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ABSTRACT
Aims: This study aimed to assess the predictive performance of artificial intelligence–based models in estimating progression-
free survival (PFS) in patients with epithelial ovarian cancer and to compare various interpretable machine learning approaches.
Methods: Between January 2015 and December 2020, a total of 167 patients who underwent surgical intervention at the 
Gynaecological Oncology Department of Antalya Training and Research Hospital were retrospectively included in the study if 
their data were complete. Clinical data were analysed, and the dataset was randomly divided into a training group (n=117; 75%) 
and a validation group (n=42; 25%). A machine learning (ML) analysis was conducted using the eight most relevant and widely 
applied algorithmic models for this study design. Model development time, mean absolute error (MAE), root mean square error 
(RMSE), and correlation coefficient (CC) were evaluated. 
Results: Random Forest demonstrated the highest accuracy (MAE=16.45, CC=0.571, RMSE=20.98, time=0.03) and thus became 
the focus of subsequent analyses. Other algorithms included Linear Regression, Bootstrap Aggregating, Additive Regression, 
Random Committee, and Regression by Discretization (CC=0.533, 0.492, 0.449, 0.408, and 0.382, respectively). For Random 
Forest, a moderate correlation was observed between actual and predicted PFS values (CC=0.4–0.6), indicating moderate 
predictive performance. 
Conclusion: The findings of this study demonstrate that machine learning models, particularly Random Forest, can achieve 
moderate yet clinically relevant prognostic performance based on routinely collected clinical data. In particular, Random Forest 
demonstrates potential clinical value in guiding patient follow-up strategies and supporting individualized management in 
ovarian cancer, although further research is required to enhance its clinical validity and applicability. 
Keywords: Artificial intelligence, deep learning in gynecologic oncology, epithelial ovarian neoplasms

INTRODUCTION
Ovarian cancer is the eighth most common cancer among 
women worldwide, accounting for approximately 3.7% of 
diagnoses and 4.7% of cancer-related deaths, although its 
incidence varies significantly across regions.1 The current 
standard treatment for epithelial ovarian cancer consists of 
maximal cytoreductive surgery followed by platinum-based 
chemotherapy, with the possible addition of maintenance 
therapies such as bevacizumab and/or Poly (ADP-ribose) 
polymerase (PARP-1) inhibitors.2,3 Conventional prognostic 
tools rely on parameters such as tumor stage, histology, 
patient age, comorbidities, and the extent of cytoreduction; 
however, these factors often fail to capture the complexity 
and heterogeneity of the disease.4 Recent advances in 

machine learning (ML) have introduced novel approaches 
for improving prognostic accuracy in oncology. By applying 
sophisticated analytical methods to large and complex 
datasets, ML can identify patterns that remain undetected by 
traditional statistical techniques. The effectiveness of methods 
such as supervised learning, neural networks, and ensemble 
approaches has already been demonstrated in various cancer 
types, highlighting their potential to outperform conventional 
models in outcome prediction. Consequently, the integration 
of artificial intelligence (AI) and ML into oncology holds 
promise for enhancing diagnostic and prognostic accuracy 
and for enabling more personalized and effective treatment 
strategies.5-7
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With the increasing emphasis on personalized medicine, 
the need for reliable predictive tools tailored to individual 
patient characteristics has become more pressing. This is 
particularly important for heterogeneous diseases such as 
epithelial ovarian cancer, where traditional statistical models 
are still difficult to apply in practice. In this context, the aim 
of our study was to assess the potential of AI based models 
to provide patient-specific prognostic information, which 
is critical for the clinical management of these tumors.8,9 
Specifically, we compared the performance of ML methods 
in predicting progression-free survival (PFS) in patients with 
epithelial ovarian cancer using preoperative, intraoperative, 
and postoperative clinical variables. This evaluation seeks 
to provide a more comprehensive understanding of both 
the advantages and limitations of AI driven approaches in 
clinical oncology, and to offer insights that may inform future 
strategies for clinical practice.

