

Evaluation of the Effectiveness of Deep Learning Model in Detection and Classification of Pressure Injury

Basınç Yaralanmasının Tespit ve Sınıflandırılmasında Derin Öğrenme Modelinin Etkinliğinin Değerlendirilmesi

Hamîyet KIZIL ¹

Atınç YILMAZ ²

Melek DEMİRAL ³

Umut KAYA ⁴

Rıdvan ÇAKIR ⁵

¹ University of Health Sciences, Hamidiye Faculty of Nursing, İstanbul, Türkiye.

² Marmara University / Faculty of Applied Sciences / Department of Artificial Intelligence and Machine Learning, İstanbul, Türkiye.

³ University of Health Sciences, Haydarpasa Numune Education and Research Hospital, İstanbul, Türkiye

⁴ İstanbul Beykent University, Faculty of Engineering and Architecture, Department of Software Engineering, İstanbul, Türkiye

⁵ RDC Partner, Artificial Intelligence Engineering, İstanbul, Türkiye

Corresponding Author/Sorumlu Yazar: Hamîyet KIZIL, E-mail: hamiyetkizil@gmail.com

Received / Geliş Tarihi: 24.07.2025 • Accepted/Kabul Tarihi: 09.11.2025 • Publication Date/Yayın Tarihi: 25.12.2025

Cite this article as: Kızıl H, Yılmaz A, Demiral M, Kaya U, Çakır R. Evaluation of the Effectiveness of Deep Learning Model in Detection and Classification of Pressure Injury. *J Intensive Care Nurs.* 2025;29(3):207-219.

Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract

Objective: The study was conducted to determine the effect of the deep learning model on the knowledge and satisfaction levels of nurses in the detection and classification of pressure injuries.

Method: The population of this randomized controlled trial consisted of nurses working in intensive care, internal medicine, and surgical clinics at a foundation university hospital between March and April 2022 who voluntarily participated in the study. The sample consisted of a total of 60 (30 experimental and 30 control) nurses who met the sample criteria. The research data were collected using the Structured Nurse Introduction Form, Modified Pieper Pressure Injury Knowledge Test and Nurse Satisfaction Scale. The research data were analyzed in the SPSS 25.0 program.

Results: The mean age of the nurses in the experimental group was determined as 25.67 ± 7.27 , and the control group as 25.10 ± 3.47 . 50% of the nurses in the experimental and control groups graduated from health vocational high schools, and 40% of them worked in surgical services. When the nurses' post-training knowledge exam (post-test) scores were compared; the mean score of the experimental group was determined as 39.36 ± 1.88 and the control group as 33.30 ± 1.68 . The post-training knowledge level of the experimental group was found to be statistically significantly higher than the control group ($P < .05$). When the success of the pressure injury risk assessment and stage determination was examined, it was determined that the experimental group was able to assess the risk with 97% success with the deep learning model and determine the wound stage with 89% prediction verification. It was determined that the control group determined the patients' risk levels with the Braden pressure injury risk assessment scale at a moderate level with 13.83 ± 4.67 and were 50% successful in stage estimation. The evaluation and stage estimation levels were found to be statistically significantly higher than the control group ($P < .05$). When the satisfaction levels of the nurses participating in the study with the applied training were examined; the average score of the experimental group was determined as 24.60 ± 0.96 and the control group as 20.93 ± 0.63 . The satisfaction level of the experimental group with the training was found to be statistically significantly higher than the control group ($P < .05$).

Conclusion: It was determined that pressure injury detection and classification with artificial intelligence technology was more successful than the traditional method.

Keywords: Artificial intelligence, deep learning, pressure injury.

Öz

Amaç: Araştırma basınç yaralanmalarının tespit ve sınıflandırılmasında derin öğrenme modelinin hemşirelerin bilgi ve memnuniyet düzeylerine etkisini belirlemek amacıyla yürütüldü.

Yöntem: Randomize kontrollü tasarımla yürütülen bu çalışmanın evrenini bir vakıf üniversitesi hastanesinde Mart–Nisan 2022 tarihlerinde yoğun bakım, dahiliye ve cerrahi kliniklerde çalışan ve çalışmaya gönüllü hemşireler oluşturdu. Örneklem ise örneklem kriterlerine ulyan toplam 60 (30 deney ve 30 kontrol) hemşire oluşturdu. Araştırma verileri, Yapılandırılmış Hemşire Tanıtım Formu, Modifiye Pieper Basınç Yarası Bilgi Testi ve Hemşire Memnuniyet Skalası kullanılarak toplandı. Araştırma verileri SPSS 25.0 programında analiz edildi.

Bulgular: Deney grubu hemşirelerin yaş ortalaması $25,67 \pm 7,27$, kontrol grubu $25,10 \pm 3,47$ olarak tespit edildi. Deney ve kontrol grubu hemşirelerin %50'si sağlık meslek lisesi mezunu, %40'ı cerrahi servislerde çalışmaktadır. Hemşirelerin eğitim sonrası bilgi sınavı (sontest) puanları karşılaştırıldığında; deney grubunun ortalama puanı $39,36 \pm 1,88$, kontrol grubunun $33,30 \pm 1,68$ olarak belirlendi. Deney grubunun eğitim sonrası bilgi düzeyi kontrol grubundan istatistiksel olarak anlamlı derecede yüksek bulundu ($P < 0,05$). Basınç yaralanması risk değerlendirmeye ve evre tespit etme başarısı incelendiğinde deney grubunun derin öğrenme modeliyle %97 başarıyla risk değerlendirebildiği ve %89 tahmin doğrulamayla yara evresi belirleyebildiği tespit edildi. Kontrol grubunun Braden bası yarası risk değerlendirmeye ölçüği ile hastaların risk düzeylerini $13,83 \pm 4,67$ ile orta düzeyde belirlediği saptandı. Deney grubunun basınç yarası risk değerlendirmeye ve evre tahmin etme düzeyleri kontrol grubundan istatistiksel olarak anlamlı derecede yüksek bulundu ($P < 0,05$). Araştırmaya katılan hemşirelerin uygulanan eğitimden memnuniyet düzeyleri incelendiğinde; deney grubunun puan ortalaması $24,60 \pm 0,96$ ve kontrol grubunun $20,93 \pm 0,63$ olarak belirlendi. Deney grubunun eğitimden memnuniyet düzeyi kontrol grubundan istatistiksel olarak anlamlı derecede yüksek bulundu ($P < 0,05$).

