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ABSTRACT

Aims: This study aimed to assess the predictive performance of artificial intelligence-based models in estimating progression-
free survival (PFS) in patients with epithelial ovarian cancer and to compare various interpretable machine learning approaches.

Methods: Between January 2015 and December 2020, a total of 167 patients who underwent surgical intervention at the
Gynaecological Oncology Department of Antalya Training and Research Hospital were retrospectively included in the study if
their data were complete. Clinical data were analysed, and the dataset was randomly divided into a training group (n=117; 75%)
and a validation group (n=42; 25%). A machine learning (ML) analysis was conducted using the eight most relevant and widely
applied algorithmic models for this study design. Model development time, mean absolute error (MAE), root mean square error
(RMSE), and correlation coefficient (CC) were evaluated.

Results: Random Forest demonstrated the highest accuracy (MAE=16.45, CC=0.571, RMSE=20.98, time=0.03) and thus became
the focus of subsequent analyses. Other algorithms included Linear Regression, Bootstrap Aggregating, Additive Regression,
Random Committee, and Regression by Discretization (CC=0.533, 0.492, 0.449, 0.408, and 0.382, respectively). For Random
Forest, a moderate correlation was observed between actual and predicted PFS values (CC=0.4-0.6), indicating moderate
predictive performance.

Conclusion: The findings of this study demonstrate that machine learning models, particularly Random Forest, can achieve
moderate yet clinically relevant prognostic performance based on routinely collected clinical data. In particular, Random Forest
demonstrates potential clinical value in guiding patient follow-up strategies and supporting individualized management in
ovarian cancer, although further research is required to enhance its clinical validity and applicability.
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INTRODUCTION

Ovarian cancer is the eighth most common cancer among
women worldwide, accounting for approximately 3.7% of
diagnoses and 4.7% of cancer-related deaths, although its
incidence varies significantly across regions.! The current
standard treatment for epithelial ovarian cancer consists of
maximal cytoreductive surgery followed by platinum-based
chemotherapy, with the possible addition of maintenance
therapies such as bevacizumab and/or Poly (ADP-ribose)
polymerase (PARP-1) inhibitors.>* Conventional prognostic
tools rely on parameters such as tumor stage, histology,
patient age, comorbidities, and the extent of cytoreduction;
however, these factors often fail to capture the complexity
and heterogeneity of the disease.* Recent advances in

Corresponding Author: Aysun Alci, aysun_alci@hotmail.com

EY MG HD

machine learning (ML) have introduced novel approaches
for improving prognostic accuracy in oncology. By applying
sophisticated analytical methods to large and complex
datasets, ML can identify patterns that remain undetected by
traditional statistical techniques. The effectiveness of methods
such as supervised learning, neural networks, and ensemble
approaches has already been demonstrated in various cancer
types, highlighting their potential to outperform conventional
models in outcome prediction. Consequently, the integration
of artificial intelligence (AI) and ML into oncology holds
promise for enhancing diagnostic and prognostic accuracy
and for enabling more personalized and effective treatment
strategies.>”’
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With the increasing emphasis on personalized medicine,
the need for reliable predictive tools tailored to individual
patient characteristics has become more pressing. This is
particularly important for heterogeneous diseases such as
epithelial ovarian cancer, where traditional statistical models
are still difficult to apply in practice. In this context, the aim
of our study was to assess the potential of AI based models
to provide patient-specific prognostic information, which
is critical for the clinical management of these tumors.®’
Specifically, we compared the performance of ML methods
in predicting progression-free survival (PFS) in patients with
epithelial ovarian cancer using preoperative, intraoperative,
and postoperative clinical variables. This evaluation seeks
to provide a more comprehensive understanding of both
the advantages and limitations of Al driven approaches in
clinical oncology, and to offer insights that may inform future
strategies for clinical practice.

METHODS
Ethics

This retrospective analysis was approved by the Scientific
Ethics Committee for Medical Researches at Antalya Training
and Research Hospital in Turkiye (Date: 07.11.2024, Decision
No: 17/2), was conducted in accordance with the ethical
principles outlined in the Declaration of Helsinki.

Study Design and Patients

The data utilized in this study were fully anonymized prior to
analysis and contained no personally identifiable information.
We reviewed the records of consecutive adult patients (aged 18
years and above) who underwent surgery for epithelial ovarian
cancer at our institution between January 2015 and December
2020. Patients with other gynaecological malignancies
or with benign histopathological findings were excluded
from the analysis. Individuals diagnosed with nonovarian
gynaecological malignancies or benign pathological entities
were not included in the final analysis.

