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 This study examined the relationships between NDVI, EVI, NDWI, land surface temperature 
(LST), and groundwater level (GWL) from 2001 to 2024. NDVI anomalies showed an overall 
increase, with more pronounced positive deviations after 2015. A strong correlation was found 
between NDVI and EVI (r=0.84), and a strong negative correlation between NDWI and LST (r=-
0.90). The NDVI–GWL relationship was weak (r=0.22; anomalies r=0.16). Linear and multiple 
regression analyses had low explanatory power (max R²=0.049; multiple regression 6.9%). 
Stationarity tests showed that NDVI anomalies were persistent, while LST and GWL anomalies 
were stationary. Granger causality tests indicated no predictive relationship between NDVI and 
GWL. As a result, vegetation dynamics were mainly influenced by seasonal climate cycles, with 
groundwater playing a small but consistent role. The weak linear correlations highlight the need to 
integrate rainfall, soil moisture, and land-use change using nonlinear and lagged modeling 
approaches. 
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 Bu çalışmada, 2001–2024 döneminde NDVI, EVI, NDWI, yüzey sıcaklığı (LST) ve yeraltı suyu 
seviyesi (GWL) arasındaki ilişkiler incelenmiştir. NDVI anomalileri artış göstermiş, özellikle 
2015 sonrası daha belirgin pozitif sapmalar görülmüştür. NDVI–EVI arasında güçlü (r=0.84), 
NDWI–LST arasında ise güçlü negatif korelasyon (r=-0.90) bulunmuştur. NDVI–GWL ilişkisi 
zayıf kalmış (r=0.22, anomalilerde r=0.16). Doğrusal ve çoklu regresyon analizleri düşük 
açıklayıcılık göstermiş (R² max=0.049; çoklu regresyon %6.9). Durağanlık testinde NDVI 
anomalileri kalıcı, LST ve GWL ise durağan bulunmuştur. Granger testi NDVI–GWL arasında 
öngörücü ilişki göstermemiştir. Sonuçta bitki örtüsü dinamiklerinin esas olarak mevsimsel iklim 
döngülerinden etkilendiği, yeraltı suyunun küçük ama tutarlı katkı sunduğu, doğrusal 
korelasyonların sınırlı kaldığı ve yağış, toprak nemi, arazi kullanımı gibi faktörlerin doğrusal 
olmayan modellerle dahil edilmesi gerektiği ortaya konulmuştur. 
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Tespiti, Zaman Serisi Analizi, Granger Nedensellik 
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1. INTRODUCTION 

Rising temperatures and extreme weather events, parallel to global climate change, are significantly 
increasing the risk and impacts of drought worldwide. Drought is an environmental risk that threatens both 
natural ecosystems and human settlements, developing slowly but producing widespread consequences, 
and is one of the most destructive outcomes of climate change [1]. Especially in semi-arid regions with 
high concentrations of water-dependent socio-ecological systems, drought not only reduces agricultural 
productivity but also causes severe deterioration in urban quality of life [2-4]. In this context, water stress, 
changes in vegetation health, surface temperatures, and groundwater reserves directly impact 
multidimensional urban quality of life indicators, including ecological balance, public health, economic 
sustainability, and environmental justice [5, 6]. 
 
Urban quality of life (UQoL) is a multidimensional concept that refers to a comprehensive assessment of 
the physical, environmental, economic, social, and psychological conditions in which individuals live [7]. 
In this context, sub-indicators such as air quality, access to green spaces, thermal comfort, water security, 
ecosystem integrity, and environmental justice are among the fundamental components of environmental 
quality of life [8, 9]. However, drought has direct or indirect effects on all these indicators. Drought-related 
environmental variables such as depletion of water resources, reduction in vegetation cover, and increase 
in surface temperatures negatively affect individuals’ perception of livable cities and their level of 
environmental satisfaction [10]. 
 
Besides water availability, the green space quantity, and climatic comfort are considered the cornerstones 
of sustainable and livable cities [11]. Healthy vegetation and sufficient green space not only improve air 
quality but also reduce the urban heat island effect, thereby increasing thermal comfort and supporting 
climatic balance [12]. Indeed, urban green spaces offer multifaceted ecological benefits to the urban 
environment by reducing the effects of heat waves, absorbing rainwater to reduce flood risk, and 
sequestering carbon dioxide to balance greenhouse gas emissions. These benefits not only enhance the 
quality of the physical environment but also positively impact individuals’ life satisfaction through social 
interaction, recreation, and aesthetic experiences [13]. Therefore, understanding the effects of 
environmental threats such as drought on urban quality of life is a fundamental requirement for urban 
planning and sustainable adaptation strategies [10]. Phenomena such as water scarcity, declining green 
spaces, and rising surface temperatures can threaten living comfort and public health in cities, and 
monitoring these effects with scientific and measurable indicators will guide decision-makers.  
 