Sonuç: Yapay zeka teknolojisiyle basınç yaralanması tespit ve sınıflandırmasının geleneksel yöntemle göre daha başarılı olduğu tespit edildi.

Anahtar Kelimeler: Basınç yaralanması, derin öğrenme, yapay zeka

INTRODUCTION

Pressure injuries are localized tissue damage that usually occurs on bony prominences and occurs as a result of pressure or shearing forces accompanying pressure. These injuries, which indicate the quality of healthcare services, threaten patient safety, prolong hospital stays, and increase care costs.^{1–3} This health problem, which reduces the quality of life of the patient and his/her family, leads to social isolation and requires more nursing care. When adequate care and treatment are not received, it can result in mortality, morbidity and nosocomial infections.^{4–7}

Systematic identification and staging of pressure injuries enhance the effectiveness of treatment and positively influence patient recovery. Accurate classification of these injuries improves patient care outcomes and fosters a common language among nurses, thereby increasing the quality of care.^{8–11}

It is crucial to utilize innovations and technological advancements to deliver systematic and high-quality nursing care.^{11,12} With the rapid advancement of technology, information systems and artificial intelligence applications have begun to be integrated into nursing practices.¹² The concept of artificial intelligence was first defined by John McCarthy as "the science and engineering of making intelligent machines, especially intelligent computer programs." Through AI, systems can be developed that mimic human behavior and model cognitive processes specific to a given field.^{13,14}

Medical expert systems, designed to solve problems in the healthcare field, represent one of the most common applications of artificial intelligence. These systems are structured based on the knowledge, experience, and recommendations of medical professionals, allowing for low-error solutions.^{13–16} The goal of medical expert systems is not to replace doctors and nurses but to support them by offering decision-making assistance and recommendations based on accurate health data, thereby easing their workload and enhancing care quality.^{17–19}

Deep learning, one of the most commonly used branches of medical artificial intelligence, is a new generation machine learning technique that demonstrates high effectiveness in fields such as object recognition, image processing, speech analysis, and natural language processing through multi-layered artificial neural networks. The key distinction between deep learning and traditional machine learning lies in its ability to automatically learn from symbolic representations of data such as images, videos, audio, and text rather than relying on pre-coded rules.^{20–22}

The literature includes the use of artificial intelligence and deep learning models for risk analysis of pressure injuries.^{22,23} However, no studies have been identified in our country specifically addressing the classification of these injuries. Although these innovative approaches are present and applied in international research, their implementation remains limited within our national context.²⁴ Based on this background, the present study was

conducted to develop a deep learning model for the detection and staging of pressure injuries and to evaluate its impact on nurses' knowledge levels and satisfaction.

Hypotheses:

H1: The mobile application developed using a deep learning model is more effective than conventional methods in enhancing nurses' knowledge about pressure injurs.

H2: The satisfaction levels of nurses receiving pressure injury training through the deep learning model and mobile application are higher than those using traditional training approaches.

H3: The deep learning model is more effective than conventional methods in the accurate detection and classification of pressure injuries.

METHODS

Study type: This research was structured as a randomized controlled experimental study aiming to develop a deep learning-based model for the identification and categorization of pressure injuries and to assess its impact on nurses' knowledge levels and training satisfaction.

Study group: The study included 80 nurses employed in the intensive care, internal medicine, and surgical units at Istanbul Beykent University Hospital between March and April 2022. The required sample size was determined through power analysis using G*Power 3.1, based on a prior similar study.¹⁵ To achieve a 95% power with a 0.5 effect size and 5% error margin, a sample of 56 nurses (28 per group) was found to be adequate. Considering potential attrition, the sample was increased to 60 nurses, evenly distributed between experimental and control groups. Participants were selected using a simple randomization technique via the website <http://stattrek.com/statistics/random-number-generator.aspx>. The study purpose was explained to all participants, and informed consent was obtained from those who met the inclusion criteria: age above 18, employment in intensive care or clinical settings, and voluntary agreement to participate.

Outcome Measures: The data collection tools included the "Structured Nurse Introduction Form," the "Modified Pieper Pressure Injury Knowledge Test," the "Braden Risk Assessment Scale," and the "Nursing Satisfaction Survey."

Structured Nurse Introduction Form: Designed based on literature, this form gathered demographic and professional background data of the nurses.

Modified Pieper Pressure Injury Knowledge Test: Originally developed by Pieper and Mott (1995) and later modified by Lawrence, this version was validated and adapted into Turkish by Güll et al. in by Güll et al. in 2017¹⁶. The 49-item scale includes three subdimensions: general knowledge (max 49 points), prevention knowledge (33 points), staging (9 points), and wound identification (7 points). Permission to use the modified version was obtained from Prof. Dr. Asiye Güll. Reliability analysis yielded Cronbach's alpha values of .838 for the experimental group and .812 for the control group.

