brightness variation (±20%). As a result, the dataset size for each class 

approximately tripled, ensuring both diversity and balance across the four classes. Following the 

application of data augmentation methods, the resulting hybrid dataset was divided into four distinct 

classes. The distribution of training and test data for each class was determined as follows: 

• Powdery Mildew (Erysiphe Necator) class: A total of 903 images, with 801 for training and 102 

for testing. 
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• Downy Mildew (Plasmopara Viticola) class: A total of 898 images, with 797 for training and 101 

for testing. 

• Grapevine Rust Mite (Eriophyes Vitis) class: A total of 897 images, with 797 for training and 100 

for testing. 

• Healthy Leaf class: A total of 907 images, with 806 for training and 101 for testing. 

This balanced distribution ensured equal representation for each class during the model's learning 

process, which was a crucial step towards improving classification performance. 

Model Development 

The model development process began with the selection of suitable transfer learning architectures and 

continued with the tuning of appropriate hyperparameters for each model. Subsequently, training was 

conducted on the selected deep learning architectures, and the classification performance of the models 

was evaluated. It is important to note that techniques such as early stopping, dropout, or additional 

regularization were not employed in this study. The primary objective was to perform a comparative 

evaluation of different transfer learning architectures under identical training conditions. The use of 

early stopping could have led to inconsistent results by allowing some models to terminate training 

prematurely while others continued for a longer number of epochs. Similarly, applying dropout or other 

regularization strategies would have required additional hyperparameter tuning, which might have 

favored certain architectures and undermined the fairness of the comparison. Instead, overfitting was 

mitigated through the construction of a balanced dataset and the application of extensive data 

augmentation, ensuring that performance differences among models were primarily due to their intrinsic 

architectural characteristics. 

Selection of Transfer Learning Methods 

Based on the information obtained through literature research, the transfer learning methods to be used 

in training the project's artificial intelligence model were identified. The review focused particularly on 

CNN-based transfer learning models, which have demonstrated the most successful results in the 

classification of plant diseases. Accordingly, the architectures identified in the literature as exhibiting 

high performance AlexNet [13], DarkNet53 [19], Inception-ResNet-V2 [20], Inception-V3 [21], 

MobileNet-V3 [21], ResNet50 [13], ResNet101 [22], VGG16 [19], and VGG19 [20] were deemed 

suitable for use in model training. These selected models possess the potential to meet the project's 

requirements in terms of both classification accuracy and computational efficiency. Multiple criteria 

influenced the selection of these models. First and foremost, their prior success in achieving high 

accuracy in earlier studies was taken into account. Additionally, the architectural design, layer depth, 

number of parameters, and computational costs vary among the models. This diversity allows for a 

comprehensive comparison of model performances in terms of both accuracy and processing time. For 
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instance, AlexNet offers a relatively simple architecture with advantages such as shorter training time 

and lower computational cost. On the other hand, ResNet50 and ResNet101 architectures, with their 

residual connections, effectively overcome learning difficulties even in deep network structures. 

Inception-V3 and Inception-ResNet-V2 stand out with their modular designs and parameter efficiency, 

enabling the model to learn more complex patterns with fewer parameters. MobileNet-V3, which is 

highly suitable for mobile deployment, provides advantages in scenarios requiring low resource 

consumption. Lastly, VGG16 and VGG19, with their fixed filter sizes and regular layer structures, offer 

architectures that are easy to understand and implement, although they have higher computational costs 

compared to other models. For all these reasons, using models with varying architectural characteristics 

during the model training phase is expected to enhance the project's success and help determine which 

architecture is best suited for the target problem. 

Hyperparameter Optimization and Model Training 

At this stage, the hyperparameters for all transfer learning models to be used were defined, and the model 

training was conducted in a two-phase process. In the first phase, the models were trained for 10 epochs 

to evaluate their general performance. Those that demonstrated satisfactory results were retrained for 20 

epochs in the second phase for a more comprehensive analysis. Throughout both training phases, the 

hyperparameters were kept constant: the batch size was set to 32, and the learning rate to 0.0001. The 

input image size was configured as 299×299 pixels for the Inception-V3 and Inception-ResNet-V2 

architectures, and 224×224 pixels for all other architectures. Since the dataset had already been split into 

training and test subsets, validation was performed directly on the test data. The results of this training 

process will be presented in detail in the following section, in terms of accuracy, loss, training time, and 

classification performance. The training parameters used in this study are summarized in Table 1 to 

ensure clarity and reproducibility of the experimental setup. These parameters were kept consistent 

across all experiments unless otherwise stated. 

