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Convergence of the class of methods for solutions
of certain sixth-order boundary value problems

K. Farajeyan ∗, J. Rashidinia †‡ and R. Jalilian �

Abstract

The Class of various order numerical methods based on non-polynomial
spline have been developed for the solution of linear and non-linear
sixth-order boundary value problems. We developed non-polynomial
spline which contains a parameter ρ, act as the frequency of the trigono-
metric part of the spline function, when such parameter tends to zero
the de�ned spline reduce into the septic polynomial spline, the consis-
tency relation of non-polynomial spline derived in such a way that, to
be �tted to approximate the solution of the given sixth-order boundary
value problems. Boundary formulas are developed to associate with
presented spline methods. Truncation errors are given, we developed
the class of second, fourth, sixth and eight order methods. Convergence
analysis has been proved. The obtained methods have been tested on
nine examples, to illustrate practical usefulness of our approach. The
results of our higher eight order method compare with the existing
methods so far.

Keywords: Sixth-order boundary value problem, Non-polynomial spline, Bound-

ary formulae, Convergence analysis.

2000 AMS Classi�cation: Primary 65L10 ; Secondary 65D20

Received : 28.08.2015 Accepted : 29.11.2016 Doi : 10.15672 /HJMS.2017.430

∗Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran,
Email: karim_faraj@yahoo.com
†Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran,

Email: rashidinia@iust.ac.ir
‡Corresponding Author.
�Department of Mathematics, Razi University Tagh Bostan, Kermanshah P.O. Box

6714967346 Iran, Email: rezajalilian72@gmail.com



836

1. Introduction

We consider non-linear sixth-order boundary value problem of type

(1.1) u(6)(x) = f(x, u), a < x < b, a, b, x ∈ R,

with the following boundary conditions

u(a) = λ1, u
′
(a) = λ2, u

′′
(a) = λ3, u(b) = λ4, u

′
(b) = λ5, u

′′
(b) = λ6,

or

u(a) = λ7, u
′′
(a) = λ8, u

(4)(a) = λ9, u(b) = λ10, u
′′
(b) = λ11, u

(4)(b) = λ12,

(1.2)

where λi for i = 1, 2, ..., 12, are �nite real constants and u(x) andf(x, u) are continu-
ous functions de�ned in the interval [a, b].
The sixth-order boundary value problem occurs in several models of engineering and
branches of physics, applied mathematics and astrophysics. For example in astrophysics,
they believed that the narrow convecting layers border which have �x layers, compass
A-type of stars may be modeled by sixth-order boundary value problems [7, 22].
The existence and uniqueness of solution of the sixth-order boundary value problem has
been discussed by Agarwal [1]. Many attempts have been done to approximate the so-
lution boundary value problems (1.1)-(1.2). Finite di�erence methods of various orders,
for the solutions of such problems have been developed by Boutayeb and Twizell [5],
Pandey [17], Twizell [23] and Twizell and Boutayeb [24]. Sinc-Galerkin method for the
solution of sixth-order boundary value problems has been developed by El-Gamel et
al. [6]. The spectral method based on Bernstein polynomials for solving high order non-
linear boundary value problems have been developed by Behroozifar [4]. The Homotopy
perturbation and Variational iteration methods for solving sixth-order boundary value
problems have been given by Noor et al. [15, 16]. Adomian decomposition method for
solving sixth-order boundary value problems developed by Wazwaz [27] and Hayani [8].
Daftardar Jafari method (DJM) for solutions of �fth and sixth-orders boundary value
problems presented by Ullah et al. [25]. The series solution method for higher-order
boundary value problems has been developed by Aslanov [2].
The numerical solution based on polynomial and non-polynomial splines have been devel-
oped by many authors, to solve sixth-orders boundary value problems (1.1)-(1.2). Siddiqi
and Twizell [21] derived the polynomial splines of degree six, also Siddiqi et al. [19] used
quintic spline and later on Siddiqi and Akram [20] used septic spline to developed the
numerical solution of (1.1)-(1.2).
Non-polynomial spline has been used by Akram et al. [3] later on Ramadan et al. [18]
used non-polynomial spline for the solution of sixth-order boundary value problems. Jalil-
ian et al. [10] presented the solutions of non-linear sixth-order boundary value problems
using nonic-spline method. Jha et al. [11] introduced an e�cient algorithm based on
non-polynomial spline approximations on a geometric mesh for the numerical solution of
linear and non-linear two-point boundary value problems. Lang et al. [14] used quintic
spline and Arshad Khan et al. [12, 13] applied parametric quintic spline and septic splines
for the solution of sixth-order boundary value problems.