Braden Risk Assessment Scale: Adapted for use in Turkey by Pınar and Oğuz¹⁷, this scale scores between 6 and 23. A score of ≤12 indicates high risk, 13–14 moderate risk, and 15–16 low risk.

Nursing Satisfaction Survey: Developed by the researchers in line with relevant literature, this 25-point Likert-type scale assessed nurses' satisfaction with the training. Reliability testing produced a Cronbach's alpha of .95.

Development of the Deep Learning Model: The proposed deep learning-based model, named BYT-CNN, was initially trained using 175 clinical images and demonstrated a classification accuracy of 97%. To improve performance, the training dataset was expanded to include 1,000 images (500 positive, 500 negative). The model pipeline included preprocessing (resizing to 224×224 pixels, normalization), data augmentation (rotation, zoom, flipping), and training with architectures such as ResNet, EfficientNet, VGG16, and a custom CNN built in TensorFlow.

The dataset was split 80/20 for training and validation. Adam optimizer, a 0.001 learning rate, batch size of 32, and 50 training epochs were used. The Categorical Crossentropy loss function was employed. Hyperparameters were tuned using grid search, and early stopping was implemented when validation loss plateaued for 10 epochs. Performance metrics included validation accuracy, loss, precision, recall, and F1-score. The best-performing model was integrated into a mobile app. The details of the developed model were published in an article.¹⁸

Pipeline Summary:

1. **Image Capture:** Photographs of pressure injuries or at-risk areas are taken via mobile devices.
2. **Preprocessing:** Images are resized, normalized, and augmented.
3. **Prediction:** The images are processed by trained CNN models for classification.
4. **Output Generation:**
 - Presence or absence of pressure injury
 - If present, stage classification (per NPUAP guidelines)
 - Prediction result sent to nurse's device within ~3 seconds
5. **Care Recommendation:** Nursing care suggestions are provided based on the stage via the mobile app.

This pipeline structured the training, validation, and clinical implementation processes, ensuring high applicability. The system enables classification based on the NPUAP Pressure Injury Staging System and delivers appropriate nursing care suggestions directly through the mobile app. Connectivity is established via Bluetooth or Wi-Fi, and results are communicated to the nurse's device within three seconds.

A real-world validation study was conducted, where the model was tested on new clinical images. Nurses uploaded wound images through the app, and the system's predictions were compared against clinical observations and Braden scores. Additionally, a team of expert nurses (≥5 years ICU experience) evaluated the results. Expert approval exceeded 90%, with risk assessment accuracy at 95% and stage classification accuracy at 86%, aligning with test-phase performance. Nurses reported high usability and utility of the system, with average assessment time being only 3 seconds.¹⁸

Procedures: Prior to data collection, the BYT-CNN model was developed. All nurses received a 4-hour standardized theoretical course on pressure injuries. One week later, participants were randomly assigned into control (traditional method) and experimental (deep learning model) groups. Pre-intervention assessments included the Structured Nurse Introduction Form and the Modified Pieper Pressure Injury Knowledge Test.

Control Group: Nurses used the Braden Scale to identify and classify pressure injuries. They received additional training using researcher-prepared written materials. Post-training, they completed a satisfaction survey and, one week later, a post-test. Following this, volunteer nurses from this group also tested the deep learning model.

Experimental Group: Nurses used the mobile app powered by the BYT-CNN model to detect and classify pressure injuries in clinical settings. The provided care recommendations based on detected stage. Post-intervention satisfaction surveys and knowledge post-tests were conducted one week later (Figure 1).

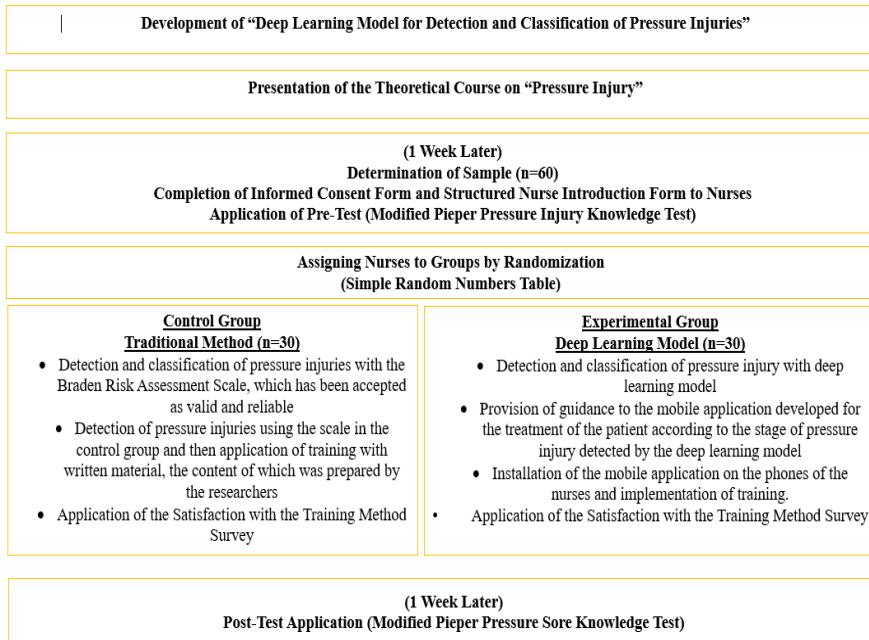


Figure 1: CONSORT Diagram

Statistical analysis: Data analysis was conducted using IBM Statistical Package for the Social Sciences (IBM SPSS Corp., Armonk, NY, USA) 25.0. Descriptive statistics included frequency, percentage, mean, and standard deviation. Chi-square and Fisher's exact tests were used for categorical variables, while independent and dependent t-tests were applied for continuous variables. Cronbach's alpha was calculated for scale reliability.

