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Abstract 

Purpose: This study examines the test equating performance under various item response theory models and sample size 
conditions in testlet based tests. 

Design/Methodology/Approach: Utilizing data from the eTIMSS 2019 science test, the study compares scale transformation 
methods and test equating results under Unidimensional Item Response Theory (UIRT), Testlet Response Theory (TRT) and 
bifactor models with varying sample sizes. Scale transformation methods, including the mean-sigma and Stocking-Lord 
methods, as well as observed and true score equating methods, were employed within the framework of a common-item 
nonequivalent groups design. To evaluate the equating performance, RMSE and BIAS values were calculated.   

Findings: The findings indicate that in a science test with low testlet effects, scale transformation results based on the UIRT 
model and test equating results based on the bifactor model demonstrated lower error rates. Moreover, as sample size 
increased, the error in parameter estimations generally decreased, with the TRT model specifically requiring a sample size of 
at least 500 for robust estimations. 
 
Highlights: The bifactor model, taking testlet effects into account, yielded more precise and consistent results, facilitating fair 
and reliable score equating. This study, utilizing real data, concretely illustrates the practical implications of testlet effects in 
tests containing testlets. 

Öz 

Çalışmanın amacı: Bu çalışmada madde takımları içeren testlerde farklı madde tepki kuramı modelleri ve örneklem büyüklükleri 
koşullarına dayalı test eşitleme performansları incelenmiştir. 

Materyal ve Yöntem: Bu amaçla araştırmada, eTIMSS 2019 bilim testine ait veriler kullanılarak, Tek Boyutlu Madde Tepki Kuramı 
(TBMTK), Madde Takımı Tepki Kuramı (MTTK) ve bifaktör modelleri altında farklı örneklem büyüklüklerinde yapılan ölçek 
dönüştürme yöntemleri ve test eşitleme sonuçları incelenmiştir. Denk olmayan gruplarda ortak madde deseni altında  
ortalama-sigma ve Stocking-Lord ölçek dönüştürme yöntemleri ve gerçek ile gözlenen puana dayalı eşitleme yöntemleri 
kullanılmıştır. Değerlendirme ölçütleri olarak RMSE ve BIAS değerleri hesaplanmıştır. 

Bulgular: Genel olarak düşük düzeyde madde takımı etkisinin olduğu bilim testinde TBMTK modeline dayalı ölçek dönüştürme 
ve bifaktör modele dayalı test eşitleme sonuçlarının daha düşük hata değerleri ürettiği görülmüştür. Ayrıca örneklem büyüklüğü 
arttıkça genel olarak parametre kestirimlerinin hata değerlerinin azaldığı gözlemlenmiş olup özellikle MTTK ile çalışıldığında 
örneklem sayısının 500’den fazla olması gerektiği sonucuna varılmıştır. 

Önemli Vurgular: Madde takımı etkisi göz önüne alındığında, bifaktör model daha doğru ve kararlı sonuçlar sunarak adil ve 
güvenilir puan eşitlemesi yapılmasını sağlamaktadır. Gerçek veri seti kullanılarak gerçekleştirilen bu çalışma ile madde 
takımları içeren testlerde madde takımı etkisinin pratikte nasıl bir etki yarattığı somut bir şekilde ortaya konulmuştur. 
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INTRODUCTION  

Assessment in education is a pivotal tool for decision-making in areas such as academic achievement, selection, placement, 
promotion and access to educational opportunities. In particular, the validity and reliability of large-scale test scores, both at the 
national and international levels, are of critical importance. For instance, ensuring the security and comparability of items in 
selection exams administered at different times but serving the same purpose represents a significant challenge. Consequently, 
multiple parallel test forms are often developed for the same purpose. However, the interchangeability of these forms 
necessitates empirical evidence demonstrating their equivalence. Test equating encompasses statistical procedures designed to 
ensure that scores obtained from comparable tests, which are administered for the same purpose and share similar difficulty and 
content, can be used interchangeably (Kolen & Brennan, 2014). Through test equating, the comparability and validity of scores 
across different test forms are maintained, thereby supporting fair decision-making processes. However, the equating process can 
encounter specific challenges in practice. One notable complication arises from the use of testlets, which are commonly employed 
in large-scale assessments. A testlet refers to a cluster of items that are linked to a shared stimulus, such as a text, graphic, figure 
or table (Wainer & Kiely, 1987). Testlets offer the advantage of reducing the cognitive load for examinees by enabling multiple 
items to be developed based on a single stimulus, thereby allowing for the inclusion of more items within a given testing period 
(Bradlow et al., 199). Nevertheless, this dependence on a common stimulus may violate the assumption of local independence 
(Lee et al., 2001; Wainer et al., 2007). 

The primary issue in equating tests containing testlets stems from the violation of local independence, a foundational 
assumption in Item Response Theory (IRT). Local independence posits that, when individuals’ ability (theta) levels are held 
constant, their responses to items should be statistically independent of one another (Lord, 1980). In the context of testlets, 
however, responses to items within the same testlet can influence one another, leading to local dependence. Such dependence 
can adversely affect the reliability of test scores, as well as the estimation of ability and item parameters (Marais & Andrich, 2008; 
Wainer & Wang, 2000; Yılmaz Koğar & Kelecioğlu, 2017). Consequently, this issue can undermine the accuracy of statistical 
analyses, including scale transformation methods and test equating processes, which are inherently reliant on parameter 
estimation. Thus, it is imperative to examine the testlet effect in assessments containing testlets and to consider its magnitude 
when determining the most appropriate measurement models. By addressing these challenges, the fairness and validity of score 
equating can be preserved. 

To address the issue of local dependence in testlets, the literature proposes several IRT models beyond traditional approaches 
that treat testlet items as standalone items. One such approach involves scoring all items within a testlet polytomously to form a 
single unit, referred to as a “super item,” using generalized partial credit model or graded response model (Wainer et al., 2007). 
However, a significant limitation of this method is the loss of information due to combining multiple items into a single polytomous 
item. To resolve this issue and explicitly model the dependencies among items within a testlet, the Testlet Response Theory (TRT) 
model was introduced. TRT was first developed by Bradlow et al. (1999) as an extension of the unidimensional IRT (UIRT) model 
specifically the two-parameter logistic (2PL) IRT model by incorporating an additional parameter to account for the testlet effect. 
This enhancement laid the foundation for TRT, allowing for the estimation of a testlet effect parameter (γ) for each testlet, which 
quantifies the influence of the testlet effect on individual performance (DeMars, 2006). The equation representing the 2PL-TRT 
model, incorporating the testlet effect parameter into the standard 2PL model, is provided in Equation (1). 