METHODS
Ethics
This retrospective analysis was approved by the Scientific 
Ethics Committee for Medical Researches at Antalya Training 
and Research Hospital in Turkiye (Date:  07.11.2024, Decision 
No: 17/2), was conducted in accordance with the ethical 
principles outlined in the Declaration of Helsinki.

Study Design and Patients
The data utilized in this study were fully anonymized prior to 
analysis and contained no personally identifiable information. 
We reviewed the records of consecutive adult patients (aged 18 
years and above) who underwent surgery for epithelial ovarian 
cancer at our institution between January 2015 and December 
2020. Patients with other gynaecological malignancies 
or with benign histopathological findings were excluded 
from the analysis. Individuals diagnosed with nonovarian 
gynaecological malignancies or benign pathological entities 
were not included in the final analysis.

Data Collection
Demographic and clinical characteristics were recorded for 
all eligible patients, including age, diabetes mellitus status, 
Eastern Cooperative Oncology Group (ECOG) performance 
score, and the presence of significant cardiovascular or 
pulmonary comorbidities. The extent of intra-abdominal 
disease was documented in accordance with standard clinical 
guidelines, and any evidence of extra-abdominal spread on 
preoperative imaging was noted. In line with evidence-based 
recommendations from randomized controlled trials,10,11 
patients considered suitable for interval debulking surgery 
initially received neoadjuvant chemotherapy (NACT). 
Surgical cytoreduction was performed approximately 21 days 
after the final NACT cycle. The total number of NACT cycles, 
typically three, four, or six, was carefully recorded for each 
patient.

Detailed intraoperative findings were also documented, 
including the type and extent of surgical procedures 
performed (e.g., multiorgan resections when applicable), the 
need for intraoperative blood transfusion, and the degree of 

cytoreduction achieved, categorized according to residual 
tumor size after debulking. Postoperative outcomes were 
assessed by recording intensive care unit (ICU) admissions 
and length of hospital stay.

Preoperative serum CA-125 levels were obtained for all 
patients. Pathological and adjuvant treatment data were 
likewise collected, including International Federation of 
Gynecology and Obstetrics (FIGO) stage, histological subtype, 
and the number of lymph nodes resected. Receipt of adjuvant 
chemotherapy and the number of cycles administered were 
also recorded. Disease status at the first post-treatment 
evaluation (e.g., no evidence of disease vs. residual disease) 
was assessed. Postoperative complications were graded using 
the Clavien–Dindo classification system.12 Finally, the interval 
between debulking surgery and initiation of adjuvant therapy 
was documented for each patient.

Machine Learning Model Development
The dataset was randomly divided into two subsets: 
approximately 75% of the patient records were allocated for 
model training, and the remaining 25% were reserved for 
testing. To ensure an optimal partitioning strategy, multiple 
train-test ratios were evaluated (10%, 20%, 25%, 40%, and 
50%). Among these, the 25% test set provided the best balance 
between model development and evaluation, resulting in 
117 patients in the training set and 42 in the test set. Model 
construction including feature selection and algorithm 
training was performed exclusively on the training dataset, 
while the test set was retained for independent validation. 
The distribution of outcome classes (group 1 and group 2) 
was assessed using z-tests, which confirmed no statistically 
significant imbalance between subsets. To ensure the stability 
and generalizability of our models, we evaluated them 
using a repeated random sub-sampling validation strategy. 
We performed 100 iterations of partitioning the dataset. In 
each iteration, the data was randomly split into a training 
set (75% of patients, n=117) and a test set (25% of patients, 
n=42). To prevent distributional bias, the splits were stratified 
to maintain the same proportion of outcome classes (group 
1 and group 2) in both the training and test sets as in the 
original cohort. Missing values were handled internally by 
the classifier's default method, which distributes instances 
with unknown values fractionally across the branches 
of the decision trees based on the observed training data 
distribution. The feature of importance have defined with 
Shapley Additive Explanations (SHAP) values, using Python 
version 3.14 (Figure 1, 2).