The study utilized deep learning approaches, particularly CNN-based models such as ResNet, VGG16, Inception, and EfficientNet. Traditional machine learning methods (e.g., SVM, k-NN) were considered suboptimal due to their limitations in visual pattern recognition. CNNs were selected for their ability to autonomously extract features from image data and make accurate multi-class predictions. The model was optimized for low-latency clinical applications, ensuring rapid real-time inference for nurses in high-paced environments.

Ethical considerations: Ethical approval was secured from the İstinye University Human Research Ethics Committee (Decision No: 2704, Date: 27.01.2021), and institutional permission was obtained from Beykent University Hospital (Document No: 14, Date: 08.02.2022). All participants gave informed consent. The study was registered as a clinical trial (ClinicalTrials.gov ID: NCT06641258). The interdisciplinary research team consisted of computer engineers, nursing faculty, and clinical practitioners. All code developed for the model is maintained in a private GitHub repository with version control. Due to data protection and patient confidentiality, this repository is accessible only within authorized environments.

RESULTS

The mean age of the nurses in the experimental group participating in the study was 25.67 ± 7.270 , and the control group was 25.10 ± 3.478 . 40% of the nurses in the experimental and control groups worked in surgical services. 33.3% of the nurses in the experimental group always encountered pressure injuries, and 33.3% of the nurses in the control group frequently encountered them. All of the nurses participating in the study stated that pressure injuries were the responsibility of the nurse (Table 1).

Table 1: Nurses Sociodemographic Characteristics (n=60)

Features	Experiment		Control	
	n	Mean±SD	n	Mean±SD
Age	30	25.67±7.270	30	25.10±3.478
Gender	n	%	n	%
	Male	0	0	0
Hospital Unit Worked	Woman	30	100	30
	Internal Units	7	23.3	11
Pressure with injury encounter frequency	Surgical Sciences	12	40.0	11
	Intensive Care Unit	11	36.7	8
	Always	9	30.0	10
Pressure injury Prevention And treatment of the nurse under the responsibility of being situation	Often	10	33.3	8
	Sometimes	10	33.3	10
	None	1	3.3	2
Yes	30	100.0	30	100.0
No	0	0	0	0

n: Number of participants, SD: Standard Deviation,

When the scores of the knowledge exam (pre-test) administered before the training were compared, the average score of the experimental group was 29.03 ± 3.9 and the control group was 29.33 ± 3.56 . No statistically significant difference was found between the two groups, indicating that the groups were distributed homogeneously ($P>.5$) (Table 2).

When the nurses' post-training knowledge exam (post-test) scores were compared, the average score of the experimental group was 39.36 ± 1.88 and the control group as 33.30 ± 1.68 . The post-training knowledge level of the experimental group was found to be statistically significantly higher than the control group ($P<.05$) (Table 2).

Table 2: Nurses Modified Comparison of Pieper Pressure Injury Knowledge Test Mean Scores (n=60)

Modified Pieper Pressure Injury Knowledge Test		Experiment	Control	t	P
		Mean±SD (Min-Max)	Mean±SD (Min-Max)		
Pre -test	Total	29.03±3.95 (21-38)	29.33±3.56 (22-35)	-.795	.430 **
	Pressure wound prevention / risk	21.26±2.93 (16-27)	21.60±2.94 (16-27)	-.053	.958
	Staging	4.46±1.8 (1-8)	4.73±1.28 (2-7)	-2.040	.056
	Wound Describing	3.30±0.95 (2-5)	3.0±1.017 (1-5)	-.955	.344
Post-test	Total	39.36±1.88 (26-43)	33.30±1.68 (24-35)	-.796	.029*
	Pressure injury prevention/risk	19.63±1.47 (17-23)	17.36±1.99 (15-23)	-.313	.755
	Staging	10.86±0.73 (4-17)	7.63±1.24 (3-6)	-2.797	.007*
	Wound Identification	13.86±0.68 (3-15)	5.30±0.74 (2-6)	1.280	.006*

* Independent sample t-test

** One-Way ANOVA

SD: Standard Deviation

 $P < .05$

When the satisfaction levels of the nurses participating in the study were examined, the mean score of the experimental group was determined as 24.60 ± 0.96 and the control group as 20.93 ± 0.63 . The satisfaction level of the experimental group with the training was found to be statistically significantly higher than the control group ($P < .05$) (Table 3).

Table 3: Nurses From education Satisfaction Levels of Evaluation (n=60)

Feature	Experiment Mean \pm SD (Min-Max)	Control Mean \pm SD (Min-Max)	t	P
Nurses Satisfaction Level	24.6 ± 0.96 (22-25)	20.9 ± 0.63 (6-24)	.461	.040 **

* Independent sample t-test

** One-Way ANOVA

SD: Standard Deviation

$P < .05$

The control group determined the patients' risk levels as moderate with 13.83 ± 4.67 using the Braden pressure injury risk assessment scale and that they were 50% successful in stage estimation (Table 4).

Table 4: Control Group Nurses' Braden Risk Assessment The scale Point Averages (n=30)

Feature	Experiment Mean \pm SD (Min-Max)	Control Mean \pm SD (Min-Max)
Braden Risk Assessment	0	13.83 ± 4.67 (6-24)

It was determined that the experimental group was able to assess risk with 97% success and determine the wound stage with 89% prediction verification with the deep learning model (Figure 2). Although the overall accuracy rate of the deep learning model developed in the study is high, it has been observed that the accuracy rate falls below 75% in some individual images (Figure 2). This situation can generally be due to class imbalances in the data set, variability in image quality, or low visual discrimination of some stages (especially stage 1 and stage 2).