𝑃(𝜃𝑖, 𝛼𝑖 , 𝑏𝑖) =
𝑒𝑥𝑝(𝛼𝑖(𝜃𝑗−𝑏𝑖−𝛾𝑗𝑑(𝑖)))

1+𝑒𝑥𝑝(𝛼𝑖(𝜃𝑗−𝑏𝑖−𝛾𝑗𝑑(𝑖)))
                                                          (1) 

When conducting test equating under the TRT framework, multiple ability (θ) and discrimination (a) parameters are estimated 
based on the general trait measured by the test as well as the specific characteristics of the testlets. Specifically, the number of θ 
and 𝑎 parameters estimated corresponds to the number of testlets in addition to the general factor. For instance, in a test 
comprising three testlets, four distinct θ and 𝑎 parameters are estimated. However, the test equating process should rely on the 
general factor parameters, θ₁ and a₁. This is because θ₁ and a₁ parameters are calculated by accounting for the testlet effect, 
whereas the other parameters are specific to each testlet and only influence responses to items within their respective testlet. 
This ensures that behaviors specific to each testlet do not generalize across the entire test (Tao & Cao, 2016).  

The TRT model can be conceptualized as a constrained form of the bifactor model, which is a multidimensional IRT model 
positing that each item is associated with both a general (primary) factor and at most one specific (secondary) factor. In the 
bifactor model originally introduced by Gibbons and Hedeker (1992), there is one general factor and k specific factors. Each item 
in the test loads onto its corresponding specific factor, while also simultaneously loading onto the general factor (Gibbons & 
Hedeker, 1992). The model imposes no constraints; items are not influenced by factors other than the general or their designated 
specific factor. This allows for the independent examination of the effects of the general and specific factors (Rijmen, 2009). For 
dichotomous items, the bifactor model can be represented as follows (Cai et al., 2011): 

P(𝜃0, 𝜃s) = ci + (1-ci) 
exp(𝑎0𝑖θ0+𝑎siθs+di)

1+exp(𝑎0𝑖θ0+𝑎siθs+di)
                           (2) 
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 In this formula, θ0 represents the general factor, while θs  represents the specific factor. The parameter ci denotes the 
probability of guessing the correct answer, and di refers to the intercept parameter of the item. 𝑎0i indicates the discrimination 
parameter associated with the general factor, whereas 𝑎si indicates the discrimination parameter associated with the specific 
factor. Both the bifactor and TRT models address testlet effects in assessments involving testlets, but the selection of the 
appropriate model depends on the research question, data characteristics, and, most importantly, the magnitude of the testlet 
effect. In the literature, testlet effects are typically categorized into three levels: low (0.0–0.5), moderate (0.5–1.0) and large 
(above 1.0) (Cao et al., 2014; Wang et al., 2002).  

TRT provides superior performance in tests where violations of local independence are prevalent. For tests with low testlet 
effects, such violations do not result in significant problems and UIRT may outperform multidimensional IRT models (Chen, 2014; 
He et al., 2012; Huang et al., 2022; Kim et al., 2019). However, in tests with large testlet effects, bifactor and TRT models are more 
accurate and are therefore recommended for test equating (Cao et al., 2014; He et al., 2012; Tao & Cao, 2016). However, a critical 
consideration when applying multidimensional IRT models is their dependence on large sample sizes (Reckase, 2009). Sample size 
significantly affects the accuracy of parameter estimation during the scaling process, which is a key step in test equating 
(Hambleton & Cook, 1983; Linacre, 1994; Wang & Liu, 2018). Larger sample sizes enhance the precision of test equating (Cui & 
Kolen, 2009; Liu & Kolen, 2011; Livingston, 1993; Skaggs, 2005). Consequently, there is a clear need for further research to 
investigate the role of sample size in studies focusing on multidimensional IRT models for assessments involving testlets.  

Since different IRT models address local dependence in distinct ways, this variation may result in different outcomes, even 
when the same test equating process is employed. Consequently, the primary aim of this study is to examine the equating of 
scores obtained from tests comprising testlets using different IRT models and sample sizes and to provide a comparative analysis 
of the results. Therefore, before delving into the analysis phase, an overview of the stages, designs, and methods of test equating 
is presented. 

Stages, Designs, and Methods in Test Equating  

When two test forms developed for the same purpose are administered, variations in their means and standard deviations 
often emerge, rendering direct comparisons between the scores obtained from these forms impossible. To enable comparability, 
the scores must first be placed on a common scale. Subsequently, equating is applied to allow the scores to be used 
interchangeably. Test equating refers to the statistical transformation of test scores to account for differences in difficulty between 
test forms, enabling the scores to be used interchangeably (Kolen & Brennan, 2014). This process, which is critical for student 
evaluations, requires careful attention at each stage to ensure validity and reliability. The test equating process consists of four 
main stages: selection of the equating design, administration of the test forms, selection of the equating method, and evaluation 
of the equating results (Hambleton et al., 1991).  

Test equating studies are conducted using various designs, the selection of which depends on the characteristics of the tests 
to be equated and the testing conditions. Common designs for test equating include the single group design, random groups 
design, single group design with counterbalancing, and common-item design for non-equivalent groups (CINEG),   design (Kolen 
& Brennan, 2014). Based on the selected design, different test forms are administered to specific groups, followed by the 
application of a suitable equating method. The choice of equating method is determined by the characteristics of the test forms 
being equated. Test equating methods are generally developed within two theoretical frameworks: Classical Test Theory (CTT) 
and Item Response Theory (IRT). CTT-based methods include fundamental approaches such as mean equating, linear equating, 
and equipercentile equating (Hambleton et al., 1991). 

IRT-based equating methods, on the other hand, rely on calibration approaches, which can be categorized into two types: 
concurrent calibration, where item parameters for all test forms are estimated simultaneously and automatically aligned to the 
same scale, and separate calibration, where item parameters for each test form are estimated independently (Kolen & Brennan, 
2014). Due to practical constraints, separate calibration is often regarded as a safer alternative. In this method, scale 
transformation is necessary to ensure comparability of the estimated parameters. Scale transformation methods used in IRT-
based separate calibration are classified into two categories: moment methods and characteristic curve methods. Moment 
methods include the mean-mean (MM) and mean-sigma (MS) approaches, while characteristic curve methods include the 
Stocking-Lord (SL) and Haebara (HB) methods. Detailed explanations of the MS and SL methods used in this study are provided 
below. 

Mean-Sigma Method (MS): In this method, scale transformation coefficients are determined by using the mean and standard 
deviation of the difficulty parameters for the common items (Marco, 1977). The formulas for these coefficients are provided in 
Equations (3) and (4). 

A=
𝜎(𝑏𝑖)

𝜎(𝑏𝑗)
                                (3) 

B=μ(bj)−A.μ(bi)                                   (4)
         

μ(bᵢ): The mean of the difficulty parameters of the common items in Test i. 