The spline functions proposed in this paper have the form T7 = span{1, x, x2, x3,
x4, x5, cos(ρx), sin(ρx)} where ρ is the frequency of the trigonometric part of the spline
functions which can be real or pure imaginary and such parameter will be used to de-
veloped the classes of the various order and raise the accuracy of the methods. Thus in
each subinterval xi ≤ x ≤ xi+1 we have

span{1, x, x2, x3, x4, x5, x6, x7}, (when ρ→ 0),
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which is the septic polynomial spline.
In this paper, in section 2, non-polynomial spline is developed. We derive the con-

sistency relation of non-polynomial spline in such a way to be �tted with the solution
of boundary value problems (1.1) along with boundary condition (1.2). The class of
various order of second up to eight-order methods have been obtained. Development of
the boundary formulas are considered to be associated with various order methods, in
section 3. Convergence analysis proved in section 4 and �nally in section 5, numerical
examples are included to compare our results with the results obtained by other existing
methods, and to show superiority of our approach.

2. Numerical methods

To develop the spline approximation to the sixth-order boundary value problem (1.1)-
(1.2), the interval [a, b] is divided in to n equal subintervals using the grid xi = a + ih,
i = 0, 1, 2, ..., n, where h = b−a

n
. We consider the following non-polynomial spline Si(x),

on each subinterval [xi, xi+1], i = 0, 1, 2, ..., n− 1, x0 = a, xn = b,

(2.1) Si(x) =

5∑
j=0

aij(x− xi)j + bi cos ρ(x− xi) + ci sin ρ(x− xi),

where aij , (j = 0, 1, 2, 3, 4, 5), bi, and ci, are real �nite constants and ρ, is free parame-
ter. The spline is de�ned in terms of its �rst, second and sixth derivatives, and we denote
these values at knots as:

(2.2)
Si(xi) = ui, S

′
i(xi) = mi, S

′′
i (xi) =Mi, S

(6)
i (xi) = pi,

Si(xi+1) = ui+1, S
′
i(xi+1) = mi+1, S

′′
i (xi+1) =Mi+1, S

(6)
i (xi+1) = pi+1,

i = 0, 1, 2, ..., n− 1.

Assuming u(x), to be the exact solution of the boundary value problem (1.1) and ui,
be an approximation to u(xi), using the continuity conditions of third, fourth and �fth

(S
(µ)
i−1(xi) = S

(µ)
i (xi) where µ = 3, 4 and 5), and also by elimination of mi, and Mi, we

obtain the following relations between ui and pi:

(2.3)
h6(αpi−3 + βpi−2 + γpi−1 + δpi + γpi+1 + βpi+2 + αpi+3) =
ui−3 − 6ui−2 + 15ui−1 − 20ui + 15ui+1 − 6ui+2 + ui+3,

i = 3, 4, ..., n− 3.

where
α = 1

120θ6
(−120 + θ(120− 20θ2 + θ4) csc(θ)),

β = 1
60θ6

(360− θ(120− 20θ2 + θ4) cot(θ) + θ(−240− 20θ2 + 13θ4) csc(θ)),

γ = 1
120θ6

(−1800 + (960θ + 80θ3 − 52θ5) cot(θ) + θ(840 + 100θ2 + 67θ4) csc(θ)),

δ = 1
30θ6

(600− θ(240 + 20θ2 − 13θ4 + (360 + 60θ2 + 33θ4) cos(θ)) csc(θ)),

If ρ → 0, (θ = ρh), θ → 0 then (α, β, γ, δ) → ( 1
5040

, 1
42
, 397
1680

, 151
315

), then we obtain the
second-order method and also the relations de�ned by (2.3) reduce into septic polynomial
spline function [20]. Now by using the spline relation (2.3) and discretize the given system
(1.1) at the grid points xi, we obtain (n−5) non-linear equation in the (n−1), unknowns
ui, i = 1, 2, ..., n− 1, as:

(2.4)

(ui−3 + ui+3)− αh6(f(xi−3, ui−3) + f(xi+3, ui+3))−
6(ui−2 + ui+2)− βh6(f(xi−2, ui−2) + f(xi+2, ui+2))+
15(ui−1 + ui+1)− γh6(f(xi−1, ui−1) + f(xi+1, ui+1))−
20ui − δh6f(xi, ui) = 0, i = 3, 4, ..., n− 3.
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We obtain the local truncation error corresponding to the method (2.3) as:

(2.5)

Ti = (1− 2(α+ β + γ)− δ)h6u
(6)
i + ( 1

4
− 9α− 4β − γ)h8u

(8)
i +

( 7
240
− 27

4
α− 4

3
β − 1

12
γ)h10u

(10)
i + ( 2

945
− 81

40
α− 8

45
β − 1

360
γ)h12u

(12)
i +

( 13
120960

− 729
2240

α− 4
315

β − 1
20160

γ)h14u
(14)
i +

( 31
7603200

− 729
22400

α− 8
14175

β − 1
1814400

γ)h16u
(16)
i + ...,

i = 3, 4, ..., n− 3.