The precautions taken during the model development phase to prevent such low accuracy rates in real field applications are as follows:

- a) Enrichment of the Data Set:** It is planned to add more pressure injury images taken from different clinical conditions to the data set. Increasing the number of examples, especially for classes such as stage 1 and stage 2, will strengthen the class discrimination capacity of the model.
- b) Improvement of Image Quality:** During the data collection phase, the quality of the training data will be increased by filtering low-resolution, blurry or poorly lit images. In addition, techniques such as "noise reduction" will be used during data augmentation.
- c) Advanced Augmentation Techniques:** Advanced data augmentation methods such as Mixup and CutMix will be integrated to make the model more generalizable. In this way, the model's resilience to different variations will increase.
- d) Use of Class Weighted Loss Function:** By using a loss function that takes class weights into account in model training, learning of underrepresented classes will be encouraged. Thus, accuracy rates, especially in rare stages, can be increased.
- e) Use of Ensemble Models:** By applying ensemble methods that combine the outputs of different CNN architectures (e.g. ResNet, EfficientNet, VGG16), the prediction accuracy will be stabilized. This method helps compensate for individual model errors.

f) Model Update with Continuous Field Feedback: The model will be continuously updated with field feedback from nurses and new patient data during real use, so that the model continues to adapt to the field.

As a result, it is aimed to minimize low accuracy rates and to ensure that the model operates with high reliability and accuracy in the clinical field in line with these improvement strategies.

Photo 10 = Estimated Stage = Stage 1, Accuracy Percentage = 71%
 Photo 11 = Estimated Stage = Stage 3, Accuracy Percentage = 99%
 Photo 12 = Estimated Stage = Stage 3, Accuracy Percentage = 99%
 Photo 13 = Estimated Stage = 2nd Stage, Accuracy Percentage = 73%
 Photo 14 = Estimated Stage = Stage 4, Accuracy Percentage = 99%
 Photo 15 = Estimated Stage = Stage 1, Accuracy Percentage = 77%
 Photo 16 = Estimated Stage = Stage 4, Accuracy Percentage = 77%
 Photo 17 = Estimated Stage = Stage 4, Accuracy Percentage = 99%
 Photo 18 = Estimated Stage = Stage 4, Accuracy Percentage = 86%
 Photo 19 = Estimated Stage = Stage 4, Accuracy Percentage = 74%
 Photo 1 = Estimated Stage = Stage 1, Accuracy Percentage = 99%
 Photo 20 = Estimated Stage = Stage 4, Accuracy Percentage = 76%
 Photo 21 = Estimated Stage = Stage 4, Accuracy Percentage = 99%
 Photo 22 = Estimated Stage = Deep Tissue, Accuracy Percentage = 99%
 Photo 23 = Estimated Stage = Deep Tissue, Accuracy Percentage = 99%
 Photo 24 = Estimated Stage = Mucosa Membrane, Accuracy Percentage = 99%
 Photo 25 = Estimated Stage = Mucosa Membrane, Accuracy Percentage = 99%
 Photo 26 = Estimated Stage = Stage 1, Accuracy Percentage = 76%
 Photo 27 = Estimated Stage = Unclassifiable, Accuracy Percentage = 99%
 Photo 28 = Estimated Stage = Mucosa Membrane, Accuracy Percentage = 74%
 Photo 29 = Estimated Stage = Dependent on Medical Device, Accuracy Percentage = 99%
 Photo 2 = Estimated Stage = Stage 1, Accuracy Percentage = 74%
 Photo 30 = Estimated Stage = Dependent on Medical Device, Accuracy Percentage = 94%
 Photo 3 = Estimated Stage = Stage 1, Accuracy Percentage = 99%
 Photo 4 = Estimated Stage = Stage 1, Accuracy Percentage = 97%
 Photo 5 = Estimated Stage = Stage 2, Accuracy Percentage = 99%
 Photo 6 = Estimated Stage = Stage 2, Accuracy Percentage = 99%
 Photo 7 = Estimated Stage = Stage 2, Accuracy Percentage = 73%
 Photo 8 = Estimated Stage = Stage 2, Accuracy Percentage = 98%
 Photo 9 = Estimated Stage = Stage 3, Accuracy Percentage = 75%

```
In [34]: result = printEvaluate(x_test, y_test, verbose = verbose)
2/2 [=====] - 0s 68ms/step - loss: 0.2115 - accuracy: 0.8976
```

Figure 2: Experiment Group Nurses Deep Learning Model Risk Estimation with Levels (n=30)

DISCUSSION

Nurses are among the most important members of the healthcare team who care for patients for the longest period of time; they closely monitor care, especially in units such as intensive care and palliative care. Nursing care practices implemented for the prevention and treatment of pressure ulcers both promote healing and improve the quality of healthcare. Therefore, a thorough risk assessment is essential to prevent the development of pressure ulcers, which lead to morbidity and mortality. In cases where pressure ulcers cannot be prevented, it is crucial to properly identify and classify pressure ulcers and promptly provide appropriate nursing interventions to the patient.^{4,9,25-28}

When the studies conducted in the literature for the prevention, detection, and treatment of pressure injuries are examined, it has been determined that innovative approaches such as artificial intelligence have been applied.²⁹⁻³¹ Based on this information, the results of our study support that the deep learning model, which is a sub-branch of artificial intelligence, plays an active role in the detection and classification of pressure injuries.