Data Collection

Demographic and clinical characteristics were recorded for
all eligible patients, including age, diabetes mellitus status,
Eastern Cooperative Oncology Group (ECOG) performance
score, and the presence of significant cardiovascular or
pulmonary comorbidities. The extent of intra-abdominal
disease was documented in accordance with standard clinical
guidelines, and any evidence of extra-abdominal spread on
preoperative imaging was noted. In line with evidence-based
recommendations from randomized controlled trials,'*"
patients considered suitable for interval debulking surgery
initially received neoadjuvant chemotherapy (NACT).
Surgical cytoreduction was performed approximately 21 days
after the final NACT cycle. The total number of NACT cycles,
typically three, four, or six, was carefully recorded for each
patient.

Detailed intraoperative findings were also documented,
including the type and extent of surgical procedures
performed (e.g., multiorgan resections when applicable), the
need for intraoperative blood transfusion, and the degree of
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cytoreduction achieved, categorized according to residual
tumor size after debulking. Postoperative outcomes were
assessed by recording intensive care unit (ICU) admissions
and length of hospital stay.

Preoperative serum CA-125 levels were obtained for all
patients. Pathological and adjuvant treatment data were
likewise collected, including International Federation of
Gynecology and Obstetrics (FIGO) stage, histological subtype,
and the number of lymph nodes resected. Receipt of adjuvant
chemotherapy and the number of cycles administered were
also recorded. Disease status at the first post-treatment
evaluation (e.g., no evidence of disease vs. residual disease)
was assessed. Postoperative complications were graded using
the Clavien-Dindo classification system.'* Finally, the interval
between debulking surgery and initiation of adjuvant therapy
was documented for each patient.

Machine Learning Model Development

The dataset was randomly divided into two subsets:
approximately 75% of the patient records were allocated for
model training, and the remaining 25% were reserved for
testing. To ensure an optimal partitioning strategy, multiple
train-test ratios were evaluated (10%, 20%, 25%, 40%, and
50%). Among these, the 25% test set provided the best balance
between model development and evaluation, resulting in
117 patients in the training set and 42 in the test set. Model
construction including feature selection and algorithm
training was performed exclusively on the training dataset,
while the test set was retained for independent validation.
The distribution of outcome classes (group 1 and group 2)
was assessed using z-tests, which confirmed no statistically
significant imbalance between subsets. To ensure the stability
and generalizability of our models, we evaluated them
using a repeated random sub-sampling validation strategy.
We performed 100 iterations of partitioning the dataset. In
each iteration, the data was randomly split into a training
set (75% of patients, n=117) and a test set (25% of patients,
n=42). To prevent distributional bias, the splits were stratified
to maintain the same proportion of outcome classes (group
1 and group 2) in both the training and test sets as in the
original cohort. Missing values were handled internally by
the classifier's default method, which distributes instances
with unknown values fractionally across the branches
of the decision trees based on the observed training data
distribution. The feature of importance have defined with
Shapley Additive Explanations (SHAP) values, using Python
version 3.14 (Figure 1, 2).

Eight ML algorithms were applied, selected based on their
prevalence in the literature and relevance to the classification
task, and implemented using the Waikato Environment
for Knowledge Analysis (WEKA), version 3.8.6. Following
training, predictive performance was evaluated on the test set
using classification accuracy along with additional indicators
of predictive strength. To identify the most effective model,
performance metrics including mean absolute error (MAE),
root mean squared error (RMSE), and Pearson’s correlation
coefficient (CC) were calculated, while model calibration and
fit were examined through statistical comparisons between
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SHAP: Shapley Additive explanations, ICU: Intensive care unit, LN: Lymph node, CT: Chemotherapy

predicted and observed results in the test cohort. Random
Forest, the best-performing algorithm, was carried out with
100 trees and a tree depth value of 10.