In monitoring such environmental impacts, remote sensing (RS) and geographic information systems 
(GIS)-based spatial analysis tools offer significant advantages. Remote sensing-based indicators such as 
the Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), Land 
Surface Temperature (LST), and Enhanced Vegetation Index (EVI) enable the monitoring of environmental 
components such as vegetation health, surface moisture conditions, thermal stress, and ecosystem functions 
with high spatial and temporal resolution [14-16]. The evaluation of these indicators in conjunction with 
groundwater level data not only contributes to understanding the dynamics of the hydrological cycle but 
also to the development of long-term environmental sustainability and urban resilience strategies [17-19]. 
The integration of RS and GIS-based multiple environmental indicators enables accurate monitoring of 
environmental changes and provides a scientific foundation for sustainability-based planning processes. 
 
This study aims to examine the temporal relationships between vegetation dynamics indicated by NDVI, 
EVI, and NDWI and essential hydroclimatic variables such as land surface temperature (LST_C) and 
groundwater level (GWL) over a 24-year period (2001–2024) in the Afşin region of Türkiye. Although 
numerous research reports could be found in literature regarding assessing vegetation response to 
hydroclimatic variability in various regions, our study reveals a novel approach due to its integrated 
application of long-term remote sensing datasets, anomaly-based vegetation evaluation, and causal 
inference methodologies (Granger causality) to differentiate between surface-driven and subsurface-driven 
influences on vegetation health.  
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However, the study provides a comprehensive and data-intensive analysis of how vegetation responds to 
climatic and hydrological fluctuations, in contrast to previous studies that typically investigate these 
variables in isolation or over shorter timeframes. The results are especially significant for semi-arid areas 
where water availability and vegetation productivity are closely linked, necessitating that sustainable land 
and water management practices be guided by solid, evidence-based understanding of vegetation-climate-
groundwater interactions. 

2. MATERIAL and METHOD 

2.1 Study Area 

The study was conducted in the Afşin district of Kahramanmaraş Province, located in southeastern Türkiye 
(Latitude: 38.218° N, Longitude: 36.851° E). The region lies within a high-elevation basin influenced by a 
continental semi-arid climate, characterized by cold, snowy winters and hot, dry summers. Annual 
precipitation averages between 400-500 mm, with marked seasonal and interannual variability. Afşin is 
primarily agricultural, dependent on both surface and groundwater resources, and has experienced 
increasing hydroclimatic stress in recent decades due to rising temperatures, declining water tables, and 
recurring vegetation degradation. These characteristics make it a suitable case for assessing vegetation–
climate water interactions using integrated environmental indicators. 
 

 
Figure 1. Location of Afşin district in Türkiye, its position within the province, and topographic features 

2.2 Data Description and Sources 

The analysis employed monthly time series data from January 2001 to December 2024, encompassing 288 
monthly observations (Table 1). Two primary data sources were used as below: 

2.2.1. Groundwater Level (GWL) Data 

GWL data was provide from General Directorate of State Hydraulic Works (DSİ). The observation sites 
were chosen to reflect the hydrogeological conditions in the study area. Measurements are in meters (m), 
and negative values indicate that the water level is lower than the reference elevation. The dataset was 
prepared as monthly mean values, and its temporal coverage matched that of the remote sensing data. 
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2.2.2. Remote Sensing Data 

Data on vegetation, water index, and land surface temperature were collected using the Google Earth Engine 
(GEE) cloud platform and two standard products from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor. 

(a) MOD13Q1: Vegetation Indices (Terra MODIS) has spatial resolution of 250 meters and temporal 
resolution of sixteen days. 

 NDVI: Normalized Difference Vegetation Index (provided directly by the product) 

 EVI: Enhanced Vegetation Index (provided directly by the product) 

 NDWI: Normalized Difference Water Index, calculated from the reflectances of Near-Infrared 
(NIR, Band 2) and Shortwave Infrared (SWIR, Band 6). NDWI was calculated by adding NIR and 
subtracting SWIR as follows [20, 21]: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                    (1) 

 

(b) MOD11A2 Land Surface Temperature (Terra MODIS) has a spatial resolution of 1 km and 
temporal resolution of eight days. 

The MODIS data was spatially clipped to the study area. The time series of each product was resampled 
using monthly averages to ensure that all remote sensing data matched the temporal resolution and coverage 
of the GWL series. 
 