The mean age of the nurses in the experimental group participating in the study was 25.67 ± 7.270 , and the control group was 25.10 ± 3.478 . 40% of the nurses in the experimental and control groups worked in surgical wards, 33.3% of the nurses in the experimental group always encountered pressure injuries, 33.3% of the nurses in the control group frequently encountered them, and all of the nurses participating in the study stated that pressure injuries were the responsibility of the nurse (Table 1). The sociodemographic characteristics of the nurses participating in the study are similar to the studies conducted.²⁹⁻³¹

When the scores of the knowledge exam (pre-test) administered before the training were compared, the average score of the experimental group was determined as 29.03 ± 3.9 and the control group as 29.33 ± 3.56 . No statistically significant difference was found between the two groups, indicating that the groups were distributed homogeneously ($P > .05$) (Table 2). When the scores of the knowledge exam (post-test) of the nurses were compared after the training, the average score of the experimental group was determined as 39.36 ± 1.88 and the control group as 33.30 ± 1.68 . The knowledge level of the experimental group after the training was found to be statistically significantly higher than the control group ($P < .05$) (Table 2). Studies report that deep learning and mobile applications have an improving effect on the detection, classification, care, and treatment of pressure injuries and support the results of our study.^{14,18,31} Seo et al.³⁰ stated that they could minimize the inconsistencies in nurses' assessments of pressure injury stages classification with the deep learning model they developed. Jiang et al.³¹ stated in their systematic review that machine learning, which forms the basis of artificial intelligence, was effective in detecting pressure injuries in studies conducted with machine learning. Shepherd et al.³² stated that the detection, staging, and treatment of pressure injuries would be more effective using information technologies. Garcia-Zapirain et al.³³ developed a mobile application for the non-contact assessment of pressure injuries and found that this application allows staging of injuries, obtaining relevant information for diagnosis, and monitoring the development of injuries. The findings obtained from the literature support the findings of the study. According to these results, Hypothesis 1 was confirmed.

When the satisfaction levels of the nurses participating in the study were examined, the mean score of the experimental group was determined as 24.60 ± 0.96 and the control group as 20.93 ± 0.63 . The satisfaction level of the experimental group with the training was found to be statistically significantly higher than the control group ($P < .05$) (Table 3). Studies have reported that the satisfaction level of the training given with the deep learning model and mobile application is higher than the traditional method and supports the results of our study.^{33,34,35} Jayakumar et al.³⁶ stated that the satisfaction level of the artificial intelligence-supported decision-making model training they developed was superior to the traditional method. The findings obtained from the literature support the findings of the study. According to these results, Hypothesis 2 was confirmed.

The control group determined the patients' risk levels as moderate with 13.83 ± 4.67 with the Braden pressure injury risk assessment scale and were 50% successful in stage estimation (Table 4). It was found that the experimental group could assess risk with 97% success with the deep learning model and determine the wound stage with 89% prediction verification. Studies report that the deep learning model is more successful than the traditional method in the detection and classification of pressure injuries and support the results of our study.^{1,29,36,37,38} Wu et al.³⁹ developed an easy and programming-free artificial intelligence modeling tool capable of professional assessment for the detection of pressure injuries and independently performed by nurses, and stated that the model achieved an accuracy of 89% in the preliminary evaluation. Alderden et al.⁴⁰ stated that traditional risk assessment tools such as the Braden Scale may generally fail to capture factors specific to intensive care units, which may limit the prediction accuracy. In this context, they revealed that machine learning can be effective, especially in intensive care units. Anderson et al.⁴¹ determined that they better identified the risk of pressure injuries with machine learning. Song et al.⁴² used more than one machine learning model for the artificial intelligence model they developed for the detection of pressure injuries. The random forest model showed the best performance and found that it achieved 92% and 94% accuracy in the prediction of pressure injuries in two test sets, respectively. Pei et al.³⁷ stated that artificial intelligence models showed an extraordinary performance (95%) in predicting pressure injuries in their meta-analysis study examining machine learning-based prediction models for pressure injuries. Liu et al.³⁸ stated that the classification of pressure injuries with the deep learning model was successful and that it was an important tool for inexperienced nurses. The findings obtained from the literature support the findings of the study. According to these results, Hypothesis 3 was confirmed.

Study Limitations and Strengths: Randomly assigning patients to groups, having a control group, implementing nursing interventions in line with the literature, having a suitable environment that prevents nurses from being influenced by each other during the application, and allocating time for nurses to implement different applications after the study is completed.

The lack of hands-on practice prior to implementation may have negatively influenced nurses' confidence and performance.

CONCLUSION

Pressure injuries are clinical indicators that affect both patient outcomes and healthcare costs. Effective prevention involves risk assessment, skin care, nutrition, repositioning, mobilization, and education. These efforts require a multidisciplinary team, with nurses playing a central role.

This study demonstrated that the deep learning-based BYT-CNN model was more effective than conventional methods in improving nurses' knowledge, increasing satisfaction with training, and enhancing the accuracy of pressure injury detection and staging. Integrating artificial intelligence into nursing care can reduce diagnostic variability, improve patient safety, and support evidence-based practice.

As healthcare technology evolves, it is crucial for nurses and other health professionals to embrace innovation and incorporate AI-supported tools into clinical routines. Doing so not only increases the quality of care but also elevates the visibility and impact of the nursing profession. Future studies may explore broader applications of AI in other areas of nursing care and assess long-term clinical outcomes.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of İstinye University Human Research Ethics Committee (Date: 27.01.2021, Number: 2704).