Statistical Analysis

All supplementary statistical analyses were performed using
IBM SPSS Statistics (version 27.0; IBM Corp., Chicago, IL,
USA), underscoring the use of this software for rigorous data
analysis. The normality of continuous data distributions was
evaluated with the Kolmogorov-Smirnov test, supplemented
by visual inspection methods such as histograms, Q-Q plots,
and examination of skewness and kurtosis. Categorical
variables were presented as frequencies with corresponding
percentages for clarity. Pearson’s CC was employed to examine
associations between continuous variables. To evaluate the
concordance between predicted and observed values of the
primary outcome, a paired-samples t-test was performed.
All ML computations were executed on a Windows 11
system equipped with an Intel Core i7 CPU, 16 GB RAM,
and an NVIDIA GeForce GTX 1660 Ti graphics card (8 GB
of memory). A two-tailed significance level of 5% (a=0.05)
was applied to all statistical tests, and p-values below this
threshold were considered statistically significant.

RESULTS

Figure 3 shows the inclusion of 167 patients who underwent
surgery for epithelial ovarian carcinoma during the study
period. As presented in Table 1, 2, the mean patient age was
58+11 years. Notably, 36.5% of the cohort (n=61) had stage
IIT disease, while 74.9% (n=125) exhibited high-grade tumor
histology. A total of eight widely used ML algorithms were
tested, and their predictive performance was evaluated.
The algorithms utilised in this study were Random Forest,
Multilayer Perceptron, Linear Regression, Support Vector
Regression, Additive Regression, Bootstrap Aggregating
(bagging), Random Committee and Regression by
Discretisation. The Multilayer Perceptron and Support Vector
Regression algorithms exhibited the lowest performance in
terms of CC (0.1543, 0.1997). Following a rigorous evaluation
process, the Random Forest algorithm was identified as
the most effective algorithm and thus became the focus of
subsequent research. The CC of the Random Forest algorithm
was 0.5731, with a MAE of 16.45 and a RMSE of 20.98. The
time required to create the model was 0.03 seconds. The
remaining algorithms were Linear Regression, Bootstrap
Aggregating (bagging), Additive Regression, Random
Committee, and Regression by Discretization (CCs: 0.5326,
0.4915, 0.4491, 0.4077, 0.3817) (Table 3). A statistical analysis
of actual and predicted PFS was performed to determine
the success rate of the best performing Random Forest
algorithm. A moderately significant correlation was found
between actual and predicted PFS (p<0.001 and CC=0.573).
In addition, an analysis of the difference between the actual
and predicted PFS values was performed and no statistically
significant difference was found (the difference between the
actual and predicted values was very small and the p-value was
greater than 0.946) (Table 4, Figure 3). This study highlights
that the Random Forest algorithm provides the highest
prediction accuracy compared to the other models tested.
The moderate correlation observed between actual and PFS
values (CC=0.573, p<0.001), despite the model demonstrating
meaningful predictive capacity, indicates that its performance
is not yet optimal for clinical application. Importantly, the
absence of statistically significant differences between actual
and predicted values (p=0.946) further supports the model's
validity. These findings suggest that Random Forest could
serve as a promising foundation for clinical prognostic tools
in epithelial ovarian cancer. However, future studies with
larger cohorts, more diverse datasets, and refined parameter
optimisation are necessary to improve prediction accuracy
and clinical applicability.

The Bland-Altman analysis demonstrated an overall
acceptable agreement between the actual and predicted PFS
values. The mean difference was close to zero, indicating
the absence of a systematic bias in the predictions. Most of
the data points were within the 95% limits of agreement,
reflecting a generally reliable concordance between the model
outputs and observed outcomes. However, a wider spread of
differences was noted at higher mean PFS values, suggesting
reduced reliability of the model in patients with longer
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survival times. These findings imply that while the Random
Forest algorithm provides statistically consistent predictions,
its clinical applicability may be limited, particularly for cases
with extended PFS (Figure 4).

DISCUSSION

To the best of our knowledge, this study is among the
few that comprehensively incorporate demographic data,
intraoperative and perioperative findings, and adjuvant
treatment responses to evaluate the predictive power of ML
models for PES in patients undergoing surgery for epithelial
ovarian cancer. Among the algorithms tested, Random Forest
demonstrated the highest performance, while Multilayer
Perceptron and Support Vector Regression showed the lowest
performance, with CCs of 0.1543 and 0.1997, respectively.
Random Forest achieved the best results, with a CC of 0.5731,

Table 1. Summary of the distribution of qualitative parameters

Parameter

ECOG-PS

Major cardiac comorbidities

Major pulmonary comorbidities

Diabetes mellitus

Neoadjuvant KT

Ascite

Omental cake

Peritoneal carcinomatosis

Diyaphragmatic disease

Small bowel serosal invasion

Small bowel mesentery invasion

No
3 cycles
4 cycles
26 cycles
No
Small volume

Large volume

Localized foci
Diffuse, military

No
Localized foci
Diffuse, military
No

Localized foci
Diffuse, military
No
Localized foci

Diffuse, military

n (%)
129 (77.25%)
38 (22.75%)
128 (76.65%)
39 (23.35%)
153 (91.62%)