Eight ML algorithms were applied, selected based on their 
prevalence in the literature and relevance to the classification 
task, and implemented using the Waikato Environment 
for Knowledge Analysis (WEKA), version 3.8.6. Following 
training, predictive performance was evaluated on the test set 
using classification accuracy along with additional indicators 
of predictive strength. To identify the most effective model, 
performance metrics including mean absolute error (MAE), 
root mean squared error (RMSE), and Pearson’s correlation 
coefficient (CC) were calculated, while model calibration and 
fit were examined through statistical comparisons between 
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predicted and observed results in the test cohort. Random 
Forest, the best-performing algorithm, was carried out with 
100 trees and a tree depth value of 10.

Statistical Analysis
All supplementary statistical analyses were performed using 
IBM SPSS Statistics (version 27.0; IBM Corp., Chicago, IL, 
USA), underscoring the use of this software for rigorous data 
analysis. The normality of continuous data distributions was 
evaluated with the Kolmogorov–Smirnov test, supplemented 
by visual inspection methods such as histograms, Q–Q plots, 
and examination of skewness and kurtosis. Categorical 
variables were presented as frequencies with corresponding 
percentages for clarity. Pearson’s CC was employed to examine 
associations between continuous variables. To evaluate the 
concordance between predicted and observed values of the 
primary outcome, a paired-samples t-test was performed. 
All ML computations were executed on a Windows 11 
system equipped with an Intel Core i7 CPU, 16 GB RAM, 
and an NVIDIA GeForce GTX 1660 Ti graphics card (8 GB 
of memory). A two-tailed significance level of 5% (α=0.05) 
was applied to all statistical tests, and p-values below this 
threshold were considered statistically significant.

RESULTS
Figure 3 shows the inclusion of 167 patients who underwent 
surgery for epithelial ovarian carcinoma during the study 
period. As presented in Table 1, 2, the mean patient age was 
58±11 years. Notably, 36.5% of the cohort (n=61) had stage 
III disease, while 74.9% (n=125) exhibited high-grade tumor 
histology. A total of eight widely used ML algorithms were 
tested, and their predictive performance was evaluated. 
The algorithms utilised in this study were Random Forest, 
Multilayer Perceptron, Linear Regression, Support Vector 
Regression, Additive Regression, Bootstrap Aggregating 
(bagging), Random Committee and Regression by 
Discretisation. The Multilayer Perceptron and Support Vector 
Regression algorithms exhibited the lowest performance in 
terms of CC (0.1543, 0.1997). Following a rigorous evaluation 
process, the Random Forest algorithm was identified as 
the most effective algorithm and thus became the focus of 
subsequent research. The CC of the Random Forest algorithm 
was 0.5731, with a MAE of 16.45 and a RMSE of 20.98. The 
time required to create the model was 0.03 seconds. The 
remaining algorithms were Linear Regression, Bootstrap 
Aggregating (bagging), Additive Regression, Random 
Committee, and Regression by Discretization (CCs: 0.5326, 
0.4915, 0.4491, 0.4077, 0.3817) (Table 3). A statistical analysis 
of actual and predicted PFS was performed to determine 
the success rate of the best performing Random Forest 
algorithm. A moderately significant correlation was found 
between actual and predicted PFS (p<0.001 and CC=0.573). 
In addition, an analysis of the difference between the actual 
and predicted PFS values was performed and no statistically 
significant difference was found (the difference between the 
actual and predicted values was very small and the p-value was 
greater than 0.946) (Table 4, Figure 3). This study highlights 
that the Random Forest algorithm provides the highest 
prediction accuracy compared to the other models tested. 
The moderate correlation observed between actual and PFS 
values (CC=0.573, p<0.001), despite the model demonstrating 
meaningful predictive capacity, indicates that its performance 
is not yet optimal for clinical application. Importantly, the 
absence of statistically significant differences between actual 
and predicted values (p=0.946) further supports the model's 
validity. These findings suggest that Random Forest could 
serve as a promising foundation for clinical prognostic tools 
in epithelial ovarian cancer. However, future studies with 
larger cohorts, more diverse datasets, and refined parameter 
optimisation are necessary to improve prediction accuracy 
and clinical applicability.