Informed Consent: The study purpose was explained to all participants, and informed consent was obtained from those who met the inclusion criteria: age above 18, employment in intensive care or clinical settings, and voluntary agreement to participate.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – HK, AY, MD; Design – HK, AY, MD; Data Collection – HK, AY, MD; Data Analysis – AY, UK, RÇ; Data Interpretation – AY, UK, RÇ; Writing the article – HK, MD; Critical revision for important intellectual content – HK, AY, MD; Final approval – HK, AY, MD, UK, RÇ

Declaration of Interests: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declare that they received no financial support for this study.

Description: This study was supported by Istanbul Beykent University as a Scientific Research Project.

This study was presented as an oral presentation at the 3rd International 7th National Basic Nursing Care Congress.

The details of the developed model were published in an article.

Yılmaz A, Kızıl H, Kaya U, Çakır R, Demiral M. Prediction and classification of pressure injuries by deep learning. *Health Problems of Civilization*. 2021;15(4):328–335.

Acknowledgements: The authors would like to extend their sincere thanks to anyone who contributed to this study.

Etik Komite Onayı: Bu çalışma için etik komite onayı İstinye Üniversitesi İnsan Araştırmaları Etik Kurulundan (Tarih: 27.01.2021, Sayı: 2704) alınmıştır.

Katılımcı Onamı: Çalışmanın amacı tüm katılımcılara açıklandı ve katılım kriterlerini karşılayanlardan (18 yaş üstü, yoğun bakım veya klinik ortamlarda çalışan ve gönüllü olarak katılmayı kabul eden) bilgilendirilmiş onam alındı.

Hakem Değerlendirmesi: Dış bağımsız.

Yazar Katkıları: Fikir – HK, AY, MD; Tasarım – HK, AY, MD; Verilerin toplanması – HK, AY, MD; Verilerin analizi – AY, UK, RÇ; Verilerin yorumlanması – AY, UK, RÇ; Makalenin yazılması – HK, MD; Önemli entelektüel içerik için eleştirel olarak gözden geçirme – HK, AY, MD; Son onay – HK, AY, MD, UK, RÇ

Çıkar Çatışması: Yazarlar çıkar çatışması bildirmemişlerdir.

Finansal Destek: Yazarlar bu çalışmanın herhangi bir finansal destek almadığını beyan etmişlerdir.

Açıklama: Bu çalışma, İstanbul Beykent Üniversitesi tarafından Bilimsel Araştırma Projesi olarak desteklenmiştir.

Bu çalışma, 3. Uluslararası 7. Ulusal Temel Hemşirelik Bakım Kongresi'nde sözlü sunum olarak sunulmuştur.

Geliştirilen modelin detayları bir makalede yayınlanmıştır.

Yılmaz A, Kızıl H, Kaya U, Çakır R, Demiral M. Derin öğrenme ile basınç yaralanmalarının tahmin ve sınıflandırılması. *Uygarlığın Sağlık Sorunları*. 2021;15(4):328–335.

Teşekkür: Bu çalışmaya katılan herkese en içten teşekkürlerimizi sunmak isteriz.

REFERENCES

1. Alderden J, Pepper GA, Wilson A, et al. Predicting pressure injury in critical care patients: A machine-learning model. *Am J Crit Care*. 2018;27(6):461–468.
2. Edsberg LE, Black JM, Goldberg M, et al. Revised National Pressure Ulcer Advisory Panel pressure injury staging system. *J Wound Ostomy Continence Nurs*. 2016;43(6):585–585.
3. Ferris A, Price A, Harding K. Pressure ulcers in patients receiving palliative care: A systematic review. *Palliat Med*. 2019;33(7):770–782.
4. Kottner J, Cuddigan J, Carville K, et al. Pressure ulcer/injury classification today: An international perspective. *J Tissue Viability*. 2020;12(1):1–10.
5. Martinengo L, Yeo NJY, Tang ZQ, et al. Digital education for the management of chronic wounds in health care professionals: Protocol for a systematic review by the Digital Health Education Collaboration. *JMIR Res Protoc*. 2019;8(3):12–48.
6. McGinnis E, Brown S, Collier H, et al. Pressure relieving support surfaces: A randomised evaluation 2 (PRESSURE 2) photographic validation sub-study: Study protocol for a randomised controlled trial. *Trials*. 2017;18(1):1–10.
7. Moore ZE, Patton D. Risk assessment tools for the prevention of pressure ulcers. *Cochrane Database Syst Rev*. 2019;1(1):1–10.
8. Ören N. Investigation of Nurses' Knowledge and Stages of Pressure Ulcer Diagnosis. Master's Thesis. Zonguldak Bülent Ecevit University, Institute of Health Sciences; 2019.
9. Raju D, Su X, Patrician PA, Loan LA, McCarthy MS. Exploring factors associated with pressure ulcers: A data mining approach. *Int J Nurs Stud*. 2015;52(1):102–111.
10. Van Den Oord A, Dieleman S, Schrauwen B. Deep content-based music recommendation. *Adv Neural Inf Process Syst*. 2013;26(1):1–15.
11. Yap TL, Kennerly SM, Ly K. Pressure injury prevention: Outcomes and challenges to use of resident monitoring technology in a nursing home. *J Wound Ostomy Continence Nurs*. 2019;46(3):207–213.
12. Gökalp MG, Üzer MA. Nursing care in the age of artificial intelligence. *J Health Sci Univ Nurs*. 2024;6(1):89–94.
13. Yılmaz A. Artificial intelligence. 6th ed. İstanbul: Kodlab Publishing House; 2017.
14. Ahmed SK. Artificial intelligence in nursing: Current trends, possibilities and pitfalls. *J Med Surg Public Health*. 2024;3(1):72–100.