μ(bⱼ): The mean of the difficulty parameters of the common items in Test j. 

σ(bᵢ): The standard deviation of the difficulty parameters of the common items in Test i. 
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σ(bⱼ): The standard deviation of the difficulty parameters of the common items in Test j. 

 

Stocking-Lord Method (SL): This method aims to reduce the differences between the item characteristic curves for the common 
items. In this method, the total differences between the item characteristic functions, considering both the item difficulty and 
discrimination parameters, are computed (Stocking & Lord, 1983). The formula is given in Equation (5). 

SLdiff(𝜃𝑖) =(∑ [𝑝𝑖𝑗(𝜃𝐽𝑗; 𝑎𝐽�̂�; 𝑏𝐽�̂�, 𝑐𝐽�̂�) − ∑ 𝑝𝑖𝑗((𝜃𝐽𝑗;
𝑎𝚤�̂�

𝐴
; 𝐴�̂�𝐼𝑗 + 𝐵�̂�𝐼𝑗)𝑗:𝑉 ]𝑗:𝑉

2                                                       (5) 

𝑝𝑖𝑗: Item characteristic function for the respondent i and the item j 

�̂�𝐽𝑗,𝑏 ̂𝐽𝑗,�̂�𝐽𝑗: Item discrimination, difficulty, and guess parameters for the common item j in Scale J 

�̂�𝐼𝑗,𝑏 ̂𝐼𝑗, �̂�𝐼𝑗: Item discrimination, difficulty, and guess parameters for the common item j in Scale I 

j: V: The total is taken over the common items. 

 

The scale transformation methods described are approaches developed to represent the parameters obtained from different 
test forms on the same scale. When these methods are applied based on UIRT, they may encounter issues related to the local 
independence assumption in tests containing testlets. To evaluate the performance of individuals who take different test forms, 
test equating is conducted. The primary distinction between test equating and scale transformation lies in their objectives: test 
equating provides evidence that the scores obtained from different test forms can be used interchangeably, while scale 
transformation establishes a relationship between the parameters of the test forms. In other words, while scale transformation 
connects the parameters of the tests, test equating ensures that individuals’ scores can be used interchangeably. Therefore, the 
methods used in test equating and scale transformation also differ significantly (Ryan & Broocmann, 2009). In this study, two 
primary approaches to IRT-based equating—true score equating and observed score equating—were employed during the 
equating processes. True score equating focuses on the potential performance individuals exhibit on different test forms, whereas 
observed score equating uses the actual test scores obtained by individuals (Kolen & Brennan, 2014). Both methods aim to make 
comparisons between different test forms possible, but they are grounded in distinct theoretical frameworks and practical 
approaches. Understanding the differences and applications of these two methods is critical for conducting test equating more 
accurately and reliably.  

True score equating and observed score equating are two fundamental methods used to ensure comparability of scores across 
different test forms. True score equating allows for the comparison of true scores on different tests independently of individuals’ 
abilities and requires the calculation of all item parameters (Ogasawara, 2003; Kolen & Brennan, 2014). Observed score equating, 
on the other hand, operates on the distributions of observed correct responses, comparing the number of items answered 
correctly on each test form (Tao & Cao, 2016; Kolen & Brennan, 2014). Both methods utilize scale transformation techniques such 
as characteristic curve methods (Stocking-Lord and Haebara) and moment methods (Mean-Mean and Mean-Sigma) (Kolen & 
Brennan, 2014). As observed in some previous studies, a selective approach was adopted, whereby not all methods were utilized 
(He et al., 2015; Öztürk Gübeş, 2019; Robitzch, 2024; Yıldırım Seheryeli et al., 2021).  In this study, the Stocking-Lord method was 
preferred for its ability to minimize parametric differences and provide greater flexibility (Asriadi & Retnawati, 2023; Kilmen & 
Demirtaşlı, 2012; Özdemir & Atar, 2022; Robitzch, 2024; Stocking & Lord, 1983; Uysal & Kilmen, 2016), while the Mean-Sigma 
method was selected because it takes variances into account, yielding more precise equating results (Kolen & Brennan, 2014; 
Öztürk Gübeş & Kelecioğlu, 2015).  

Purpose of the Study 

The necessity of the equating process lies in ensuring that the scores obtained by candidates from exams accurately reflect 
their true achievement levels. For instance, if a student scores low on a difficult test but high on an easier one, this may lead to 
misleading decisions about the student. Therefore, test equating processes form the foundation of fair and valid assessments in 
education. It is crucial that this process is conducted meticulously, particularly in cases where local dependency might arise, such 
as with testlets. 

Researchers have conducted numerous studies addressing local item dependencies in tests composed of testlets and proposed 
various approaches. However, more studies are needed to investigate the impact of such dependencies on the performance of 
scale transformation and test equating (Cao et al., 2014; Chen, 2014; He, 2012; Huang et al., 2022; Kim et al., 2019; Tao & Cao, 
2016). Evidence on the application of IRT models for scale transformation in tests containing testlets is scarce, warranting further 
research into their performance. For this reason, different IRT models are considered as a condition in this study. Furthermore, 
the literature reveals that scale transformation results for common-item designs in non-equivalent groups have not been 
adequately examined using real data. Since most studies rely on simulation data, the common items typically consist only of 
testlets. However, in real test applications, common items may include both testlets and standalone items, with some testlet 
effects being low, others moderate, and some high. Hence, this study, based on a real dataset containing both standalone items 
and testlets, is anticipated to provide a unique contribution to the literature. 

Sample size is also a critical factor influencing the accuracy of parameter estimation and the test equating process (Tao & Cao, 
2016). IRT models that account for testlet effects require larger sample sizes due to their inclusion of more parameters (Reckase, 
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2009). Additionally, Huang et al. (2022) concluded in their study that simpler models such as UIRT demonstrate acceptable error 
and bias levels with larger sample sizes. Consequently, this study incorporates different sample sizes as a condition when 
comparing the performance of scale transformation methods for common-item designs in non-equivalent groups using real data 
from tests containing testlets. In conclusion, the study seeks to answer the following research questions: 

1. How do the RMSE and BIAS values of item parameters obtained from different scale transformation methods (MS-SL) change 
when different IRT models (UIRT-TRT-bifactor) are used under varying sample sizes (500-1000-2000-4279) in the eTIMSS science 
test (booklets 3 and 4)? 

2. How do the RMSE and BIAS values of test equating methods (true score and observed score equating) based on different 
scale transformation methods (MS-SL) vary in the eTIMSS science test (booklets 3 and 4)? 

 

METHOD 

       Research Design 

This study aims to investigate scale transformation and test equating methods based on different IRT models and sample sizes in 
tests containing testlets, seeking to obtain detailed insights. In this respect, the study is descriptive in nature (Büyüköztürk et al., 
2020). 