The Bland–Altman analysis demonstrated an overall 
acceptable agreement between the actual and predicted PFS 
values. The mean difference was close to zero, indicating 
the absence of a systematic bias in the predictions. Most of 
the data points were within the 95% limits of agreement, 
reflecting a generally reliable concordance between the model 
outputs and observed outcomes. However, a wider spread of 
differences was noted at higher mean PFS values, suggesting 
reduced reliability of the model in patients with longer 

Figure 1. SHAP feature of importance plots
SHAP: Shapley Additive explanations, ICU: Intensive care unit, LN: Lymph node, CT: Chemotherapy

Figure 2. SHAP levels of importance
SHAP: Shapley Additive explanations, ICU: Intensive care unit, LN: Lymph node, CT: Chemotherapy
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survival times. These findings imply that while the Random 
Forest algorithm provides statistically consistent predictions, 
its clinical applicability may be limited, particularly for cases 
with extended PFS (Figure 4).

DISCUSSION
To the best of our knowledge, this study is among the 
few that comprehensively incorporate demographic data, 
intraoperative and perioperative findings, and adjuvant 
treatment responses to evaluate the predictive power of ML 
models for PFS in patients undergoing surgery for epithelial 
ovarian cancer. Among the algorithms tested, Random Forest 
demonstrated the highest performance, while Multilayer 
Perceptron and Support Vector Regression showed the lowest 
performance, with CCs of 0.1543 and 0.1997, respectively. 
Random Forest achieved the best results, with a CC of 0.5731, 

Figure 3. Correlation relationship between the actual and predicted PFS 
values
PFS: Progression-free survival

Table 1. Summary of the distribution of qualitative parameters

Parameter n (%) Parameter n (%)

ECOG-PS
0-1 129 (77.25%)

Large bowel serosal invasion

No 97 (58.08%)

≥2 38 (22.75%) Localized foci 40 (23.95%)

Major cardiac comorbidities
No 128 (76.65%) Diffuse. military 30 (17.96%)

Yes 39 (23.35%)

Large bowel mesentery invasion

No 75 (44.91%)

Major pulmonary comorbidities
No 153 (91.62%) Localized foci 54 (32.34%)

Yes 14 (8.38%) Diffuse. military 38 (22.75%)

Diabetes mellitus
No 138 (82.63%)

Spleen metastasis
No 149 (89.22%)

Yes 29 (17.37%) Yes 18 (10.78%)

Neoadjuvant KT

No 109 (65.27%)

Liver metastasis

No 150 (89.82%)

3 cycles 22 (13.17%) Any surface lesion 11 (6.59%)

4 cycles 25 (14.97%) Parencyhmal 6 (3.59%)

≥6 cycles 11 (6.59%)
Pleural effusion

No 133 (79.64%)

Ascite

No 108 (64.67%) Yes 34 (20.36%)

Small volume 27 (16.17%)
Pleural or pulmonary nodule

No 157 (94.01%)

Large volume 32 (19.16%) Yes 10 (5.99%)

Omental cake
No 106 (63.47%)

Mediastinal and or paracardiac LN
No 145 (86.83%)

Yes 61 (36.53%) Yes 22 (13.17%)

Peritoneal carcinomatosis

No 67 (40.12%)
Inguinal LN

No 164 (98.2%)

Localized foci 34 (20.36%) Yes 3 (1.8%)

Diffuse, military 66 (39.52%)
Supraklavikular LN

No 164 (98.2%)

Diyaphragmatic disease

No 120 (71.86%) Yes 3 (1.8%)

Localized foci 11 (6.59%)

Cytoreduction

Maximal (no visi-
ble%) 119 (71.26%)

Diffuse, military 36 (21.56%) Optimal (<1 cm%) 36 (21.56%)

Small bowel serosal invasion

No 127 (76.05%) Suboptimal (≥1 
cm%) 12 (7.19%)