15. Rony MKK, Parvin MR, Ferdousi S. Advancing nursing practice with artificial intelligence: Enhancing preparedness for the future. *Nurs Open*. 2024;11(1):25–35.
16. De Gagne JC, Hwang H, Jung D. Cyberethics in nursing education: Ethical implications of artificial intelligence. *Nurs Ethics*. 2024;31(6):1021–1030.
17. Pınar R, Oğuz S. Testing the reliability and validity of the Norton and Braden Pressure Ulcer Assessment Scales in the same bedridden patient group. In: 6th National Nursing Congress with International Participation. İstanbul: Damla Publishing House; 1998. p.172–175.
18. Topaz M, Peltonen LM, Michalowski M, et al. The ChatGPT effect: Nursing education and generative artificial intelligence. *J Nurs Educ*. 2024;1(1):1–4.
19. Boussina A, Shashikumar SP, Malhotra A, et al. Impact of a deep learning sepsis prediction model on quality of care and survival. *NPJ Digit Med*. 2024;7(1):1–14.
20. Wu XY. Exploring the effects of digital technology on deep learning: A meta-analysis. *Educ Inf Technol*. 2024;29(1):425–458.
21. Rasul MG, et al. Future prediction for nurse care activities using deep learning-based multi-label classification. In: Human Activity and Behavior Analysis. Boca Raton (FL): CRC Press; 2024. p.377–387.
22. Khedr AM. Enhancing supply chain management with deep learning and machine learning techniques: A review. *J Open Innov Technol Mark Complex*. 2024;1(1):37–39.
23. Yaghoubi E, Khamees A, Razmi D, Lu T. A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior. *Eng Appl Artif Intell*. 2024;135(10):87–89.
24. Swerdlow M, Guler O, Yaakov R, Armstrong DG. Simultaneous segmentation and classification of pressure injury image data using Mask-R-CNN. *Comput Math Methods Med*. 2023;2023(1):3858997.
25. Demircan F, Toz M, Yücedağ I. Analysis of pressure ulcer formation risk in different regions of the human body. *Konuralp J Math*. 2016;6(2):233–239.
26. Campitiello F, Mancone M, Corte AD, Guerniero R, Canonico S. Expanded negative pressure wound therapy in healing diabetic foot ulcers: A prospective randomised study. *J Wound Care*. 2021;30(2):121–129.
27. Gul A, Andsoy II, Ozkaya B, Zeydan A. A descriptive, cross-sectional survey of Turkish nurses' knowledge of pressure ulcer risk, prevention, and staging. *Ostomy Wound Manage*. 2017;63(6):40–46.
28. Yılmaz A, Kızıl H, Kaya U, Çakır R, Demiral M. Prediction and classification of pressure injuries by deep learning. *Health Problems of Civilization*. 2021;15(4):328–335.
29. Kim J, Lee C, Choi S, et al. Augmented decision-making in wound care: Evaluating the clinical utility of a deep-learning model for pressure injury staging. *Int J Med Inform*. 2023;180(1):52–66.
30. Seo S, Kang J, Eom IH, et al. Visual classification of pressure injury stages for nurses: A deep learning model applying modern convolutional neural networks. *J Adv Nurs*. 2023;79(1):3047–3056.
31. Jiang M, Ma Y, Guo S, et al. Using machine learning technologies in pressure injury management: Systematic review. *JMIR Med Inform*. 2021;9(3):251–273.
32. Shepherd MM, Wipke-Tevis DD, Alexander GL. Analysis of qualitative interviews about the impact of information technology on pressure ulcer prevention programs. *J Wound Ostomy Continence Nurs*. 2015;42(3):235–241.
33. Garcia-Zapirain B, Sierra-Sosa D, Ortiz D, Isaza-Monsalve M, Elmaghhraby A. Efficient use of mobile devices for quantification of pressure injury images. *Health Technol*. 2018;26(1):269–280.
34. Ng ZQP, Ling LYJ, Chew HSJ, Lau Y. The role of artificial intelligence in enhancing clinical nursing care: A scoping review. *J Nurs Manag*. 2022;30(8):3654–3674.
35. Reifsnyder E. Nursing research, practice, education, and artificial intelligence: What is our future? *Res Nurs Health*. 2023;46(6):564–565.
36. Jayakumar P, Moore MG, Furlough KA, et al. Comparison of an AI-enabled decision aid vs educational material on outcomes in adults with knee osteoarthritis. *JAMA Netw Open*. 2021;4(2):e2037107.

37. Pei J, Guo X, Tao H, et al. Machine learning-based prediction models for pressure injury: A systematic review and meta-analysis. *Int Wound J.* 2023;20(10):4328–4339.
38. Liu H, Hu J, Zhou J, Yu R. Application of deep learning to pressure injury staging. *J Wound Care.* 2024;33(5):368–378.
39. Wu SC, Li YJ, Chen HL, et al. Using artificial intelligence for the early detection of micro-progression of pressure injuries. *Stud Health Technol Inform.* 2022;290(1):1016–1017.
40. Alderden J, Johnny J, Brooks KR, et al. Explainable artificial intelligence for early prediction of pressure injury risk. *Am J Crit Care.* 2024;33(5):373–381.
41. Anderson C, Bekele Z, Qiu Y, Tschanne D, Dinov ID. Modeling and prediction of pressure injury in hospitalized patients using artificial intelligence. *BMC Med Inform Decis Mak.* 2021;21(1):253–255.
42. Song W, Kang MJ, Zhang L, et al. Predicting pressure injury using nursing assessment phenotypes and machine learning methods. *J Am Med Inform Assoc.* 2021;28(4):759–765.