Table 1. Data and data sources used in the study 
Variable Description Unit Source 

NDVI Normalized Difference Vegetation 
Index Unitless MODIS MOD13A2 

EVI Enhanced Vegetation Index Unitless MODIS MOD13A2 
NDWI Normalized Difference Water Index Unitless MODIS MOD09A1 
LST Land Surface Temperature (°C) °C MODIS MOD11A2 
GWL Groundwater Level m General Directorate Water Works (DSİ) 
 

2.3 Data preprocessing 

2.3.1. Missing Data Management 

Missing observations in the dataset were addressed in three stages. Missing values were filled with forward-
backward linear interpolation. If it is possible, LST Fusion Method was used for missing values in LST_C 
were filled with a weighted average of ERA5_LST (weight 0.6), Landsat_LST (weight 0.8), and 
Sentinel_LST (weight 0.8). To reduce noise, the NDVI and LST_C series were smoothed with a 9-window 
Savitzky-Golay filter of polynomial order 2. The window length was automatically adjusted to an odd 
number based on the available data length. 

2.3.2. Anomaly Calculation 

To eliminate seasonality, a monthly climatology was calculated for each variable. The anomaly value was 
defined as: 
 
Anomaly = 𝑋𝑋𝑖𝑖,𝑗𝑗 − 𝑋𝑋𝚥𝚥�                     (2) 
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where 𝑋𝑋𝑖𝑖,𝑗𝑗 is the value of a given variable in year while 𝑋𝑋𝚥𝚥�  is the long-term climatological monthly mean 
over 2001–2024. This procedure was performed separately for NDVI, EVI, NDWI, LST_C, and GWL to 
detect stress and variability beyond normal seasonal ranges. 

2.4 Statistical Analysis 

2.4.1. Stationarity Tests 

Stationarity is important in time series analysis. As a result, the anomaly series underwent both the 
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests [22, 23]. 
When p is smaller than 0.05 in ADF it is accepted as series is stationary. Similarly, series is stationary for 
KPSS test when p is bigger than 0.05 (p>0.05) 

2.4.2. Granger Causality Analysis 

The potential lagged effects of groundwater level (GWL) on NDVI were investigated using the Granger 
causality test [24]. A bivariate system (NDVI_anom and GWL_anom) was created. The optimal lag order 
between 1 and 12 was determined using the Akaike Information Criterion (AIC) as the primary criterion, 
with the Bayesian Information Criterion (BIC) serving as a backup. Moreover, ssr_ftest p-values were 
computed for all lags up to the chosen maximum. 

2.3.3. Multi-Linear Regression 

The dependent variable was NDVI anomalies, while the predictors were LST_C and GWL anomalies. 
Multicollinearity was assessed via Variance Inflation Factor (VIF). If VIF was greater than 10, the 
predictors were subjected to principal component analysis (PCA). All regressions were estimated using 
covariance matrices that were both heteroskedasticity and autocorrelation consistent (HAC, Newey-West). 

2.4.4 Correlation Analysis 

Pearson correlation was used to assess linear relationships and Spearman rank correlation was used to 
evaluate monotonic relationships. Both methods were used for raw and anomaly series. 

3. RESULTS and DISCUSSIONS 

3.1 Descriptive statistics 

Table 2 shows the descriptive statistics for the five important environmental variables from 2001 to 2024. 
Moderate vegetation cover with little variability is indicated by the NDVI (mean=0.22, SD=0.12, min=-
0.04, max=0.63) and EVI (mean=0.13, SD=0.08, min=-0.03, max=0.43). With slightly heavier tails 
(kurtosis=0.75, 1.27) and positive skewness (0.93 and 1.12), both indicate that most values tend to cluster 
toward the lower range with sporadic high outliers. DWI (mean=-0.21, SD=0.13, min=-0.48, max=0.02) 
exhibits predominantly low or negative water index values, near symmetrical (skewness=0.01), and a flat 
distribution (kurtosis=-1.25), indicating a scarcity of extreme wet or dry anomalies beyond the prevailing 
dryness. LST_C (mean=25.59 °C, SD=15.23, min=-6.53 °C, max=49.01 °C) exhibits a broad thermal 
range, characterized by a slight left skew (–0.24) and a flat-tailed distribution (kurtosis=-1.05), signifying 
the presence of both cooler and extremely warm surfaces, with a predominance of warmer conditions. The 
GWL (mean=-11.32 m, SD=1.23, min=-15.15 m, max=-8.95 m) remains consistently below ground level, 
exhibiting symmetry (skewness=0.10) and a flat-tailed distribution (kurtosis=-0.64), indicative of stable 
groundwater conditions throughout the dataset. Descriptive metrics reveal consistent yet positively skewed 
vegetation indices, consistently low NDWI, significant variability in LST_C, and stable GWL levels. 
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Table 2. Descriptive statistics of variables 
Variable Minimum Maximum Mean Standard deviation (SD) Skewness Kurtosis 