Localized foci 18 (10.78%)
Intestinal resection

No 128 (76.65%)

Diffuse, military 22 (13.17%) Yes 39 (23.35%)

Small bowel mesentery invasion

No 110 (65.87%)
Small bowel resection

No 158 (94.61%)

Localized foci 17 (10.18%) Yes 9 (5.39%)

Diffuse, military 40 (23.95%)
Colorectal anastomozis

No 137 (82.04%)

Yes 30 (17.96%)
The table continues
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a MAE of 16.45, a RMSE of 20.98, and a model-building 
time of only 0.03 seconds, thereby emerging as the most 
effective algorithm and warranting further investigation. 
In comparison, Linear Regression, Bootstrap Aggregating 
Additive Regression, Random Committee, and Regression by 
Discretization yielded CC of 0.5326, 0.4915, 0.4491, 0.4077, and 
0.3817, respectively. Correlation analysis between actual and 
predicted PFS values for Random Forest indicated a moderate 
correlation (r=0.4–0.6), suggesting moderate predictive 

accuracy. The ability of Random Forest to reduce overfitting 
by combining multiple models and capture complex, non-
linear relationships between features is the reason for its 
strong performance.13,14 Recent studies have shown that using 
radiomic and multi-omic data alongside clinical information 
improves the accuracy of ovarian cancer predictions. For 
example, Jian et al.15 developed a Random Forest model that 
combined imaging data with clinical information and achieved 
a 77.2% AUC, outperforming models based solely on clinical 

Table 1. Summary of the distribution of qualitative parameters (The table continues)

Pelvic peritonectomy
No 82 (49.1%)

FIGO stage

I 33 (19.76%)
Yes 85 (50.9%) II 16 (9.58%)

Paracolic peritonectomy
No 117 (70.06%) III 61 (36.53%)
Yes 50 (29.94%) IV 57 (34.13%)

Diafragm peritonectomy
No 139 (83.23%)

LN involvement
0 70 (41.92%)

Yes 28 (16.77%) 1 40 (23.95%)

Splenectomy and or distal pancreatectomy
No 147 (88.02%) 2 57 (34.13%)
Yes 20 (11.98%)

Adjuvant therapy

No 18 (10.78%)

Lymphadenectomy
No 55 (32.93%) Yes 142 (85.03%)
Selective LN debulking 5 (2.99%) Lost followup 0 (0%)
Systemic pelvic-paraaortic 107 (64.07%) Death before adjuvant therapy 7 (4.19%)

Intraop. complication
No 150 (89.82%)

Total no of first 
line chemotherapy 
cycles ¥

0 12 (7.41%)
Yes 17 (10.18%) 1-6 cycles of chemotherapy 93 (57.41%)

Intraop need for bloood transfusion
No 79 (47.31%) 7-8 cycles of chemotherapy 49 (30.25%)

Yes 88 (52.69%) Death before adjuvant therapy.lost 
to follow up 8 (4.94%)

Needfor ICU
No 68 (40.72%)

Disease status on 
or after primary 
therapy

Complete response 129 (77.25%)
Yes 99 (59.28%) Partial response 22 (13.17%)

Postoperative any adverse event including 
deaths

No 86 (51.5%) Stable disease 5 (2.99%)
Yes 81 (48.5%) Progression 4 (2.4%)

Clavien Dindo classification of surgical 
advers events

No 84 (50.3%) Death before completion of 
primary therapy 7 (4.19%)

Grade 1 19 (11.38%) Lost to follow up 0 (0%)
Grade 2 31 (18.56%)
Grade 3 17 (10.18%)
Grade 4 10 (5.99%)
Grade 5 6 (3.59%)

Tumor histotype
High grade 125 (74.9%)
Others 42 (25.1%)

¥ Data is missing for five patients. The distribution percentages were calculated based on a sample of 162 patients. ECOG PS: Eastern Cooperative Oncology Group Performance Status, ICU: Intensive care unit, 
NACT: Neoadjuvant chemotherapy 