Table 1. Training parameters used in the study 

Parameter Value Description 

Optimizer Adam 
Selected for its adaptive learning rate 

optimization and suitability for CNN training 

Learning Rate 0.0001 Fixed throughout the training process 

Batch Size 32 
Number of images processed per training 

iteration 

Number of 

Epochs 

Phase 1: 10 epochs  

Phase 2: 20 epochs 

Initial evaluation in the first phase, extended 

training in the second phase 

Input Image 

Size 

299 × 299 (Inception-V3, Inception-

ResNet-V2) 224 × 224 (other CNN 

models) 

Adjusted according to the specific 

requirements of each model 
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Experimental Results 

In the initial phase of model training, the augmented hybrid dataset was used to train all the selected 

transfer learning models. Each model was trained under identical conditions to ensure that the resulting 

performance outcomes were comparable. Model performance was evaluated based on key metrics such 

as training accuracy, training loss, validation accuracy, and validation loss [23]. These metrics were 

used to assess both the model’s effectiveness during training and its ability to generalize to unseen test 

data. Training accuracy indicates the proportion of correct classifications on the training set, while 

training loss reflects the magnitude of prediction errors. Likewise, validation accuracy represents the 

model’s accuracy on the test set, and validation loss measures the prediction error on these unseen 

samples [24]. Evaluating these metrics collectively provides comprehensive insight into the model’s 

learning capacity, generalization performance, and potential risk of overfitting. Therefore, these core 

metrics were used together to compare model performance. Table 2 summarizes the comparative results 

obtained after 10 epochs of training. 

Table 2. Model performance results after 10 epochs of training 

Models Training Accuracy Training Loss Validation Accuracy Validation Loss 

AlexNet 0.9317 0.1944 0.5875 2.3570 

DarkNet53 0.9501 0.1415 0.2400 4.6175 

Inception-

ResnetV2 
0.9470 0.1704 0.9125 0.2817 

InceptionV3 0.9275 0.2368 0.9075 0.3236 

MobileNetV3 0.9166 0.3012 0.9025 0.2641 

ResNet50 0.2851 1.4075 0.3250 1.3754 

ResNet101 0.2866 1.4080 0.4300 1.3809 

VGG16 0.9917 0.0293 0.9325 0.2905 

VGG19 0.9774 0.0824 0.9200 0.2785 

As seen in the Table 2, signs of overfitting were observed in the AlexNet, DarkNet53, ResNet50, and 

ResNet101 models. This was clearly demonstrated by their relatively high training accuracy but poor 

validation performance. Due to this negative impact on generalization ability, these models were 

excluded from further evaluation in subsequent stages. Following the elimination of the overfitting 

models, the remaining five models Inception-ResNet-V2, Inception-V3, MobileNet-V3, VGG16, and 

VGG19 underwent a second training phase. In this stage, each model was retrained for 20 epochs, and 

their performances on both the training and validation datasets were analyzed. Table 3 presents the 

performance metrics obtained from these trainings, while Figure 2 illustrates the epoch-wise changes in 

accuracy and loss for each model. 



Yücalar and Yıldırım                                                  Sinop Uni J Nat Sci 10(2): 497-512 (2025) 

  E-ISSN: 2564-7873 

 
506 

 

Table 3. Model performance results after 20 epochs of training 

Models Training Accuracy Training Loss Validation Accuracy Validation Loss 

Inception-

ResnetV2 
0.9745 0.0819 0.9300 0.2060 

InceptionV3 0.9527 0.1673 0.9100 0.2853 

MobileNetV3 0.9429 0.1799 0.9225 0.2124 

VGG16 0.9717 0.0698 0.9475 0.2863 

VGG19 0.9932 0.0258 0.9275 0.2938 

After examining Table 3 and Figure 2 following the 20-epoch training process, it was determined that 

this training yielded more successful results compared to the 10-epoch training. In particular, a 

noticeable improvement in overall performance was observed in some models alongside increases in 

both training and validation accuracies. However, upon closer analysis of the VGG16 and VGG19 

models, although both exhibited high accuracy and low loss values, the graphical evaluation revealed a 

growing gap between training and validation metrics, indicating signs of overfitting. Consequently, the 

VGG16 and VGG19 models were excluded from further evaluation, and the final assessment proceeded 

only with models that did not exhibit overfitting. In this study, the dataset was carefully balanced, with 

each class containing approximately equal numbers of samples. Therefore, the primary evaluation 

metrics accuracy and loss were considered sufficient for assessing model performance. Accuracy 

provides a direct measure of the proportion of correctly classified samples, while loss reflects the 

magnitude of prediction errors during training and testing. It should be noted that if the dataset had been 

imbalanced, accuracy alone might not have adequately represented the model’s true performance. In 

such cases, additional metrics such as Precision, Recall, and F1-Score would be critical to evaluate the 

model’s ability to correctly identify samples from minority classes. Since the current dataset is balanced, 

these additional metrics were deemed supplementary rather than necessary for performance evaluation. 