14 (8.38%)

Parameter n (%)
No 97 (58.08%)
Large bowel serosal invasion Localized foci 40 (23.95%)
Diffuse. military 30 (17.96%)
No 75 (44.91%)
Large bowel mesentery invasion Localized foci 54 (32.34%)

Diffuse. military 38 (22.75%)

138 (82.63%) No 149 (89.22%)
Spleen metastasis

29 (17.37%) Yes 18 (10.78%)

109 (65.27%) No 150 (89.82%)

22(13.17%)  Liver metastasis Any surface lesion 11 (6.59%)

25 (14.97%) Parencyhmal 6 (3.59%)

11 (6.59%) No 133 (79.64%)

Pleural effusion

108 (64.67%) Yes 34 (20.36%)

27 (16.17%) No 157 (94.01%)
Pleural or pulmonary nodule

32 (19.16%) Yes 10 (5.99%)

106 (63.47%) No 145 (86.83%)
Mediastinal and or paracardiac LN

61 (36.53%) Yes 22 (13.17%)

67 (40.12%) No 164 (98.2%)
Inguinal LN

34 (20.36%) Yes 3 (1.8%)

66 (39.52%) No 164 (98.2%)
Supraklavikular LN

120 (71.86%) Yes 3 (1.8%)

Maximal (no visi-
11 (6.59%) ble%) 119 (71.26%)
36 (21.56%)  Cytoreduction Optimal (<1 cm%) 36 (21.56%)

127 (76.05%)

Suboptimal (21 12 (7.19%)

cm%)
18 (10.78%) No 128 (76.65%)
Intestinal resection
22 (13.17%) Yes 39 (23.35%)
110 (65.87%) No 158 (94.61%)
Small bowel resection
17 (10.18%) Yes 9 (5.39%)
40 (23.95%) No 137 (82.04%)
Colorectal anastomozis
Yes 30 (17.96%)

The table continues
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Table 1. Summary of the distribution of qualitative parameters (The table continues)

No 82 (49.1%) I 33 (19.76%)
Pelvic peritonectomy

Yes 85 (50.9%) I 16 (9.58%)

FIGO stage

No 117 (70.06%) III 61 (36.53%)
Paracolic peritonectomy

Yes 50 (29.94%) v 57 (34.13%)

No 139 (83.23%) 0 70 (41.92%)
Diafragm peritonectomy

Yes 28 (16.77%) LN involvement 1 40 (23.95%)

No 147 (88.02%) 2 57 (34.13%)
Splenectomy and or distal pancreatectomy

Yes 20 (11.98%) No 18 (10.78%)

No 55 (32.93%) Yes 142 (85.03%)

Adjuvant therapy

Lymphadenectomy Selective LN debulking 5(2.99%) Lost followup 0 (0%)

Systemic pelvic-paraaortic 107 (64.07%) Death before adjuvant therapy 7 (4.19%)

No 150 (89.82%) 0 12 (7.41%)
Intraop. complication

Yes 17 (10.18%) Total no of first 1-6 cycles of chemotherapy 93 (57.41%)

No 79 (47.31%) lcl;légsllf motherapy 7-8 cycles of chemotherapy 49 (30.25%)
Intraop need for bloood transfusion :

P Yes 88 (52.69%) Death before adjuvant therapylost ¢ (4.94%)
to follow up

No 68 (40.72%) Complete response 129 (77.25%)
Needfor ICU

Yes 99 (59.28%) Partial response 22 (13.17%)
Postoperative any adverse event including ~ N° 86 (51.5%)  Disease status on Stable disease 5(2.99%)
deaths Yes 81 (48.5%) ?ﬁ;ﬁ;;f’rlmary Progression 4 (2.4%)

Death before completion of

No 84 (50.3%) primary therapy 7 (4.19%)

Grade 1 19 (11.38%) Lost to follow up 0 (0%)
Clavien Dindo classification of surgical Grade 2 31 (18.56%)
advers events

Grade 3 17 (10.18%)

Grade 4 10 (5.99%)

Grade 5 6 (3.59%)

High grade 125 (74.9%)
Tumor histotype

Others 42 (25.1%)