NDVI -0.04 0.63 0.22 0.12 0.93 0.75 
EVI -0.03 0.43 0.13 0.08 1.12 1.27 

NDWI -0.48 0.02 -0.21 0.13 0.01 -1.25 
LST_C -6.53 49.01 25.59 15.23 -0.24 -1.05 
GWL -15.15 -8.95 -11.32 1.23 0.10 -0.64 

The boxplots of the raw dataset reveal that NDVI and EVI are centered around positive medians, with 
NDVI marginally higher, suggesting moderate vegetation cover (Fig. 2). Both indices possess relatively 
narrow interquartile ranges yet display numerous upper outliers, indicating sporadic peaks in greenness. 
NDWI values predominantly exhibit negativity with a narrow range, indicating generally low surface water 
content, while also presenting outliers in both directions. LST_C exhibits an extensive range, spanning 
from approximately 0 °C to exceeding 40 °C, indicative of significant seasonal variation. GWL values are 
consistently negative, as anticipated for subterranean measurements, exhibiting a narrow range with a few 
deeper outliers. The raw dataset encompasses the complete range and seasonal fluctuations of each 
parameter, while the anomaly dataset delineates short-term deviations, diminishing the central tendency 
and emphasizing episodic extremes. 

 

Figure 2. Distribution of variables based on raw data (Boxplot analysis) 
 
Figure 3 demonstrates seasonal fluctuations in NDVI, EVI, NDWI, and LST_C, characterized by recurring 
annual maxima and minima. NDVI and EVI elevate during greener seasons and decline during arid periods, 
whereas NDWI predominantly remains negative, indicating consistently low surface water content. LST_C 
exhibits significant seasonal temperature fluctuations, ranging from approximately 0 °C during the cooler 
months to exceeding 40 °C in the warmer months. For GWL, the raw values are perpetually negative as 
they denote depths beneath the ground surface. The series exhibits multi-year variations instead of seasonal 
patterns, characterized by intervals of reduced groundwater levels (fewer negative values for 2010–2015) 
succeeded by increased depths (more negative values, for post-2016), signifying long-term alterations in 
groundwater level. 
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Figure 3. Temporal dynamics of hydro-vegetation variables based on raw data 
 
Figure 4 highlights deviations from long-term averages. NDVI and EVI anomalies indicate years of 
exceptionally elevated vegetation productivity, especially following 2016. NDWI anomalies indicate 
periods of relative moisture or aridity, exhibiting significant declines during drought conditions. LST_C 
anomalies indicate atypically warm or cool intervals, whereas GWL anomalies demonstrate prolonged 
increases and decreases in groundwater, signifying fluctuations in recharge and extraction over time. The 
raw series delineates the fundamental seasonal and depth patterns, whereas anomalies identify climatic and 
hydrological deviations from the norm during the period of 2001 to 2024. 
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Figure 4. Temporal dynamics of hydro-vegetation variables based on anomaly data 
 
Figure 5 shows where and how the NDVI anomalies changed over time during the study period (2001–
2024). This shows how vegetation stress and greening changed over time in the Afşin region. Figure 5(a) 
shows how the frequencies of NDVI anomalies are spread out. The histogram was slightly skewed to the 
right, and most of the observations are grouped around negative values (centered around -0.1). This means 
that below-average vegetation greenness was more common over time. The fitted kernel density curve 
shows a one-mode distribution with a long positive tail, which shows times when plants are stronger but 
not very often. The long-term NDVI climatological mean is shown by the vertical dashed line at zero 
anomaly. This helps to separate dry or stressful conditions from greener-than-average conditions. 
 
As seen in Fig. 5(b), NDVI anomaly trend plot indicates a statistically significant upward trend from 2000 
to 2025 (slope=0.0003712, p ≈8.06×10⁻¹⁵). This signifies a progressive rise in vegetation greenness 
anomalies over time, indicating that recent years exhibit above-average vegetation productivity relative to 
the long-term mean. The escalation becomes more evident post-2015, with numerous significant positive 
anomalies reaching their zenith in the late 2010s and early 2020s, indicating potential enhancements in 
vegetation health or productivity influenced by climatic or land management variables. These subplots 
show how the health of plants deviates from long-term norms. They show both how often abnormal 
conditions happen and how they change over time, which is important for figuring out how resilient plants 
are to hydroclimatic stress. 
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(a) 

 
(b) 

Figure 5. Spatiotemporal patterns of NDVI anomaly distribution and trends 

3.2 Regression results 

Figure 6 shows the outcomes of simple linear regression analyses that looked at how hydrometeorological 
and vegetation indices are related. The linear regression analyses for both raw and anomaly datasets reveal 
predominantly weak correlations among NDWI, LST_C, GWL, and NDVI. In the raw data, NDWI exhibits 
negligible correlation with GWL (R²=0.001), whereas LST_C demonstrates a modest positive association 
with NDVI (R²=0.034). GWL exhibits the most robust correlation among the raw relationships (R²=0.049), 
indicating that shallower groundwater levels are weakly correlated with increased vegetation greenness 
(Fig. 6). 