Tablo 2. General distribution patterns of the quantitative attributes used in the ML models

Parameter Minimum Maximum Median Mean SD

Age 22 82 57 58 11

Serum CA-125 3.4 25801.0 614.0 1548.4 3436.0

LOSH-ICU 0 38 1 2 4

LOSH (overall) 1 77 11 14 9

No. of pelvic LNs removed 12 69 29 31 12

No. of paraaortic LNs removed 8 73 26 27 13

No. of total LNs removed 15 129 56 58 19

Time interval between debulking surgery and adjuvant therapy, days 14 99 36 38 14

Recurrence time, months 22 82 57 58 11

LOSH-ICU: Length Of stay hospıtal ıntensive care unit, LN: Lymph node
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Beyond imaging methods, multi-omic-based models have 
also made significant contributions. Wu et al.20 developed 
the AI assisted prognostic index AIDPI by integrating 
transcriptomic and clinical data, demonstrating that this 
index improves patient risk classification. Similarly, Chen 
et al.21 introduced the CSOARG model based on eight gene 
expression signatures, which achieved an AUC value of 0.68 
in five-year survival prediction. These gene-based signatures 
provide valuable insights into biological risk profiles, treatment 
responses, and the tumours immune microenvironment. 
Jiang et al.22 contributed to the field with AUTOSurv, an 
interpretable deep learning based platform that combines 
clinical, gene expression, and miRNA data, reporting that 
this platform outperforms traditional ML methods. Overall, 
these studies demonstrate that analysing multidimensional 
data with deep neural networks can provide accuracy beyond 
classical methods.

In this context, our study highlights the limitations of models 
based solely on clinical parameters. Using the Random Forest 
algorithm, a statistically significant but moderate correlation 
(Pearson r=0.573, p<0.001) was obtained between actual 
and predicted PFS. Furthermore, the absence of a significant 
difference between predicted and observed PFS values 
(p=0.946) supports the model's consistency. Although the 
findings demonstrate the predictive power of our ML model 
based on clinical data, they also indicate that its performance 
is limited compared to radiomic and multi-omic approaches 
that better reflect tumour heterogeneity and treatment 
response.

Nevertheless, the main strength of our study lies in its 
practicality and accessibility. Since the model was developed 
solely on the basis of routinely collected clinical data, it does 
not rely on advanced radiomic analyses or expensive genomic 
technologies. This makes it especially valuable for resource-
constrained settings, where the implementation of high-
performance radiomic or multi-omic models may not be 
feasible. Thus, although integrative models can achieve higher 
accuracy, a clinically based model with acceptable predictive 
performance can still function as a rapid, cost-effective, and 
complementary decision-support tool in the management 
of epithelial ovarian cancer. In epithelial ovarian cancer, 
achieving R0 resection is recognized as a critical determinant 
of patient survival outcomes. A comprehensive study of 571 

data. Similarly, Laios et al.16 used ML in advanced high grade 
serous ovarian cancer, emphasised the importance of feature 
selection, and predicted 2 year survival with approximately 
73% accuracy using support vector machines and ensemble 
models.These results demonstrate that radiomic features 
and accurate feature selection provide added value beyond 
traditional clinical methods. Furthermore, systematic reviews 
highlight the importance of combining different types of 
data. For example, Piedimonte et al.17 reported that radiomics 
based ML models achieved AUC values ranging from 0.77 
to 0.93 in various studies. Radiogenomic models, which 
combine imaging data with molecular profiles, have yielded 
even more promising results. A meta-analysis by Maiorano et 
al.18 revealed that the AUC value of these models can reach up 
to 0.975, while Zeng et al.19 deep learning-based model, which 
combines multi-centre imaging and genetic data, achieved the 
highest reported prediction accuracy (AUC=0.975).