Study Group 
The data for the study were drawn from the student responses to the relevant booklets of the eTIMSS 2019 application across 
all participating countries. Since sample size is also considered as a condition, random subsamples of 500, 1,000, and 2,000 
students were selected from the original dataset of 4,279 students. In line with previous studies suggesting that at least 500 
examinees are needed for successful test equating (Spence, 1996) and that larger samples yield more accurate results, analyses 
were conducted using these sample sizes along with the full sample of 4,279 students (Atalay Kabasakal, 2014; Doğuyurt, 2023; 
Huang, 2022; Ukşul, 2024).The reason for the selection of these booklets is that when all the booklets with common items were 
reviewed, these booklets contained the highest number of testlets within the common items.  

Data and Equating Design 

The study employed a common-item design for non-equivalent groups (CINEG), which is frequently used in scale transformation 
methods and fits the structure of the data. The equating design is presented in Table 1. The data in this study consist of 
dichotomous variables scored as 0 or 1. 

Table 1. Equating Design 

Sample Booklet 3 Common Items Booklet 4 

group 1  + +    

group 2   + + 

 

In the CINEG design presented in Table 1, Booklet 4 is equated to Booklet 3 based on the common items. In this study, Booklet 
4 of the science test was equated to Booklet 3. The standalone items, testlets, and total number of items included in the booklets 
of the science test are shown in Table 2. 

Table 2. Number of Items in the Science Test 

 Booklet 3 Booklet 4 Common Items 

Number of standalone items 25 26 14 

Number of two-item testlets 1 2 1 

Number of three-item testlets 1 - - 

Number of four-item testlets 1 1 1 

Number of seven-item testlets 1 1 1 

Total number of items 41 41 27 

 

As shown in Table 2, a total of 27 items are common between the booklets. Of these common items, 14 are standalone items, 
while the remainder are testlets. Among the testlets, one consists of two items, one consists of four items, and one consists of 
seven items. The testlet effects for the testlets in the science test are presented in Table 3. 
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Table 3. Testlet Effects in the Science Test 

Testlet Booklet 3 Booklet 4 

T1 (2 items) 0.170  

T2 (2 items)* 0.315 0.220 

T3 (2 items)  0.254 

T4 (4 items)* 0.535 0.589 

T5 (7 items)* 0.397 0.335 

T=Testlet  ;     *=Common Testlet 

 

When the testlet effects of the science test are examined in Table 3, it is observed that in Booklet 3, T1, T2, and T3 have low 
levels of testlet effects, while T4 demonstrates a moderate level. In Booklet 4, T2, T3, and T5 exhibit low levels of testlet effects, 
whereas T4 has a moderate testlet effect. 

Data Analysis  
In the analysis phase, the testlet effects in the science test booklets were first calculated, followed by the calibration of item 
responses using separate calibration, which yielded parameter estimates. The 2PL models provided a better fit to the data, and 
since the item parameter estimates in the 3PL model were substantially high, the 2PL model was preferred. Ability (Theta) 
parameters were estimated using the Expected A Posteriori method, while item parameters were estimated using the Maximum 
Likelihood Estimation (MLE) method (Embretson & Reise, 2000). The accuracy of the equating results was evaluated using the 
BIAS value, representing the difference between estimated and true parameter values, and the RMSE value, representing the 
total equating error. The closer these values are to zero, the more precise the equating results (Kolen & Brennan, 2014). The 
RMSE formula is provided in Equation (8), while the BIAS formula is provided in Equation (9). In the formula, N represents the 
total number of individuals, xĪ denotes the estimated parameter for item 𝑖, xi refers to the true parameter for item 𝑖.  

 

RMSE=√
∑ (�̄�𝑖−𝑥𝑖)2𝐾
𝑖=1

𝑁
                                 (6) 

      

BIAS=
∑ (�̄�𝑖−𝑥𝑖)𝐾
𝑖=1

𝑁
                                                 (7) 

 

Although RMSE and BIAS values are useful for assessing the overall performance of the equating process, they do not provide 
information about whether the errors are within acceptable limits. At this stage, the Differences That Matter (DTM) framework 
(Dorans& Feigenbaum, 1994) offers a more tangible and practical criterion for evaluating the magnitude of errors in practical 
terms (Kolen & Brennan, 2014; Lee et al., 2012). According to this criterion, if error values are smaller than 0.5, the equating 
process is considered acceptable. This criterion was used to interpret the error values obtained in this study. Data analysis was 
conducted using the mirt package (Chalmers, 2012) and the plink package (Weeks, 2010) in R programming.  

 

FINDINGS 

This section presents findings regarding how error and bias values of IRT-based scale transformation methods (MS, SL) vary 
under different IRT models and sample sizes in the eTIMSS science dataset, which comprises testlets and standalone items from 
Booklets 3 and 4. Under these conditions, the RMSE and BIAS values related to item parameters are provided in Table 4. 

 

Table 4. Error Values Across All Conditions for Scale Transformation Methods 

Scale Transformation Methods Sample Size Model RMSE BIAS 

a b a b 

  

 

 

 

 

 

Mean-Sigma 

 

4279 

UIRT 0.094 0.082 -0.089 0.037 

TRT 0.108 0.09 -0.1 0.033 

Bifactor 0.109 0.082 -0.099 0.036 

 

2000 

UIRT 0.191 0.192 -0.173 0.01 

TRT 0.375 0.371 -0.33 -0.052 

Bifactor 0.25 0.213 -0.215 -0.003 
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1000 

UIRT 0.215 0.251 0.189 0.016 

TRT 0.249 0.283 0.212 0.033 

Bifactor 0.258 0.273 0.217 0.027 

 

500 

UIRT 0.302 0.265 -0.24 -0.126 

TRT 0.589 0.252 -0.302 -0.123 

Bifactor 0.497 0.304 -0.351 -0.139 

  

 

 

 

 

 

Stocking-Lord 

  

 

 

4279 

UIRT 0.036 0.032 -0.034 0.014 

TRT 0.045 0.04 -0.042 0.013 

Bifactor 0.039 0.032 -0.035 0.015 

 

2000 

UIRT 0.145 0.153 -0.131 0.018 

TRT 0.174 0.2 -0.153 -0.01 

Bifactor 0.17 0.154 -0.147 0.003 

 

1000 

UIRT 0.275 0.338 0.242 0.019 

TRT 0.327 0.394 0.278 0.035 

Bifactor 0.332 0.373 0.28 0.039 

 

500 

UIRT 0.189 0.227 -0.15 -0.163 

TRT 0.4 0.238 -0.205 -0.177 

Bifactor 0.288 0.248 -0.204 -0.179 

  