 
Figure 6. Results of linear regression between key variables based on raw data 

 
In the anomaly data, associations remain tenuous. NDWI exhibits a marginally elevated yet still negligible 
correlation with GWL (R²=0.013) and a negative slope, suggesting that wetter anomalies may be linked to 
shallower groundwater levels. LST_C anomalies exhibit negligible correlation with NDVI anomalies 
(R²=0.002), while GWL anomalies demonstrate a modest positive association with NDVI anomalies 
(R²=0.024), indicating that short-term increases in groundwater may marginally improve vegetation 
productivity (Fig. 7). The persistently low R² values indicate that these variables, when evaluated linearly, 
account for minimal variation among one another, suggesting that the interactions between vegetation, 
water, and temperature are likely influenced by more intricate, nonlinear, or external factors. 



Esra BAYAZIT, Veysi KARTAL / HRU HRU Muh Der, 10(3): 198-212 (2025) 
 

207 

 
Figure 7. Results of linear regression between key variables based on anomaly data 

 

The linear regression findings indicate predominantly weak correlations among the variables (Table 3). The 
raw dataset reveals a negligible negative correlation between NDWI and GWL (slope=-0.32, R²=0.0013, p 
=0.5353), signifying minimal explanatory capacity. LST_C exhibits a slight positive correlation with NDVI 
(slope ≈ 0.00, R²=0.0335, p=0.0018), whereas GWL demonstrates the most substantial raw correlation with 
NDVI (slope=0.02, R²=0.0492, p=0.0001), indicating that shallower groundwater levels are weakly 
associated with increased vegetation greenness. The anomaly dataset reveals a marginally stronger yet still 
weak negative correlation between NDWI and GWL (slope=-2.26, R²=0.0132, p=0.0513). LST_C 
anomalies exhibit negligible correlation with NDVI anomalies (R²=0.0017, p=0.4828), while GWL 
anomalies demonstrate a modest positive correlation with NDVI anomalies (slop= 0.01, R²=0.0244, 
p=0.0080). 
 
Stationarity testing reveals that LST_C anomalies are stationary according to the ADF test (p = 0.00354) 
and the KPSS test (p=0.1). GWL anomalies are stationary according to both tests (ADF p=0.0184; KPSS 
p=0.0791). NDVI anomalies are non-stationary according to the KPSS test (p=0.01), although they 
approach the ADF significance threshold (p=0.0922), suggesting a residual trend or persistence. 
 
The multiple regression analysis of NDVI in relation to LST_C and GWL indicates a statistically significant 
yet weak combined effect (R²=0.069). LST_C (coefficient=0.001, p=0.005) and GWL (coefficient=0.020, 
p=0.001) positively influence NDVI, indicating that elevated surface temperatures and reduced 
groundwater levels collectively promote minor enhancements in vegetation greenness, yet they account for 
less than 7% of the variation in NDVI. The cumulative evidence indicates that although statistically 
significant correlations exist among vegetation, temperature, and groundwater, their strength is minimal, 
and vegetation dynamics are probably more profoundly affected by alternative climatic, hydrological, and 
land-use variables, potentially via nonlinear interactions. 
 

Table 3. Linear regression and stationarity results for the parameters and multi regression for NDVI 
relationship between LST and GWL. 

Linear regression 
mode x y Slope intercept r2 p value Std. error 
raw NDWI GWL -0.32 -11.37 0.0013 0.5353 0.52 
raw LST_C NDVI 0.00 0.19 0.0335 0.0018 0.00 
raw GWL NDVI 0.02 0.43 0.0492 0.0001 0.00 
anom NDWI GWL -2.26 0.00 0.0132 0.0513 1.15 
anom LST_C NDVI 0.00 0.00 0.0017 0.4828 0.00 
anom GWL NDVI 0.01 0.00 0.0244 0.0080 0.00 

Stationarity results 
series ADF_stat ADF_p KPSS_stat KPSS_p 
NDVI_anom -2.60401 0.092172 0.860471 0.01 
LST_C_anom -3.74362 0.00354 0.103152 0.1 
GWL_anom -3.22905 0.018364 0.395516 0.079088 

Multi regression results for NDVI relationship between LST and GWL 
Variable Coefficient Std. Err t-value p-value r2 
const 0.405 0.067 6.058 0.000 0.069 
LST_C 0.001 0.000 2.818 0.005 0.069 
GWL 0.020 0.006 3.421 0.001 0.069 
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The Granger causality analysis between NDVI and GWL reveals no statistically significant relationships at 
any of the examined lags (1–9), with p-values consistently exceeding the 0.05 threshold (Table 4). The F-
statistics are low, signifying the limited predictive capability of GWL for NDVI at any specified lag length. 
This indicates that, within the examined temporal framework, historical fluctuations in groundwater levels 
do not yield significant predictive insights for future alterations in vegetation greenness, and vice versa, 
suggesting that their relationship is either indirect, influenced by external factors, or functions at disparate 
time scales than those assessed. 
 