¥ Data is missing for five patients. The distribution percentages were calculated based on a sample of 162 patients. ECOG PS: Eastern Cooperative Oncology Group Performance Status, ICU: Intensive care unit,

NACT: Neoadjuvant chemotherapy

Tablo 2. General distribution patterns of the quantitative attributes used in the ML models

Parameter

Age

Serum CA-125

LOSH-ICU

LOSH (overall)

No. of pelvic LNs removed

No. of paraaortic LNs removed

No. of total LNs removed

Time interval between debulking surgery and adjuvant therapy, days

Recurrence time, months

Minimum Maximum Median Mean SD
22 82 57 58 11
3.4 25801.0 614.0 1548.4 3436.0
0 38 1 2 4
1 77 11 14 9
12 69 29 31 12
8 73 26 27 13
15 129 56 58 19
14 99 36 38 14
22 82 57 58 11

LOSH-ICU: Length Of stay hospital intensive care unit, LN: Lymph node

a MAE of 16.45, a RMSE of 20.98, and a model-building
time of only 0.03 seconds, thereby emerging as the most
effective algorithm and warranting further investigation.
In comparison, Linear Regression, Bootstrap Aggregating
Additive Regression, Random Committee, and Regression by
Discretization yielded CC 0f0.5326, 0.4915, 0.4491, 0.4077, and
0.3817, respectively. Correlation analysis between actual and
predicted PFS values for Random Forest indicated a moderate
correlation (r=0.4-0.6), suggesting moderate predictive

accuracy. The ability of Random Forest to reduce overfitting
by combining multiple models and capture complex, non-
linear relationships between features is the reason for its
strong performance.'>'* Recent studies have shown that using
radiomic and multi-omic data alongside clinical information
improves the accuracy of ovarian cancer predictions. For
example, Jian et al.'* developed a Random Forest model that
combined imaging data with clinicalinformation and achieved
a 77.2% AUC, outperforming models based solely on clinical
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Table 3. Evaluation of ML model performance and prediction capabilities for algorithms used

ML algorithms Time taken to build model
Random Forest 0.03 sec
Multilayer perceptron 0.02 sec
Linear regression 0.02 sec
Support vector regression 0.03 sec
Additive regression 0.02 sec
Bootstrap aggregating (Bagging) 0.03 sec
Random Committee 0.03 sec
Regression by discretization 0.08 sec

Mean absolute error

Evaluation of model performance

Root mean squared error Correlation coefficient’

16.45 20.98 0.5731
27.30 33.70 0.1543
18.16 21.47 0.5326
25.25 29.62 0.1997
21.47 25.83 0.4491
17.46 21.67 0.4915
18.5026 24.0229 0.4077
18.5396 26.6757 0.3817

*Training and validation split: %75 and %25, TCorrelation between the actual and the predicted PFS data, ML: Machine learning, PFS: Progression-free survival

Table 4. Evaluating the correlation between the actual and predicted
progression-free survival (PES) values, as well as exploring differences

within the PFS values

Correlation” Difference wit;’hin PFS
values
Coefficient (r)  p value t p value
Actual PFS
0.573 <0.001 -0.068 0.946
Predicted PFS

*Pearson’s correlation analysis **Paired sample t-test. PES: Progression-free survival (months)
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Figure 4. Bland-Altman plot of differences between actual and predicted PFS
values

data. Similarly, Laios et al.'®*used ML in advanced high grade
serous ovarian cancer, emphasised the importance of feature
selection, and predicted 2 year survival with approximately
73% accuracy using support vector machines and ensemble
models.These results demonstrate that radiomic features
and accurate feature selection provide added value beyond
traditional clinical methods. Furthermore, systematic reviews
highlight the importance of combining different types of
data. For example, Piedimonte et al.'” reported that radiomics
based ML models achieved AUC values ranging from 0.77
to 0.93 in various studies. Radiogenomic models, which
combine imaging data with molecular profiles, have yielded
even more promising results. A meta-analysis by Maiorano et
al."® revealed that the AUC value of these models can reach up
to 0.975, while Zeng et al.”® deep learning-based model, which
combines multi-centre imaging and genetic data, achieved the
highest reported prediction accuracy (AUC=0.975).
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Beyond imaging methods, multi-omic-based models have
also made significant contributions. Wu et al.?* developed
the AI assisted prognostic index AIDPI by integrating
transcriptomic and clinical data, demonstrating that this
index improves patient risk classification. Similarly, Chen
et al.* introduced the CSOARG model based on eight gene
expression signatures, which achieved an AUC value of 0.68
in five-year survival prediction. These gene-based signatures
provide valuable insights into biological risk profiles, treatment
responses, and the tumours immune microenvironment.
Jiang et al.** contributed to the field with AUTOSurv, an
interpretable deep learning based platform that combines
clinical, gene expression, and miRNA data, reporting that
this platform outperforms traditional ML methods. Overall,
these studies demonstrate that analysing multidimensional
data with deep neural networks can provide accuracy beyond
classical methods.