When the error values of item parameter estimate for each scale transformation method presented in Table 4 are examined 
under the conditions of IRT models and sample sizes, it is observed that the UIRT, bifactor, and TRT models consistently yield the 
lowest error values, respectively. Moreover, a general trend indicates that as the sample size decreases, the error values of 
parameter estimates increase. While the evaluation criteria employed during the equating process (e.g., BIAS, RMSE) are 
particularly practical for comparative analyses, they remain insufficient in determining the acceptability of the results. Accordingly, 
when assessed using the DTM criterion, it is evident that, among the MS methods, all values—except for the RMSE value of the 
TRT discrimination parameter with a sample size of 500—fall below 0.5, signifying their acceptability. To facilitate interpretation 
and enable a more detailed analysis, a line graph illustrating the parameter error values estimated under varying sample size and 
IRT model conditions is presented in Figure 1. 
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Figure 1. Line Graph of Error Values Under All Conditions According to Scale Transformation Methods 

 

A review of Figure 1 reveals that parameter estimation error values are predominantly the highest for the MS method (except 
for N=1000). In contrast, the results derived from the SL methods are observed to be significantly similar across most conditions 
and consistently lower than those obtained from the MS method. Notably, all computed values remain below the threshold of 
0.5, signifying their acceptability. Moreover, a model-specific analysis indicates that the UIRT model yields the lowest error values 
for both the a and b parameters. In cases involving larger sample sizes, the bifactor model exhibits error values comparable to 
those of the UIRT model. Additionally, the BIAS values across all conditions are found to be exceptionally low.  

For the real dataset featuring the optimal sample size (n=4279), descriptive statistics of the common item parameters, as well 
as the equating constants corresponding to the scale transformation methods, have been computed for both test forms and are 
summarized in Table 5. 

Tablo 5. Descriptive Statistics of Common Item Parameters and Equating Constants by Forms 

 IRT TRT Bifactor 

Form X Form Y Form X Form Y Form X Form Y 

 a b a b a b a b a b a b 

Mean 1.123 -0.629 1.098 -0.605 1.162 -0.664 1.135 -0.647 1.229 -0.741 1.251 -0.79 

Sd 0.351 0.989 0.357 1.072 0.393 1.038 0.415 1.134 0.485 1.165 0.550 1.57 

  MS SL   MS SL   MS SL  

A  0.922 0.969      0.915   0.962     0.742 0.937  

B  -0.070 -0.027     -0.071  -0.032   -0.154 -0.068  

 

When Table 5 is examined, it is observed that the mean values of the a and b parameters for the common items are consistent 
across all models, with the equating constants being nearly identical in both the IRT and TRT models.  

Descriptive statistics for the parameter values of the common items were calculated for each model using two scale 
transformation methods MS (moment methods) and SL (characteristic curve methods) in the scaled form. 

Table 6. Descriptive Statistics of Item Parameters in Scaled Form 

 UIRT TRT Bifactor 

MS SL MS SL MS SL 

 a b a b a b a b a b a b 

Mean 1.100 -0.490 1.047 -0.467 1.135 -0.647 1.177 -0.653 1.251 -0.79 1.229 -0.741 

Sd 0,402 0.783 0.383 0.823 0.415 1.134 0.431 1.091 0.550 1.57 0.485 1.165 

 

In Table 6, it is also apparent that the mean values of the common item parameters are quite similar in both the UIRT and TRT 
models.  
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A test equating procedure was performed based on both observed and true scores using the SL (characteristic curve methods) 
and MS (moment methods) scale transformation methods on the real dataset. Weighting was applied during observed score 
equating. Specifically, ten ability (theta) points were selected within the range of [-4, 4], as recommended by Kolen and Brennan 
(2014). Subsequently, rescaled theta points were obtained based on the A and B constants derived from the scale transformation 
methods. Additionally, the standard normal distribution density was computed. 

The observed score equating was performed using the rescaled theta points and weights, with the results presented in Table 
7. 

Table 7. RMSE and BIAS Values Based on Observed and True Score Equating 

Equating Method Model Mean-Sigma Stocking Lord 

RMSE BIAS RMSE BIAS 

Observed Score-Based UIRT 0.795 -0.326 0.467 -0.199 

TRT 0.812 -0.313 0.495 -0.277 

Bifactor 0.769 -0.299 0.413 -0.227 

True Score-Based UIRT 0.808 -0.260 0.471 -0.153 

TRT 0.824 -0.249 0.493 -0.161 

Bifactor 0.786 -0.237 0.439 -0.152 

 

Upon reviewing Table 7, it is evident that the best results were obtained for the bifactor model in both observed and true score 
equating methods. The RMSE values for all models, derived from the MS method, were greater than 0.5 in both equating methods, 
thus failing to meet the DTM criterion. On the other hand, the BIAS values remained below 0.5 across all scale transformation and 
equating methods. 

Figure 2 presents line graphs depicting the variation of error values for observed and true scores based on the MS and SL scale 
transformation methods. In the UIRT model, the RMSE values resulting from both observed and true score equating were nearly 
identical for both the MS and SL scale transformation methods. In the TRT model, although the RMSE values were similar, the 
bifactor model displayed differences, with the MS method producing higher RMSE values. When examining the RMSE and BIAS 
values, it can be concluded that the SL scale transformation method produced lower error values across all models. 

 

 

Figure 2. Line Graph of Error Values Based on OSE and TSE Equating 

Table 8 presents the averages and standard deviations of the original forms and the scores equated from Form 4 to Form 3, 
based on the observed and true scores for all three models.  
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Table 8. Moments for equating Form X and Y 

 

As seen in Table 8, using the IRT true score equating, the average score for Form 4 equated to the 3rd Form is 20.653; when 
using the IRT observed score equating, the average is 20.699. For TRT, these scores are 20.661 and 20.778, respectively. The values 
obtained for the bifactor model are quite similar to those for the UIRT model, with values of 20.652 and 20.727, respectively. The 
moments of the transformed scores are very similar for the two IRT methods. Furthermore, without using the IRT model, the 
averages for the original Forms 3 and 4 are 23.925 and 24.190, respectively.  

 

RESULTS AND DISCUSSION 

This study compares the error values (RMSE-BIAS) obtained from different scale transformation methods (MS-SL) and equating 
methods (OSE-TSE) under various conditions, including different sample sizes (500-1000-2000-4279) and IRT models (UIRT-TRT-
bifactor), for equating the 3rd and 4th Forms of the eTIMSS 2019 science test based on a common test design across unequal 
groups. The results of the study show that when the testlet effect in the science test is at a medium or low level, the scale 
transformations based on UIRT yield lower RMSE and BIAS values for parameter errors. This finding is consistent with previous 
studies in the literature, which have shown that the UIRT model provides better results in datasets with a low testlet effect (Chen, 
2014; He, 2012; Huang et al., 2022; Kim et al., 2019; Tao & Cao, 2016). When comparing the bifactor and TRT models, it was found 
that the error values obtained from the bifactor model were lower. In fact, in large samples, the error values obtained from bifactor 
and UIRT models were quite similar. This suggests that bifactor models better model the local independence violations caused by 
testlet effects and should be preferred for scale transformation studies in tests where the testlet effect is present. 