Table 4. Granger results between NDVI and GWL 
Lag F-statistic p value 
1 0.477 0.490 
2 1.129 0.325 
3 0.608 0.610 
4 0.464 0.762 
5 0.867 0.504 
6 0.807 0.566 
7 0.653 0.712 
8 0.615 0.765 
9 0.86 0.56 

3.3 Correlation results 

The correlation heatmaps for raw and anomaly datasets exhibit consistent patterns, with significant 
variations in strength and direction for certain relationships (Fig. 8). In the raw dataset, NDVI and EVI 
exhibit a strong positive correlation (r=0.84), indicating their common function as vegetation indices. 
NDWI exhibits a robust negative correlation with LST_C (r=-0.90), signifying that elevated land surface 
temperatures are generally linked to diminished water content. NDVI and NDWI exhibit a weak negative 
correlation (r=-0.24), whereas NDVI and LST_C demonstrate a low positive correlation (r=0.18). The 
correlations between GWL and NDVI (r=0.22) and EVI (r=0.20) are weak yet positive, indicating a 
marginal relationship between shallower groundwater levels and increased vegetation greenness. 
 
In the anomaly dataset, NDVI and EVI exhibit a strong correlation (r=0.82), albeit slightly diminished 
compared to the raw data. Negative correlations between NDWI and both NDVI (r=-0.35) and EVI (r=-
0.42) are more pronounced in anomalies, indicating that short-term increases in vegetation anomalies 
frequently correspond with diminished water index anomalies. The relationship between NDWI and LST_C 
diminishes in anomalies (r=-0.26), indicating reduced seasonal predominance in their short-term variations. 
The correlations between GWL and NDVI (r=0.16) and EVI (r=0.15) are weak, suggesting a negligible 
short-term relationship between groundwater variations and vegetation alterations. Heatmaps indicate that 
vegetation indices are closely correlated, NDWI and LST_C exhibit an inverse relationship, and 
groundwater levels demonstrate only minimal associations with vegetation, particularly regarding short-
term anomaly fluctuations. 
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(a) 

 

(b) 

Figure 8. Correlation results among hydro-vegetation variables 

The findings reveal distinct seasonal patterns in NDVI, EVI, NDWI, and LST_C, with vegetation indices 
reaching their highest levels during green seasons, NDWI predominantly remaining negative due to 
restricted surface water availability, and LST_C exhibiting pronounced annual thermal fluctuations. GWL, 
conversely, demonstrates multi-year variations instead of seasonal trends, indicative of gradual 
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hydrological recharge and depletion processes affected by rainfall variability, extraction rates, and aquifer 
properties. Anomaly analysis eliminates seasonal signals, uncovering specific occurrences such as 
vegetation surges, drought events, temperature extremes, and alterations in groundwater. NDVI anomalies 
exhibit a statistically significant positive trend (p<0.001), with notable increases post-2015, indicating 
heightened vegetation productivity possibly influenced by favorable climatic conditions, enhanced 
irrigation practices, land rehabilitation initiatives, or CO₂ fertilization effects. 
 
Correlation patterns reveal robust NDVI-EVI relationships (r≈0.82-0.84) and a significant negative NDWI–
LST_C association in raw data (r=-0.90), which diminishes in anomalies, suggesting a seasonal 
temperature–moisture trade-off rather than a consistent causal mechanism. The correlation between 
groundwater levels (GWL) and vegetation indices is weak in both datasets, likely since vegetation growth 
is more directly affected by recent precipitation and soil moisture than by deeper groundwater reserves, 
particularly in regions with restricted rooting depth. Linear regressions indicate minimal explanatory power, 
with GWL→NDVI exhibiting the most robust raw correlation (R²=0.049) and GWL anomalies →NDVI 
anomalies at R²=0.024. Multiple regression indicates that LST_C and GWL collectively account for merely 
6.9% of the variation in NDVI, despite both predictors being statistically significant. This limited influence 
may result from the dependence of vegetation greenness on various interacting factors, including 
precipitation timing, evapotranspiration rates, soil type, and land cover, which were not explicitly 
incorporated into the models. Stationarity tests reveal that LST_C and GWL anomalies are stationary, while 
NDVI anomalies exhibit persistence, suggesting long-term ecological or climatic changes. 
 
