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Response of a 3D elastic half-space to a distributed
moving load

Nihal Ege∗†, Onur �ahin‡ and Bar�³ Erba³�

Abstract

The dynamic e�ect of an out of plane distributed moving load on the
surface of an elastic half-space is considered. The problem is formu-
lated in terms of a hyperbolic-elliptic asymptotic model for a moving
load where the trajectory and the distribution of the load are taken to
be orthogonal. Steady-state equations are written in terms of a moving
coordinate system. The near-resonant solutions are, then, obtained for
sub and super-Rayleigh cases taking into account the causality princi-
ple. Numerical results of displacement components are presented for
various values of the distribution parameter.
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1. Introduction

Surface wave phenomena has been an active research area since the pioneering work
of Rayleigh in 1887. There are numerous publications in the literature analyzing the
response of elastic structures under the in�uence of both stationary and moving loads
[1]�[4]. However a great number of these studies consider only two dimensional problems
and there exists only a small number of papers analyzing 3D problems. Furthermore,
the applied forces are taken as point loads which do not re�ect real life problems encoun-
tered in modern engineering applications such as operation of high speed trains ([5], [6]),
underground railway tunnels ([7]), bridge constructions ([8]), etc.
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The main object of this paper is to extract the contribution of the Rayleigh wave
resulting from a moving load of Gaussian-type pro�le distributed orthogonally to the
trajectory of the load. Recently, a similar problem has been analyzed by the authors
where the distribution and motion of the moving load are taken in the same direction (cf.
[9]). The direction of the distribution considered here, contrary to the previously exam-
ined case, gives rise to signi�cant di�culties in obtaining the solution in particular cases.
Since the focus will be on the surface displacement, an approximate model developed by
[10] and later implemented to 3D in [11]�[13] will be employed in order to analyse the
surface wave contribution ignoring the e�ects of bulk and shear waves. The advantage
of the adapted model is that it reduces the governing equations to a mixed type sur-
face equation depending on the load speed and two 2D equations in the interior of the
half-space. Moreover the model enables one to obtain explicit expressions for stress and
displacement components.

The paper is organised as follows: In Section 2 the statement of the problem is for-
mulated in terms of the adapted asymptotic model. Introducing a moving coordinate
system, steady-state equations are obtained which are then cast into sub and super-
Rayleigh cases determined by the small parameter de�ning the proximity of the load
speed to the Rayleigh wave speed. In Section 3, the surface solutions are obtained and
only in the sub-Rayleigh case the interior solution is restored in terms of elementary
functions. However, due to the nature of the load, such an extension does not result in
an immediate explicit solution in the super-Rayleigh case. This demands expressing the
interior solution in terms of an integral form. Finally, Section 4 represents the illustra-
tions of the displacements depending on the variation of the load distribution, as well as
depth of the half-space.

2. Statement of the problem

Consider a linearly elastic isotropic half-space, occupying the domain
−∞ < x1, x2 < ∞, 0 6 x3 < ∞, subject to a vertical load of magnitude P distributed
along the Ox2 axis and moving along the Ox1 along the surface x3 = 0 of the half-space
at a constant speed c, see Figure 1.

P
c

x2

x1

x3

Figure 1. Distributed load moving along Ox1 axis.

The equations of motion in linear elasticity are given in their conventional form (see
[14]),

(2.1) (λ+ µ)grad div u + µ∆u = ρ
∂2u

∂t2
,
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where λ and µ are Lamé constants, ρ is the volume density, u is the displacement vector
and ∆ is a 3-dimensional Laplace operator.

In the framework of the elliptic-hyperbolic asymptotic model, derived in [15] and [16],
the elliptic equations for the interior can be presented as

(2.2)
∂2φ

∂x23
+ k21∆2ϕ = 0,

∂2ψi
∂x23

+ k22∆2ψi = 0, i = 1, 2

where

∆2 =
∂2

∂x21
+

∂2

∂x22
, k2i = 1− c2R

c2i
,

and c1, c2, and cR are the longitudinal, shear and Rayleigh wave speeds respectively.
The boundary equation along the surface x3 = 0 is governed by a hyperbolic equation

(2.3) ∆2ϕ−
1

c2R

∂2ϕ

∂t2
= APδ(x1 − ct)

a

π(x22 + a2)
,

where δ(x) is the Dirac delta function and A is a material constant de�ned in [11]. The
longitudinal and transverse potentials ϕ and ψi are connected by a di�erential relation
on the surface x3 = 0 given by (cf. [11])

(2.4)
∂ϕ

∂xi
=

2

1 + k22

∂ψi
∂x3

, i = 1, 2.