When examining the research findings related to sample size, under the CİNEG design, errors in parameter estimation for scale 
transformation methods generally decreased as sample size increased in all models. This result aligns with the information in the 
literature, which indicates that equating procedures require a large sample size for accurate parameter estimation (Babcock & 
Hodge, 2019; Huang et al., 2022; Kolen & Brennan, 2014). Specifically, for datasets with a sample size of 500, the RMSE value can 
be high when using the TRT model. This is likely due to the TRT model treating each testlet as a separate dimension, which 
necessitates larger sample sizes in analyses (Wainer et al., 2007). Therefore, when using the 2PL-TRT model for tests composed 
entirely of testlets, the sample size should be greater than 500. 

In all models and sample sizes, the highest parameter estimation error values were generally observed with the MS method. 
The SL method, on the other hand, produced lower errors compared to the MS method. This finding is consistent with the results 
of Gök and Kelecioğlu (2014) and Ogasawara (2001) but contradicts the findings of Gül et al. (2017) and Kim & Lee (2006). In true 
score equating and observed score equating, among the two scale transformation methods used (MS-SL), the MS method again 
resulted in higher RMSE values across all models. The reason for this outcome in true and observed score equating may be 
attributed to the more erroneous parameter estimations made by the MS method compared to the SL method during the scale 
transformation process. Research comparing characteristic curve methods (SL) with moment methods (MS) for binary IRT models 
has demonstrated that characteristic curve methods yield more stable results (Baker & Al-Karni, 1991; Gül et al., 2017; Hanson & 
Béguin, 2002; Kim & Cohen, 1991; Kolen & Brennan, 2014; Lee & Ban, 2010; Li et al., 2012; Ogasawara, 2001; Zor, 2023). 

True and observed score equating were conducted with a sample size of 4279 using the SL and MS scale transformation 
methods. Most of the error values in this case were found to be below the DTM criterion, with the results of equating using only 
the MS scale transformation method showing errors exceeding 0.5. Furthermore, the bifactor model provided the best results in 
both true and observed score equating. Therefore, the use of the bifactor model based on the SL scale transformation method in 
equating studies may be appropriate. The literature also suggests that when the testlet effect is low, the bifactor model is a 
suitable option for test equating (He et al., 2012; Kim et al., 2019). Additionally, the results obtained align with the findings of He 
& Li (2014), where the bifactor model produced the lowest error in equating studies. Thus, in tests predominantly or entirely 
composed of testlets, where the testlet effect needs to be considered, using the bifactor model with an adequate sample size 
would be more appropriate. 

 Form UIRT TRT Bifactor 

  Mean Sd Mean Sd Mean Sd 

True Score Equating 20.653 12.579 20.661 12.586 20.652 12.575 

Observed Score Equating 20.699 12.595 20.778 12.602 20.727 12.566 

Original Score Booklet 3 23.925 7.576     

 Booklet 4 24.190 7.701     
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Upon examining the results of observed and true score equating, it was found that the equating based on observed scores 
generally produced lower error values. Only the equating results for the TRT model using the SL scale transformation method 
were found to be quite similar. However, studies in the literature have shown that true and observed score equating based on the 
UIRT model yield indistinguishable results (Cao et al., 2014; Han et al., 1997; Lord & Wingersky, 1984). 

A significant contribution of this study is that, although most studies in the literature regarding testlets have been conducted 
using simulation data (Cao et al., 2014; Chen, 2014; Huang et al., 2022; Kim et al., 2019; Tao & Cao, 2016), this study was carried 
out with real data. Unlike simulation data, the use of real data offers a more tangible understanding of how the testlet effect and 
violations of local item independence affect the results in practice. These results underscore the importance of controlling for the 
testlet effect in testlet based tests and highlight the applicability of the UIRT model in cases where the testlet effect is low or when 
most of the items in the test are standalone items. 

In the common-item nonequivalent groups (CINEG) design, the proportion of common items (i.e., the ratio of common items 
to the total number of items) is a critical factor in test equating. As a general guideline, the literature recommends that the 
proportion of common items should be at least 20%. This proportion is recognized as one of the key factors affecting the accuracy 
of equating, and it is particularly advised to maintain a higher proportion when the total number of items in the test is relatively 
small (Kolen & Brennan, 2014). In the present study, the proportion of common items exceeds the recommended range, which is 
considered advantageous for enhancing the accuracy of the equating process. However, this research has some important 
limitations. Since the study was conducted using a real dataset, the number of testlets in the eTIMSS science test for Forms 3 and 
4 was considerably lower than the number of standalone items, and the testlet effect was low. Therefore, future studies should 
focus on tests composed entirely of testlets or with a similar number of standalone and testlet items. Additionally, working with 
real datasets exhibiting a strong testlet effect will provide clearer insights into the impact of local dependence on the models. 
Furthermore, research addressing conditions such as sample size, the number of testlet items, standalone items, testlet effects 
and the ability distribution (kurtosis-skewness) of the dataset, whether based on real or simulation data, would provide significant 
contributions to the literature. 

Declaration of Conflicting Interests  
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this 

article. 

Funding 
The authors received no financial support for the research, author-ship, and/or publication of this article. 

Statements of publication ethics 
We hereby declare that the study has not unethical issues and that research and publication ethics have been observed 

carefully.  

Researchers’ contribution rate 
The study was conducted and reported with equal collaboration of the researchers. 

Ethics Committee Approval Information 

In this study, the eTIMSS 2019 dataset, which is directly downloadable from the TIMSS 2019 International Database website, 
was used. Since no data collection process was involved in obtaining open-access dataset, ethical committee approval was not 
required. 

 

References 

Asriadi M., H. (2023). Equating of standardized science subjects tests using various methods: which is the most profitable? Thabiea 
: Journal of Natural Science Teaching, 6(1), 51-64. 

Atalay Kabasakal, K. (2014). Değişen madde fonksiyonunun test eşitlemeye etkisi [Doktora tezi]. Hacettepe Üniversitesi. 

Babcock, B., & Hodge, K. J. (2020). Rasch versus classical equating in the context of small sample  sizes. Educational and 
Psychological Measurement, 80(3), 499-521.  https://doi.org/10.1177/0013164419878 

Baker, F. B. & Al-Karni, A. (1991). A comparison of two procedures for computing IRT equating coefficients. Journal of Educational 
Measurement, 28(2), 147-162 https://doi.org/10.1111/j.1745-3984.1991.tb00350.x 

Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets.  Psychometrika, 64(2), 153–168. 
https://doi.org/10.1007/BF02294533 

Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2020). Eğitimde  bilimsel araştırma yöntemleri. 
Pegem Akademi. 

Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized full-information item bifactor analysis. Psychol Methods, 16(3), 221–248. 
10.1037/a0023350 

https://doi.org/10.1177/0013164419878
https://doi.org/10.1007/BF02294533


  

|Kastamonu Education Journal, 2025, Vol. 33, No. 3| 

 

669 

Cao, Y., Lu, R., & Tao, W. (2014). Effect of item response theory (IRT) model selection on testlet- based test equating (ETS 
Research Report No. RR-14-19). Educational Testing  Service.  https://doi.org/10.1002/ets2.12017 

Chalmers, R. P. (2012). mirt: A Multidimensional Item Response Theory Package for the R  Environment. Journal of 
Statistical Software, 48(6), 1–29.  https://doi.org/10.18637/jss.v048.i06 

Chen, J. (2014). Model selection for IRT equating of testlet-based tests in the random groups design  [Doctoral dissertation] 
The University of Iowa. ProQuest Dissertations Publishing. 

Cui, Z., & Kolen, M. J. (2009). Evaluation of two new smoothing methods in equating: The cubic B‐ spline presmoothing 
method and the direct presmoothing method. Journal of Educational Measurement, 46(2), 135-158. 
https://doi.org/10.1111/j.1745-3984.2009.00074.x 

DeMars, C. (2006). Application of the bi-factor multidimensional item response theory model to  testlet-based tests. 
Journal of Educational Measurement, 43(2), 145–168.  https://doi.org/10.1111/j.1745-3984.2006.00010.x 

Doğuyurt, A. (2023). İkili puanlanan testlerde yerel madde bağımsızlık varsayımının ihlâlinin test eşitleme yöntemlerine etkisi 
[Doctoral dissertation]. Gazi Üniversitesi. 

Dorans, N. J., & Feigenbaum, M. D. (1994). Equating issues engendered by changes to the SATR and  PSAT/NMSQTR (ETS RM-
94-10). ETS. 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum  Associates. 

Gibbons, R. D., & Hedeker, D. (1992). Full information item bifactor analysis. Psychometrika, 57(3), 423-436. 
https://doi.org/10.1007/BF02295430 

Gök, B., & Kelecioğlu, H. (2014). Denk olmayan gruplarda ortak madde deseni kullanılarak madde  tepki kuramına dayalı eşitleme 
yöntemlerinin karşılaştırılması. Mersin Üniversitesi Eğitim  Fakültesi Dergisi, 10(1), 120-136. 
https://doi.org/10.17860/efd.78698 

Gül, E., Doğan-Gül, Ç., Çokluk-Bökeoğlu, Ö. & Özkan, M. (2017). Temel eğitimden ortaöğretime geçiş matematik alt testi asıl sınav 
ve mazeret sınavlarının madde tepki kuramına göre eşitlenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 
17(4), 1900-1915. https://doi.org/10.17240/aibuefd.2017.17.32772-363973 

Haebara, T. (1980). Equating logistic ability scales by a weighted least squares method. Japanese  Psychological Research, 
22(3), 144–149. 

Hambleton, R.K., & Cook, L.L. (1983). Robustness of ítem response models and effects of test length and sample size on the 
precision of ability estimates. In D.J. Weiss (Ed.), New horizons in testing: Latent trait test theory and computerized adaptive 
testing (pp. 31-49). Vancouver. 

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications.  Kluwer. 

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory.  SAGE Publications. 

Han, T., Kolen, M., & Pohlmann, J.(1997). A comparison among IRT true-andobserved score equatings  and traditional 
equipercentile equating. Applied Measurement in Education,10,105–121. 

Hanson, B. A. & Béguin, A. A. (2002). Obtaining a common scale for Item Response Theory item parameters using separate versus 
concurrent estimation in the common-item equating design. Applied Psychological Measurement, 26(1), 3-24. 
https://doi.org/10.1177/0146621602026001001 

He, W., Li, F., Wolfe, E. W., & Mao, X. (2012). Model selection for equating testlet-based tests in the NEAT design: An empirical 
study. Annual NCME Conference.  

He, Y., Zhongmin, C. & Osterlind, S. J. New robust scale transformation methods in the presence of outlying common items. Applied 
Psychological Measurement 39 (8), 613-626. https://doi.org/10.1177/0146621615587003 

Huang, F., Li, Z., Liu, Y., Su, J., Yin, L., & Zhang, M. (2022). An extension of testlet-based equating to the polytomous testlet response 
theory model. Frontiers in Psychology, 12, 743362.  https://doi.org/10.3389/fpsyg.2021.743362 

Kilmen, S. &, Demirtaşlı, N. (2012). Comparison of test equating methods based on item response theory according to the sample 
size and ability distribution. Procedia - Social and Behavioral Sciences 46, 130 – 134. 10.1016/j.sbspro.2012.05.081 

Kim, S. & Cohen, A. S. (1991). Effects of linking methods on detection of DIF. Journal of Educational Measurement, 29(1), 51-66. 

Kim, S. & Lee, W. (2006). An extension of four IRT linking methods for mixed-format tests. Journal of Educational Measurement, 
43(1), 53-76. 

Kim, K. Y., Lim, E., & Lee, W. C. (2019). A comparison of the relative performance of four IRT models on equating passage-based 
tests. International Journal of Testing, 19(3), 248–269. https://doi.org/10.1080/15305058.2018.1530239 

Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking: Methods and practices (3rd ed.). Springer. 

Lee, W. C., and Ban, J. C. (2009). Comparison of IRT linking procedures. Applied Measurement in Education, 23(1), 23-48. 
https://doi.org/10.1080/08957340903423537 

https://doi.org/10.1002/ets2.12017
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1111/j.1745-3984.2006.00010.x
https://doi.org/10.3389/fpsyg.2021.743362
https://doi.org/10.1080/15305058.2018.1530239


  

|Kastamonu Education Journal, 2025, Vol. 33, No. 3| 

 

670 

Lee, W., He, Y., Hagge, S., Wang, W., & Kolen, M. J. (2012). Equating mixed-format tests using  dichotomous common items. In 
M. J. Kolen & W. Lee (Eds.), Mixed-format tests: Psychometric  properties with a primary focus on equating (Vol. 2). CASMA 
Monograph. Iowa City, IA: Center for Advanced Studies in Measurement and Assessment, The University of Iowa. 