Granger causality tests indicate no predictive relationship between NDVI and GWL at lags of 1–9 months, 
suggesting that their association functions over extended time scales or is obscured by other factors. Boxplot 
distributions elucidate the seasonal variations in raw data and the more constrained, zero-centered 
distributions in anomalies, occasionally exhibiting extremes associated with droughts, heatwaves, or 
extraordinary wet seasons. In summary, vegetation dynamics in the study area are primarily governed by 
seasonal climatic cycles, while groundwater has a minimal yet consistent impact. The ascending NDVI 
anomaly trend since 2015 may be associated with climate-related factors such as augmented precipitation 
during essential growing periods, diminished drought intensity, or alterations in temperature patterns, 
alongside anthropogenic factors including irrigation expansion, reforestation, and sustainable land 
management practices. Additional research integrating precipitation, evapotranspiration, soil moisture, and 
land use change data, alongside nonlinear and lagged modeling techniques, may elucidate the causal 
pathways and more accurately represent the intricacies of vegetation-water-temperature interactions. 
 
This study depends on monthly averaging, gap-filling with interpolation and fixed-parameter Savitzky-
Golay filtering, stationarity tests (ADF, KPSS), Granger causality, and multiple regression. However, these 
approaches have limitations in terms of data quality, sample length, the omission of relevant 
climatic/hydrological drivers, scale mismatches, and sensitivity to methodological assumptions. Granger 
analysis identifies statistical associations but does not establish true causality, whereas interpolation and 
fixed filter parameters can introduce uncertainty into the results. Findings should be interpreted in light of 
these constraints, and future research should include seasonality adjustment, cointegration testing, 
additional driver variables, and sensitivity analyses to strengthen the analysis. 

4. CONCLUSION 

This study offers a thorough evaluation of the interactions between vegetation dynamics and hydroclimatic 
factors such as vegetation indices (NDVI, EVI), surface water index (NDWI), land surface temperature 
(LST_C), and groundwater level (GWL) in the Afşin region from 2001 to 2024. The findings indicate 
pronounced seasonal fluctuations in vegetation, water availability, and temperature, while groundwater 
level exhibits multi-year rather than seasonal variability. NDVI anomalies demonstrated a notable upward 
trajectory, particularly post-2015, indicating increased vegetation productivity. Correlation and regression 
analyses demonstrate that GWL and LST_C have only weak yet consistent effects on vegetation greenness, 
collectively accounting for less than 7% of the variation in NDVI. Granger causality tests revealed no short-
term predictive relationships between NDVI and GWL, indicating that any interaction functions over longer 
or more intricate time scales. The weak statistical correlations are probably attributable to the impact of 
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various climatic, hydrological, and land use factors not accounted for in basic linear models. The results 
underscore the necessity of integrating precipitation, soil moisture, and land management data, in 
conjunction with nonlinear and lagged analyses, to enhance comprehension of vegetation–water–
temperature interactions in the area. 
 

ACKNOWLEDGMENTS 

The author thanks the Türkiye General Directorate of Water Works (DSI) for the data provided. ChatGPT 
was used for translation and to increase the fluency of the study. 

CONFLICT OF INTEREST 

The authors declare no competing interests. The authors declare that they have no known competing 
financial interests or personal relationships that could have appeared to influence the work reported in this 
paper. 

STATEMENT OF PUBLICATION ETHICS 

We confirm that this article is original research and has not been published previously in any journal in any 
language. 

AUTHOR STATEMENT 

Esra Bayazıt: Investigation, Analysis, Methodology, Visualization, Writing – original draft. 
Veysi Kartal: Investigation, Validation, Methodology, Visualization, Writing – original draft, 
Methodology, Resources, Writing – original draft, Data curation. 

REFERENCES 

[1] Das, A. C., Shahriar, S. A., Chowdhury, M. A., Hossain, M. L., Mahmud, S., Tusar, M. K., ... & Salam, 
M. A. (2023). Assessment of remote sensing-based indices for drought monitoring in the north-western 
region of Bangladesh. Heliyon, 9(2). 

[2] Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 
202-216.  

[3] IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Intergovernmental Panel 
on Climate Change. 

[4] Smith, M. D., Wilkins, K. D., Holdrege, M. C., Wilfahrt, P., Collins, S. L., Knapp, A. K., ... & Sun, 
W. (2024). The impacts of extreme drought have been underestimated in grasslands and shrublands 
worldwide. Proceedings of the National Academy of Sciences, 121(4), e2309881120. 

[5] Buras, A., Rammig, A., & Zang, C. S. (2020). Quantifying impacts of the 2018 drought on European 
ecosystems in comparison to 2003. Biogeosciences, 17(6), 1655-1672 

[6] Müller, L. M., & Bahn, M. (2022). Drought legacies and ecosystem responses to subsequent drought. 
Global Change Biology, 28(17), 5086-5103. 