In this context, our study highlights the limitations of models
based solely on clinical parameters. Using the Random Forest
algorithm, a statistically significant but moderate correlation
(Pearson r=0.573, p<0.001) was obtained between actual
and predicted PFS. Furthermore, the absence of a significant
difference between predicted and observed PFS values
(p=0.946) supports the model's consistency. Although the
findings demonstrate the predictive power of our ML model
based on clinical data, they also indicate that its performance
is limited compared to radiomic and multi-omic approaches
that better reflect tumour heterogeneity and treatment
response.

Nevertheless, the main strength of our study lies in its
practicality and accessibility. Since the model was developed
solely on the basis of routinely collected clinical data, it does
not rely on advanced radiomic analyses or expensive genomic
technologies. This makes it especially valuable for resource-
constrained settings, where the implementation of high-
performance radiomic or multi-omic models may not be
feasible. Thus, although integrative models can achieve higher
accuracy, a clinically based model with acceptable predictive
performance can still function as a rapid, cost-effective, and
complementary decision-support tool in the management
of epithelial ovarian cancer. In epithelial ovarian cancer,
achieving RO resection is recognized as a critical determinant
of patient survival outcomes. A comprehensive study of 571
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patients sought to develop an Al-based prediction model
focused on estimating the probability of RO resection. Using
the eXtreme Gradient Boosting (XGBoost) algorithm, the
model incorporated multiple variables primarily related to
patient characteristics and surgical features. To enhance
interpretability, SHAP were applied, enabling both global
and local explanations of model predictions. The XGBoost
framework demonstrated strong predictive accuracy, with an
AUC of 0.866 (95% confidence interval [CI]: 0.80-0.93).2

Cox proportional hazards regression, a commonly used
method in survival analysis, is a powerful tool for evaluating
the effects of covariates on the hazard function. In clinical
practice, tumour characteristics, patient demographics,
and treatment responses often exhibit complex, non-linear
relationships with survival outcomes. Researchers, aware
of these limitations, are increasingly turning to alternative
approaches that can capture such dynamics. ML-based
methods offer the opportunity to model these non-linear
interactions more effectively, revealing patterns and
relationships that traditional techniques may overlook. The
application of these methods holds promise for improving
prognosis accuracy, enhancing patient outcomes, and
supporting more informed clinical decision-making.**

Limitations

This study has some limitations. It was conducted in a
single centre with a relatively small patient group, so larger
multicentre studies are needed to confirm our results. Many
advanced models in the literature show high performance,
but these are often based on retrospective data and internal
validation.”® For safe use in clinical practice, prospective
and external validation, as well as studies on their impact
on clinical decision-making, are required. In the future,
adding radiomic and molecular biomarkers to clinical models
and applying better feature selection methods may improve
prognostic accuracy. Our findings highlight the gap between
simple clinical models and advanced approaches, and suggest
that hybrid models combining both may provide a good
balance between accuracy and practicality in ovarian cancer
prognosis. Despite the creation of a forward-looking dataset, a
limitation of our retrospective design is the relatively modest
sample size, which may limit the generalisability of the
findings. Despite the limitations mentioned above, the value
of the study lies in the careful examination of the parameters.

CONCLUSION

As a result, this study demonstrated that the Random Forest
algorithm yielded better prediction results than the other
methods tested and was effective in processing complex
clinical data. The CC (r=0.57) indicates moderate accuracy,
but this still has clinical value. In oncology, even models with
moderate accuracy can assist by classifying patients according
to their risk of recurrence, guiding follow up programmes, and
identifying patients who may benefit from early treatment or
clinical trials. The model does not replace clinical judgement
but can support decision-making in multidisciplinary care.
Future studies should test larger patient cohorts, refine
parameters, improve data processing, and combine clinical
data with radiomic or genomic information to enhance

accuracy and generalisability across different healthcare
settings.
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