On using the well-known Helmholtz decomposition theorem, the components of the dis-
placement vector may be rewritten in terms of the wave potentials as

(2.5) u1 =
∂ϕ

∂x1
− ∂ψ1

∂x3
, u2 =

∂ϕ

∂x2
− ∂ψ2

∂x3
, u3 =

∂ϕ

∂x3
+
∂ψ1

∂x1
+
∂ψ2

∂x2
.

Let us now employ a moving coordinate λ = x1 − ct which restricts the problem to a
steady-state regime. Introducing a small dimensionless parameter, ε, de�ned by

(2.6) ε =

√∣∣∣∣1− c2

c2R

∣∣∣∣
the boundary equation (2.3) reduces to an elliptic equation

(2.7)
∂2ϕ

∂x22
+ ε2

∂2ϕ

∂λ2
= APδ(λ)

a

π(x22 + a2)
,

corresponding to a sub-Rayleigh regime (c < cR) and to a hyperbolic equation

(2.8)
∂2ϕ

∂x22
− ε2 ∂

2ϕ

∂λ2
= APδ(λ)

a

π(x22 + a2)
,

corresponding to a super-Rayleigh regime (c > cR).
It is worth noting that the adapted model for a 3D elastic half-space, presented in [11]

and [16] , is valid provided that ε� 1, i.e., when the load speed is close to the Rayleigh
wave speed. Due to the type of the applied load and its direction of movement, it is not
unreasonable to expect that the main displacements will occur in x1 and x3 directions.

The presence of a small physical parameter together with the above reasoning, thus,
motivates the scaling

η1 =
λ

ε
, η2 = x2, η3 =

x3
ε
.(2.9)

Utilizing (2.9), equations (2.2), (2.4), (2.7) and (2.8) become

(2.10)
∂2ϕ

∂η23
+ k21

∂2ϕ

∂η21
+ ε2k21

∂2ϕ

∂η22
= 0,

∂2ψi
∂η23

+ k22
∂2ψi
∂η21

+ ε2k22
∂2ψi
∂η22

= 0,
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(2.11)
∂ϕ

∂η1
=

2

1 + k22

∂ψ1

∂η3
,

∂ϕ

∂η2
=

2

ε(1 + k22)

∂ψ2

∂η3
,

(2.12)
∂2ϕ

∂η22
+
∂2ϕ

∂η21
=
AP

ε
δ(η1)

a

π(η22 + a2)
,

and

(2.13)
∂2ϕ

∂η22
− ∂2ϕ

∂η21
=
AP

ε
δ(η1)

a

π(η22 + a2)
,

respectively.

3. Solution of the problem

In this section the steady-state solutions of equations (2.10)�(2.13) is derived by using
the approximate hyperbolic-elliptic model. We �rst neglect O(ε2) terms in the elliptic
equations (2.10), resulting in

(3.1)
∂2ϕ

∂η23
+ k21

∂2ϕ

∂η21
= 0,

∂2ψi
∂η23

+ k22
∂2ψi
∂η21

= 0.

Thus, the problem is reduced to a pair of 2D boundary value problems given by (3.1)
together with the boundary conditions (2.12) and (2.13), corresponding to sub and super-
Rayleigh cases, respectively, whose solutions will be the main consideration of the fol-
lowing discussion.

3.1. Sub-Rayleigh case. We �rst obtain the solution of the boundary equation (2.12).
To this end, we will employ the fundamental solution of the Laplace operator, see [17],
i.e.,

(3.2) F (η1, η2) =
1

4π
ln(η21 + η22),

and convolute it with the right hand side of (2.12) giving the solution of the longitudinal
potential on the surface written as

ϕ(η1, η2) = F (η1, η2) ∗ AP
ε
δ(η1)

a

π(η22 + a2)

=
APa

4π2ε

∞∫
−∞

∞∫
−∞

ln(ξ21 + ξ22)

(η2 − ξ2)2 + a2
δ(η1 − ξ1)dξ1dξ2

=
APa

4π2ε

∞∫
−∞

ln(η21 + ξ22)

(η2 − ξ2)2 + a2
dξ2.(3.3)

The integral in the last line of equation (3.3) may straightforwardly be calculated using
the residue calculus, resulting in

(3.4) ϕ(η1, η2) =
AP

4πε
ln
(
η22 + (a+ |η1|)2

)
, η3 = 0.