Lee, G., Kolen, M. J., Frisbie, D. A., & Ankenmann, R. D. (2001). Comparison of dichotomous and polytomous item response models 
in equating scores from tests composed of testlets. Applied Psychological Measurement, 25, 357–372. 
https://doi.org/10.1177/01466210122032226 

Linacre, J. M. (1994). Sample size and item calibration stability. Rasch measurement transactions, 7,  328. 

Liu, C., & Kolen, M. J. (2011). A comparison among IRT equating methods and traditional equating methods for mixed-format 
tests. Mixed-format tests: Psychometric properties with a primary focus on equating, 1, 75-94. 

Livingston, S. A. (1993). Small-sample equating with log-linear smoothing. Journal of Educational Measurement, 30(1), 23–29. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Lawrence  Erlbaum Associates. 

Lord, F. M. & Wingersky, M. S. (1984). Comparison of IRT true score and equipercentile observed score “equatings.”. Applied 
Psychological Measurement, 8, 453–46. 

Loyd, B. H., & Hoover, H. D. (1980). Vertical equating using the Rasch model. Journal of Educational Measurement, 17(3), 179–
193. 

Marais, I. D., & Andrich, D. (2008). Effects of varying magnitude and patterns of local dependence in the unidimensional Rasch 
model. Journal of Applied Measurement, 9(2), 105–124. 

Marco, G. L. (1977). Item characteristic curve solutions to three intractable testing problems. Journal of Educational Measurement, 
14(2), 139–160. 

Ogasawara, H. (2000). Asymptotic standard errors of IRT equating coefficients using moments. Economic Review, Otaru University 
of Commerce, 51(1), 1–23. 

Ogasawara, H. (2001). Least squares estimation of item response theory linking coefficients. Applied Psychological Measurement, 
25, 3–24. 

Ogasawara, H. (2003). Asymptotic standard errors of IRT observed-score equating methods. Psychometrika, 68(2), 193–211. 

Özdemir, G., & Atar, B. (2022). Investigation of the missing data imputation methods on characteristic curve  transformation 
methods used in test equating. Journal of Measurement and Evaluation in Education and Psychology, 13(2), 105-116. 
https://doi.org/10.21031/epod.1029044Öztürk Gübeş, N. &, Kelecioğlu, H. (2016). The impact of test dimensionality, 
common-item set format, and scale linking methods on mixed format test equating. Educational Sciences: Theory & 
Practice, 16(3), 715-734. 10.12738/estp.2016.3.0218 

Öztürk Gübeş, N. (2019). Test eşitlemede çok boyutluluğun eş zamanlı ve ayrı kalibrasyona etkisi. Hacettepe Üniversitesi Eğitim 
Fakültesi Dergisi, 34(4), doi: 1061-1074. 10.16986/HUJE.2019049186 

Reckase, M. D. (2009). Multidimensional item response theory. Springer. 

Rosenbaum, P. R. (1988). Items bundles. Psychometrika, 53(3), 349–359. 

Rijmen, F. (2009). Three multidimensional models for testlet-based tests: Formal relations and an empirical comparison. ETS 
Research Report, 2009(2), 1–41. 

Robitzsch, 2024. Bias-reduced Haebara and Stocking–Lord linking. J Multidisciplinary Scientific journal, 7(3), 373-384. 
https://doi.org/10.3390/j7030021 

Ryan, J., & Brockmann, F. (2009). A Practitioner’s Introduction to Equating with Primers on Classical Test Theory and Item Response 
Theory. Council of Chief State School Officers. 

Skaggs, G. (2005). Accuracy of random groups equating with very small samples. Journal of Educational Measurement, 42(4), 309-
330. https://doi.org/10.1111/j.1745-3984.2005.00018.x 

Spence, P. (1996). The effect of multidimensionality on unidimensional equating with item response theory [Doctoratal 
dissertation] University of Florida. 

Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. Applied Psychological Measurement, 
7(2), 201–210. 

Tao, W., & Cao, Y. (2016). An extension of IRT-based equating to the dichotomous testlet response  theory model. Applied 
Measurement in Education, 29(2), 108–121.  https://doi.org/10.1080/08957347.2016.1138956 

Uşkul, B. (2024). Madde takımı tabanlı testlerde ölçek dönüştürme hatalarının incelenmesi [Doctoral dissertation]. Hacettepe 
Üniversitesi. 

Uysal, İ. &, Kilmen, S. (2016). Comparison of item response theory test equating methods for mixed format tests. International 
Online Journal of Educational Sciences, 2016, 8 (2), 1-11. http://dx.doi.org/10.15345/iojes.2016.02.001 

Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for testlets. Journal of Educational 
Measurement, 24(3), 185–202. 

https://doi.org/10.1177/01466210122032226
https://psycnet.apa.org/doi/10.1111/j.1745-3984.2005.00018.x
https://doi.org/10.1080/08957347.2016.1138956


  

|Kastamonu Education Journal, 2025, Vol. 33, No. 3| 

 

671 

Wainer, H., & Wang, X. (2000). Using a new statistical model for testlets to score TOEFL. Journal of Educational Measurement, 
37(3), 203–220.  https://doi.org/10.1111/j.1745-3984.2000.tb01083.x 

Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. Cambridge University Press. 

Wang, X., Bradlow, E. T., & Wainer, H. (2002). A general Bayesian model for testlets: Theory and applications. Applied Psychological 
Measurement, 26(2), 190–218. https://doi.org/10.1177/0146621602026001007 

Wang, S. & Liu, H. (2018). Minimum sample size needed for equipercentile equating under the random groups design. In M. J. 
Kolen ve W. Lee (Ed.), Mixed-format tests: Psychometric properties with a primary focus on equating (vol 2.5, s. 107-126). 
Center for Advanced Studies in Measurement and Assessment. 

Weeks, J. P. (2010). plink: An R package for linking mixed-format tests using IRT-based methods. Journal of Statistical Software, 
35(12), 1–33. 

Yıldırım Seheryeli, M., Yahşi-Sarı, H., & Kelecioğlu, H. (2021). Comparison of Kernel Equating and Kernel Local Equating in Item 
Response Theory Observed Score Equating. Journal of Measurement and Evaluation in Education and Psychology, 12(4), 
348-357. https://doi.org/10.21031/epod.900843 

Yılmaz Koğar, E., & Kelecioğlu, H. (2017). Examination of different item response theory models on tests composed of testlets . 
Journal of Education and Learning, 6(4), 113-126. 10.5539/jel.v6n4p113 

Zor, Y. M. (2023). Investigation of multidimensional scale transformation methods applied to multidimensional tests according to 
various conditions. Adıyaman University Journal of Educational Sciences, 13(1), 41-53. 
http://dx.doi.org/10.17984/adyuebd.1239198 

 

https://doi.org/10.1111/j.1745-3984.2000.tb01083.x
https://doi.org/10.1177/0146621602026001007
https://doi.org/10.21031/epod.900843