[7] Pacione, M. (2003). Urban environmental quality and human wellbeing—a social geographical 
perspective. Landscape and urban planning, 65(1-2), 19-30. 

[8] Zhang, X., Chen, N., Sheng, H., Ip, C., Yang, L., Chen, Y., Sang, Z., Tadesse, T., Lim, T., Rajabifard, 
A., Bueti, C., Zeng, L., Wardlow, B., Wang, S., Tang, S., Xiong, Z., Li, D., & Niyogi, D. (2019). 
Urban drought challenges to 2030 sustainable development goals. The Science of the Total 
Environment: 693, 133536. 

[9] Pizzorni, M., Innocenti, A., & Tollin, N. (2024). Droughts and floods in a changing climate and 
implications for multi-hazard urban planning: A review. City and Environment Interactions, 24, 
100169.  

[10] Haile, G. G., Tang, Q., Li, W., Liu, X., & Zhang, X. (2020). Drought: Progress in broadening its 
understanding. Wiley Interdisciplinary Reviews: Water, 7(2), e1407. 



Esra BAYAZIT, Veysi KARTAL / HRU HRU Muh Der, 10(3): 198-212 (2025) 
 

212 

[11] Lima, L. B., Franca Rocha, W. J. S., Souza, D. T. M., Lobão, J. S. B., de Santana, M. M. M., Cambui, 
E. C. B., & Vasconcelos, R. N. (2025). Urban Quality: A Remote-Sensing-Perspective Review. Urban 
Science, 9(2), 31. 

[12] Lee, A. C. K., Jordan, H. C., & Horsley, J. (2015). Value of urban green spaces in promoting healthy 
living and wellbeing: prospects for planning. Risk management and healthcare policy, 131-137. 

[13] Kruize, H., van der Vliet, N., Staatsen, B., Bell, R., Chiabai, A., Muiños, G., Higgins, S., Quiroga, S., 
Martinez-Juarez, P., Aberg Yngwe, M., Tsichlas, F., Karnaki, P., Lima, M. L., García de Jalón, S., 
Khan, M., Morris, G., & Stegeman, I. (2019). Urban Green Space: Creating a Triple Win for 
Environmental Sustainability, Health, and Health Equity through Behavior Change. International 
Journal of Environmental Research and Public Health, 16(22), 4403.  

[14] Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the 
radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of 
environment, 83(1-2), 195-213. 

[15] Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from 
LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440. 

[16] Mert, A., Tavuç, İ., Özdemir, S., & Ulusan, M. D. (2025). Future Responses of the Burdur Lake to 
Climate Change and Uncontrolled Exploitation. Journal of the Indian Society of Remote 
Sensing, 53(4), 1025-1036.  

[17] Özdemir, S., Özkan, K., & Mert, A. (2020). An ecological perspective on climate change 
scenarios. Biological Diversity and Conservation, 13(3), 361-371.  

[18] Famiglietti, J. S. (2014). The global groundwater crisis. Nature climate change, 4(11), 945-948. 
[19] Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater 

depletion in India. Nature, 460(7258), 999-1002. 
[20] Gao, B.-C. 1996. “NDWI – A Normalised Difference Water Index for Remote Sensing of Vegetation 

Liquid Water from Space.” Remote Sensing of Environment 58: 257–266. 
[21] Sun, H., Zhao, X., Chen, Y., Gong, A., & Yang, J. (2013). A new agricultural drought monitoring index 

combining MODIS NDWI and day–night land surface temperatures: A case study in China. International 
Journal of Remote Sensing, 34(24), 8986-9001. 

[22] Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit 
root. Econometrica: journal of the Econometric Society, 1057-1072. 

[23] Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity 
against the alternative of a unit root: How sure are we that economic time series have a unit root?. Journal of 
econometrics, 54(1-3), 159-178. 

[24] Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral 
methods. Econometrica: journal of the Econometric Society, 424-438. 

 

 

 
© Author(s) 2025. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

 

https://creativecommons.org/licenses/by-sa/4.0/

	kapak Assessing Vegetation Response to Hydroclimatic Variability in
	Assessing Vegetation Response to Hydroclimatic Variability
	1. INTRODUCTION
	2. MATERIAL and METHOD
	2.1 Study Area
	2.2 Data Description and Sources
	2.3 Data preprocessing
	2.3.2. Anomaly Calculation
	2.4 Statistical Analysis
	2.4.1. Stationarity Tests
	2.4.2. Granger Causality Analysis
	2.3.3. Multi-Linear Regression
	2.4.4 Correlation Analysis

	3. RESULTS and DISCUSSIONS
	3.1 Descriptive statistics
	3.2 Regression results
	3.3 Correlation results

	4. CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	STATEMENT OF PUBLICATION ETHICS
	AUTHOR STATEMENT
	REFERENCES