As depicted in Figure 2, VGG16 and VGG19 exhibited a widening gap between training and validation 

curves, which is a strong indication of overfitting, whereas Inception-ResNet-V2 maintained stable 

convergence. 
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Figure 2. Model graphs after 20 epochs of training 
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After the 20-epoch training process, the remaining models Inception-ResNet-V2, Inception-V3, and 

MobileNet-V3 were re-evaluated based on the data presented in the tables and graphs. The analyses 

revealed that the Inception-ResNet-V2 model demonstrated the best performance. Evaluation metrics 

such as the Confusion Matrix [25] and the Receiver Operating Characteristic (ROC) curve [26] were 

utilized to examine the classification success of this model in greater detail and to assess its accuracy 

across different classes. These analyses are presented in Figure 3. 

 

Figure 3. Confusion matrix and ROC curve of the Inception-ResNet-V2 Model 

The confusion matrix in Figure 3 clearly shows that the Inception-ResNet-V2 model classified healthy 

leaves and powdery mildew samples with high accuracy, while minor misclassifications occurred in 

downy mildew and rust mite categories. Additionally, the ROC curve demonstrates strong 

discriminative power, with AUC values approaching 1.0 across all classes. 

Discussion 

In this study, the classification of grape leaf diseases was carried out using various transfer learning-

based CNN architectures. Comparative analyses showed that the Inception-ResNet-V2 model was the 

most successful, due to its high accuracy and stability. The model achieved a training accuracy of 

97.45% and a test accuracy of 93.00%, demonstrating balanced and reliable performance in both 

learning and generalization. These results show that, despite the relatively small dataset, transfer 

learning methods can effectively address agricultural imaging problems where data availability is 

limited. Performance differences among models were influenced by architectural depth, parameter 

count, and hardware requirements. For example, deeper architectures such as VGG16, VGG19, and 

ResNet101 achieved high training accuracy; however, their test accuracy declined, indicating 

overfitting. This excessive adaptation to training data reduced their ability to generalize to new samples. 

In contrast, Inception-ResNet-V2 combined high accuracy with strong generalization, benefiting from 

both architectural depth and balanced parameter optimization. Although part of the dataset was manually 

collected to increase diversity, variations in image quality created learning difficulties in certain classes. 
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Differences in lighting, background, damaged leaves, or varying angles made accurate learning more 

challenging. Additionally, class imbalance led to underrepresentation of some diseases during training, 

as shown in Figure 3, resulting in decreased classification performance for those classes. 

Misclassification rates were higher for classes with fewer samples. While data augmentation partially 

mitigated these issues, class imbalance and image variability remain significant factors affecting model 

success. Hardware limitations and long training times were another challenge. Despite using Manisa 

Celal Bayar University laboratory facilities, each model required about five hours to train. This 

underscores the importance of time management, particularly when evaluating multiple models. High 

hardware demands also pose constraints for academic research with limited resources. In summary, the 

success of deep learning models depends not only on architecture but also on data quality, class balance, 

and computational resources. 

Conclusion and Future Work 

In this study, various CNN architectures based on transfer learning were compared for the detection of 

grape leaf diseases. Taking into account both high accuracy and model stability, the Inception-ResNet-

V2 architecture was identified as the most suitable model. Its balanced and consistent performance on 

both the training and test datasets was a decisive factor in its selection. The high accuracy results 

obtained demonstrate that transfer learning methods can be effectively applied in domains such as 

agriculture, where labeled data is often limited. The use of data augmentation techniques and the manual 

collection of field data enhanced the model’s generalization capability, enabling it to make accurate 

predictions on previously unseen samples. The Inception-ResNet-V2 model shows strong potential for 

integration into future mobile applications. Through such an application, farmers could detect grape leaf 

diseases quickly and accurately using their mobile devices, enabling early intervention and minimizing 

crop losses. This approach would not only help reduce economic losses but also support the 

sustainability of agricultural production. The study highlights the tangible benefits of artificial 

intelligence-based solutions in the agricultural sector and provides a solid foundation for practical 

implementation. In particular, the widespread adoption of such technologies in developing countries 

could significantly enhance the effectiveness of digital agriculture practices. Future research could focus 

on improving model accuracy by employing larger and more balanced datasets. Furthermore, ensemble 

methods that combine multiple models rather than relying on a single architecture may yield more robust 

and generalizable results. In previous studies, hybrid deep learning models that combine complementary 

architectures have been reported to achieve higher classification accuracy. This indicates that such an 

approach could also enhance the robustness of grapevine leaf disease detection. These methods leverage 

the strengths of individual models while minimizing their limitations. Additionally, moving beyond 

purely image-based CNN architectures to hybrid systems that incorporate time-series or sensor-based 

data could further improve accuracy and broaden the system's applications. Similarly, the integration of 
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multimodal data, such as image and sensor-based information, has been shown to improve recognition 

performance in various domains. Extending the current dataset with sensor inputs may therefore provide 

more reliable outcomes in future applications. Such systems could evolve into comprehensive decision-

support tools by considering environmental factors such as temperature, humidity, and soil properties. 

Ultimately, the proposed model has significant potential not only for classifying leaf diseases but also 

for integration into broader agricultural health monitoring and disease management systems. 
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