The solution of the elliptic equation (3.1) over the interior η3 > 0 can be obtained through
the use of Poisson's formula (see [18]), with the boundary value (3.4), which gives

ϕ(η1, η2, η3) =
AP

4π2ε
k1η3

∞∫
−∞

ln
(
(a+ |ξ|)2 + η22

)
(ξ − η1)2 + k21η

2
3

dξ,
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once again, applying a simple contour integration we �nd that

ϕ(η1, η2, η3) =
AP

4πε

[
ln
(
(a+ η1)2 + (k1η3 + |η2|)2

)
+(3.5)

+ ln
(
(a− η1)2 + (k1η3 + |η2|)2

)]
.

The transverse potentials ψ1 and ψ2 can be determined with the help of di�erential
relations (2.11). Di�erentiation of (3.5) gives

∂ϕ(η1, η2, η3)

∂η1
=
AP

2πε

[
a+ η1

(a+ η1)2 + (k1η3 + |η2|)2
(3.6)

− a− η1
(a− η1)2 + (k1η3 + |η2|)2

]
.

Taking into consideration (3.12) and (2.111) and using the harmonicity of the Lamé
potentials (see [4]; also [19]) we obtain

∂ψ1(η1, η2, η3)

∂η3
=
AP (1 + k22)

4πε

[
a+ η1

(a+ η1)2 + (k2η3 + |η2|)2
(3.7)

− a− η1
(a− η1)2 + (k2η3 + |η2|)2

]
,

hence,

ψ1(η1, η2, η3) =
AP (1 + k22)

4πεk2

[
arctan

(
k2η3 + |η2|
a+ η1

)
(3.8)

− arctan

(
k2η3 + |η2|
a− η1

)]
.

In a similar manner, considering (3.12) and (2.112), we get

∂ψ2(η1, η2, η3)

∂η3
=
AP (1 + k22)sgn(η2)

4π

[
k2η3 + |η2|

(a+ η1)2 + (k2η3 + |η2|)2
(3.9)

+
k2η3 + |η2|

(a− η1)2 + (k2η3 + |η2|)2

]
,

from which it follows that

ψ2(η1, η2, η3) =
AP (1 + k22)sgn(η2)

8πk2

[
ln
(
(a+ η1)2 + (k2η3 + |η2|)2

)
+(3.10)

+ ln
(
(a− η1)2 + (k2η3 + |η2|)2

)]
.

The components of the displacement vector u are rewritten in terms of scaled variables
(2.9) as

u1 =
1

ε

(
∂ϕ

∂η1
− ∂ψ1

∂η3

)
, u2 =

∂ϕ

∂η2
− 1

ε

∂ψ2

∂η3
(3.11)

u3 =
1

ε

(
∂ϕ

∂η3
+
∂ψ1

∂η1

)
+

1

a

∂ψ2

∂η2

Substitution of equations (3.5), (3.8), and (3.10) into the displacement components gives

u1 =
1

ε2
AP

2π

[
a+ η1

(a+ η1)2 + (k1η3 + |η2|)2
− a− η1

(a− η1)2 + (k1η3 + |η2|)2
−(3.12)

− 1 + k22
2

(
a+ η1

(a+ η1)2 + (k2η3 + |η2|)2
− a− η1

(a− η1)2 + (k2η3 + |η2|)2

)]
,
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u2 =
1

ε

AP sgn(η2)

2π

[
k1η3 + |η2|

(a+ η1)2 + (k1η3 + |η2|)2
+

k1η3 + |η2|
(a− η1)2 + (k1η3 + |η2|)2

−(3.13)

− 1 + k22
2

(
k2η3 + |η2|

(a+ η1)2 + (k2η3 + |η2|)2
+

k2η3 + |η2|
(a− η1)2 + (k2η3 + |η2|)2

)]
,

and

u3 =
AP (1 + k22)

4πk2

[
k2η3 + |η2|

(a+ η1)2 + (k2η3 + |η2|)2
+

k2η3 + |η2|
(a− η1)2 + (k2η3 + |η2|)2

]
(3.14)

+
1

ε2
AP

2π

[
k1

(
k1η3 + |η2|)

(a+ η1)2 + (k1η3 + |η2|)2
+

k1η3 + |η2|)
(a− η1)2 + (k1η3 + |η2|)2

)
− 1 + k22

2k2

(
k2η3 + |η2|

(a+ η1)2 + (k2η3 + |η2|)2
+

k2η3 + |η2|
(a− η1)2 + (k2η3 + |η2|)2

)]
.