Table 3. Evaluation of ML model performance and prediction capabilities for algorithms used

Evaluation of model performance

ML algorithms Time taken to build model Mean absolute error Root mean squared error Correlation coefficient†

Random Forest 0.03 sec 16.45 20.98 0.5731

Multilayer perceptron 0.02 sec 27.30 33.70 0.1543

Linear regression 0.02 sec 18.16 21.47 0.5326

Support vector regression 0.03 sec 25.25 29.62 0.1997

Additive regression 0.02 sec 21.47 25.83 0.4491

Bootstrap aggregating (Bagging) 0.03 sec 17.46 21.67 0.4915

Random Committee 0.03 sec 18.5026 24.0229 0.4077

Regression by discretization 0.08 sec 18.5396 26.6757 0.3817

*Training and validation split: %75 and %25, †Correlation between the actual and the predicted PFS data, ML: Machine learning, PFS: Progression-free survival

Table 4. Evaluating the correlation between the actual and predicted 
progression-free survival (PFS) values, as well as exploring differences 
within the PFS values

Correlation* Difference within PFS 
values** 

Coefficient (r) p value t p value

Actual PFS
0.573 <0.001 -0.068 0.946

Predicted PFS
*Pearson’s correlation analysis **Paired sample t-test. PFS: Progression-free survival (months)

Figure 4. Bland–Altman plot of differences between actual and predicted PFS 
values
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patients sought to develop an AI-based prediction model 
focused on estimating the probability of R0 resection. Using 
the eXtreme Gradient Boosting (XGBoost) algorithm, the 
model incorporated multiple variables primarily related to 
patient characteristics and surgical features. To enhance 
interpretability, SHAP were applied, enabling both global 
and local explanations of model predictions. The XGBoost 
framework demonstrated strong predictive accuracy, with an 
AUC of 0.866 (95% confidence interval [CI]: 0.80–0.93).23

Cox proportional hazards regression, a commonly used 
method in survival analysis, is a powerful tool for evaluating 
the effects of covariates on the hazard function.  In clinical 
practice, tumour characteristics, patient demographics, 
and treatment responses often exhibit complex, non-linear 
relationships with survival outcomes. Researchers, aware 
of these limitations, are increasingly turning to alternative 
approaches that can capture such dynamics. ML-based 
methods offer the opportunity to model these non-linear 
interactions more effectively, revealing patterns and 
relationships that traditional techniques may overlook. The 
application of these methods holds promise for improving 
prognosis accuracy, enhancing patient outcomes, and 
supporting more informed clinical decision-making.24,25

Limitations
This study has some limitations. It was conducted in a 
single centre with a relatively small patient group, so larger 
multicentre studies are needed to confirm our results. Many 
advanced models in the literature show high performance, 
but these are often based on retrospective data and internal 
validation.26 For safe use in clinical practice, prospective 
and external validation, as well as studies on their impact 
on clinical decision-making, are required. In the future, 
adding radiomic and molecular biomarkers to clinical models 
and applying better feature selection methods may improve 
prognostic accuracy. Our findings highlight the gap between 
simple clinical models and advanced approaches, and suggest 
that hybrid models combining both may provide a good 
balance between accuracy and practicality in ovarian cancer 
prognosis. Despite the creation of a forward-looking dataset, a 
limitation of our retrospective design is the relatively modest 
sample size, which may limit the generalisability of the 
findings. Despite the limitations mentioned above, the value 
of the study lies in the careful examination of the parameters.

CONCLUSION
As a result, this study demonstrated that the Random Forest 
algorithm yielded better prediction results than the other 
methods tested and was effective in processing complex 
clinical data. The CC (r=0.57) indicates moderate accuracy, 
but this still has clinical value. In oncology, even models with 
moderate accuracy can assist by classifying patients according 
to their risk of recurrence, guiding follow up programmes, and 
identifying patients who may benefit from early treatment or 
clinical trials. The model does not replace clinical judgement 
but can support decision-making in multidisciplinary care. 
Future studies should test larger patient cohorts, refine 
parameters, improve data processing, and combine clinical 
data with radiomic or genomic information to enhance 

accuracy and generalisability across different healthcare 
settings.
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