Equations (3.12)�(3.14) express the asymptotic solutions of the displacement components
in the sub-Rayleigh case. Keeping O(ε2) terms in elliptic equations (2.10), the exact
solution of the 3D boundary value problem is again obtained with the help of the Poisson's
formula in an integral form as

(3.15) ϕ(η1, η2, η3) =
APη3
8π2ε

∞∫
−∞

∞∫
−∞

ln

(
ξ22 +

(
a
εk1

+
∣∣ ξ1
ε

∣∣)2)[
(ξ1 − η1

k1
)2 + (ξ2 − η2

εk1
)2 + η23

]3/2 dξ1dξ2.
3.2. Super-Rayleigh case. We now proceed to the super-Rayleigh case. Following a
similar approach as in the foregoing discussion the solution of the boundary equation
(2.13) may be obtained using the fundamental solution of the wave operator, see [17]. It
is critical to note, at this point, that since the load speed is greater than the Rayleigh
wave speed we should not expect any disturbance on the surface in front of the load,
a fact dictating us to employ the causality principle (for more details, see [9]). The
fundamental solution of the 1D wave operator, therefore, takes the form

(3.16) E (η1, η2) =
1

2
[H(η2 − η1)−H(η2 + η1)]H(−η1).

Thus, the longitudinal wave potential on the surface η3 = 0 can be obtained through a
convolution as

ϕ(η1, η2) = E (η1, η2) ∗ AP
ε
δ(η1)

1

π(η22 + 1)
(3.17)

=
AP

2πε

∞∫
−∞

0∫
−∞

H(ξ2 − ξ1)−H(ξ2 + ξ1)

(η2 − ξ2)2 + 1
δ(η1 − ξ1)dξ1dξ2

=
AP

2πε

[
arctan

(η2 − η1
a

)
− arctan

(η2 + η1
a

)]
H(−η1).

The solution over the interior follows from the Poisson's formula and is given as

ϕ(η1, η2, η3) =
AP

2π2ε
k1η3

0∫
−∞

arctan

(
η2 − ξ
a

)
− arctan

(
η2 + ξ

a

)
(ξ − η1)2 + k21η

2
3

dξ.(3.18)

As it is quite di�cult, if not impossible, to calculate the integral in equation (3.18)
analytically, we will only concentrate on the surface displacement since it is possible to
express them through the relations (2.11) given analytical formulae. The longitudinal
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and transverse displacements along the surface x3 = 0 can therefore be written from
equations (2.5) and (2.11) as

(3.19) u1 =
c2R

2εc22

∂ϕ

∂η1
, u2 =

c2R
2c22

∂ϕ

∂η2
.

Hence, the tangential displacements along the plane x3 = 0 are expressed through the
formulae

u1 = −APc
2
Ra

4πε2c22

[(
arctan

(η2 − η1
a

)
− arctan

(η2 + η1
a

))
δ(−η1)+(3.20)

+

(
a

a2 + (η2 − η1)2
+

a

a2 + (η2 + η1)2

)
H(−η1)

]
,

and

u2 = −APc
2
Ra

4πεc22

[(
arctan

(η2 − η1
a

)
− arctan

(η2 + η1
a

))
δ(−η1)−(3.21)

−
(

a

a2 + (η2 − η1)2
− a

a2 + (η2 + η1)2

)
H(−η1)

]
.

Although it is not feasible to evaluate the integral given by (3.18), representing the inner
solution, we may still employ numerical integration schemes to illustrate the displacement
below the surface some of which are given in Figure 6.

4. Numerical results

In the previous sections we have obtained analytical as well as integral representa-
tions both for potentials and displacement components. Our main interest, here, is to
represent e�ect of the loading on the half-space as the parameter a varies. Evidently,
for smaller values of a the load exhibits a point load-like behaviour causing a singularity
in the displacement components. It is expected that the larger values of a will result in
smoothened displacement pro�les. In the �gures to follow the Poisson ratio is taken as
ν = 0.25 corresponding to a relation between Rayleigh and transverse wave speeds given
by cR = 0.9194c2. Also the displacements are scaled as

Ui(η1, η2, η3) =
2π

AP
ui(η1, η2, η3), i = 1, 2, 3.

Let us consider, �rst, the sub-Rayleigh case where ε = 0.1 for which the load speed equals
c = 0.924c2. In Figure 2 the longitudinal surface displacement U1 is plotted along η1
axis, that is, in the direction of the motion for several values of the parameter a. It is
also interesting to note that a simple analysis reveals that the particular value of a = 1
is a second order zero of the derivative of U1 which accounts for the behaviour of the
graph of U1 around the origin. Figure 3 represents variation of the vertical displacement
U3 with respect to η2 on the surface η3 = 0. It is clearly seen, in both of the graphs, that
an increase in the value of parameter a diminishes the singularity of the displacements,
whereas in the limit a→ 0, the displacement pro�les exhibit a singularity under the load
encountered in point force problems (cf. [16]).

Figure 4 shows the cross-section of the vertical displacement U3 for η2 = 2, depending
on depth, when a = 0.01 (Figure 4a) and a = 0.1 (Figure 4b). It is observed that even
for small values of a, the singularity at the near-surface vanishes rapidly.
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a = 1

Figure 2. Sub-Rayleigh surface displacement U1 versus η1 for η2 = 1
and a = 0.01, a = 0.5, a = 1.
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Figure 3. Sub-Rayleigh vertical surface displacement U3 versus η1 for
η2 = 0.1 and a = 0.01, a = 0.5, a = 1.

We now investigate the super-Rayleigh case in which the load speed is taken as c =
0.924c2. In Figure 5 the e�ect of the parameter a on the displacements U1 and U3 along
the surface is illustrated. It is apparent that a larger Gaussian-like pro�le of the load, i.e.,
increasing values of a decreases the size of the singularity under the load. Both Figure
5(a) and 6 signify that the principle in-plane displacement U1 is causal on the surface,
however as the depth increases it becomes non-causal. This is a result of the fact that
only the longitudinal potential ϕ is causal along the direction of the motion and only on
the surface in the super-Rayleigh case which is a consequence of the adapted approximate
model (see [9] for further details). A cross-section of the surface longitudinal displacement
U1 for n1 = −1 is depicted in Figure 7. Evidently, as a → 0 a singular behaviour arises



825

−120

−100

−80

−60

−40

−20

0

-2 0 2

U3

η1

η3 = 0

η3 = 0.1

η3 = 0.3

η3 = 0.5 −60

−40

−20

0

-2 0 2

U3

η1

η3 = 0

η3 = 0.1

η3 = 0.3

η3 = 0.5

(a) (b)

Figure 4. Pro�les of the sub-Rayleigh vertical displacement U3 versus
η1 for η2 = 1 depending on depth; (a) a = 0.01, (b) a = 0.5.

under the load exhibiting surface discontinuities at η2 = ±η1 = −1, relating to the
Mach cone lines behind the load. As mentioned in the foregoing discussion, the causality
principle prevents having these lines in front of the load (η1 > 0). Once again, a larger
Gaussian pro�le of the load smoothens the singularities.
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Figure 5. Pro�les of the super-Rayleigh surface displacement compo-
nents versus η1 for η2 = 0 and a = 0.01, a = 0.5, a = 1; (a) horizontal
displacement U1 (b) vertical displacement U3.
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Figure 6. Pro�les of the super-Rayleigh in-plane horizontal displace-
ment U1 versus η1 for η2 = 0 and a = 0.1 depending on depth.
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Figure 7. Pro�les of the super-Rayleigh surface in-plane displacement
components versus η2 for η1 = −1 and a = 0.01, a = 0.5, a = 1;
(a) horizontal displacement U1 (b) transverse displacement U2.

5. Conclusions

This paper focuses on the e�ect of a distributional load acting on the surface of an elas-
tic half-space. In obtaining the solution of the 3D elliptic problems the hyperbolic-elliptic
model given in [15] is employed. This model, taking advantage of the small parameter
expressing the proximity of the load speed to the Rayleigh wave speed, concentrates on
extracting the e�ect of the surface waves by enabling the reduction of 3D problems to
2D ones.
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The displacements for the sub-Rayleigh case are expressed through elementary func-
tions over the elastic half-space, however, in the super-Rayleigh case, the considered
load's distribution along the x2 axis causes serious di�culties in the analytical evalua-
tion of integrals for ϕ which prohibits obtaining explicit expressions for the displacements
which is in contrast to the case considered in [9]. This necessitates the use of numerical
integration to acquire the solutions over the interior. Nevertheless, it is still possible
to represent surface displacements through simple analytical expressions (cf. (3.20) and
(3.21)).

It is known that, in the limit a → 0 the distributional load coincides with the point
force which has been investigated in several publications (see, for instance, [4],[12] and
[16]). In the Figures represented for both sub and super-Rayleigh cases in the previous
section, it is decidedly seen that the singularities encountered in the point force problems
are smoothened or even diminished in the case of a distributed load. It is also worth
mentioning that the in�uence of a distributed load has, somewhat, the same e�ect of an
elastic coating on a half-space (cf. [12])

A number of diverse problems, such as wave propagation in layered media, inhomo-
geneous elastic beams etc., as well as media where the e�ects of prestress anisotropy are
crucial, may be analysed through a similar approach considered in this work.
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