By using the above truncation error to eliminate the coe�cients of various powers h, we
can obtain classes of the methods in the following form.
Second-order method

If we choose α = 1
5040

, β = 1
42
, γ = 397

1680
and δ = 151

315
, the coe�cient of h6 in (2.5) can be

vanish, then the truncation error of method is Ti = − 1
12
h8u

(8)
i +O(h10).

Fourth-order method

For α = 0, β = 0, γ = 1
4
and δ = 1

2
, the coe�cient of h6 and h8 in (2.5) can be vanish,

then the truncation error of method is Ti =
1

120
h10u

(10)
i +O(h12).

Sixth-order method

For α = 0, β = 1
120

, γ = 13
60

and δ = 11
20
, the coe�cient of h6 up to h10 in (2.5) can be vanish

simultaneously and then the truncation error of method is Ti =
1

30240
h12u

(12)
i +O(h14).

Eighth-order method

For α = 1
30240

, β = 41
5040

, γ = 2189
10080

and δ = 4153
7560

, the coe�cient of h6 up to h12 in
(2.5) can be vanish simultaneously and then the truncation error of method is Ti =
−1

57600
h14u

(14)
i +O(h16).

3. Development of the boundary formulas

System of equation (2.4) contains (n − 5) equations, with the (n − 1) number of un-
known, so that to obtain the unique solution of the system we need four more equations
to be associated with system (2.4).
By using boundary conditions (1.2) we can develop these equations to be associate with
system (2.4), but here we obtained di�erent class of methods so that we need to developed
the boundary value formulas of various orders, in our knowledge so far in the literature
most of the existing methods based on spline are su�er from boundary conditions, in this
paper we need to develop the new class of boundary conditions of orders 4, 6 and 8, so
that we de�ne the following identity:

(3.1)

∑4
i=0 ηiui + hµ1u

′
0 + h2λ1u

′′
0 = h6 ∑7

i=0 νiu
(6)
i + t1,∑5

i=0 κiui + hµ2u
′
0 + h2λ2u

′′
0 = h6 ∑7

i=0 ωiu
(6)
i + t2,∑5

i=0 κiun−i − hµ2u
′
n + h2λ2u

′′
n = h6 ∑7

i=0 ωiu
(6)
n−i + tn−2,∑4

i=0 ηiun−i − hµ1u
′
n + h2λ1u

′′
n = h6 ∑7

i=0 νiu
(6)
n−i + tn−1,

(3.2)

∑4
i=0 τiui + h2ϑ1u

′′
0 + h4%1u

(4)
0 = h6 ∑7

i=0 σiu
(6)
i + t3,∑5

i=0 ζiui + h2ϑ2u
′′
0 + h4%2u

(4)
0 = h6 ∑7

i=0 ψiu
(6)
i + t4,∑5

i=0 ζiun−i + h2ϑ2u
′′
n + h4%2u

(4)
n = h6 ∑7

i=0 ψiu
(6)
n−i + tn−4,∑4

i=0 τiun−i + h2ϑ1u
′′
n + h4%1u

(4)
n = h6 ∑7

i=0 σiu
(6)
n−i + tn−3,

by using Taylor's expansion we obtain the unknown coe�cients in (3.1) and (3.2) as
follows:
(η0, η1, η2, η3, η4, µ1, λ1) = (415,−576, 216,−64, 9, 300, 72),
(κ0, κ1, κ2, κ3, κ4, κ5, µ2, λ2) = ( 2491

9
,−375, 125, −250

9
, 0, 1, 610

3
, 50),

(τ0, τ1, τ2, τ3, τ4, ϑ1, %1) = (−5, 14,−14, 6,−1, 2,− 5
6
),
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(ζ0, ζ1, ζ2, ζ3, ζ4, ζ5, ϑ2, %2) = (4,−14, 20,−15, 6,−1,−1,− 1
12
),

Boundary equations of fourth order:
(ν0, ν1, ν2, ν3, ν4, ν5, ν6, ν7) = ( 4

105
, 19

7
, 2, 1

21
, 0, 0, 0, 0),

(ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7) = ( 25
1512

, 1025
504

, 925
504

, 425
1512

, 0, 0, 0, 0),

(t1 = 9
700

h10u
(10)
0 +O(h12), t2 = 5

288
h10u

(10)
0 +O(h12)),

(tn−1 = 9
700

h10u
(10)
n +O(h12), tn−2 = 5

288
h10u

(10)
n +O(h12)),

(σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7) = (− 323
5040

,− 1133
2016

,− 101
504

,− 25
2016

, 0, 0, 0, 0),

(ψ0, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) = ( 29
10080

,− 1009
4032

,− 2519
5040

,− 5041
20160

, 0, 0, 0, 0),

(t3 = 6523
1814400

h10u
(10)
0 +O(h12), t4 = −30073

3628800
h10u

(10)
0 +O(h12)),

(tn−3 = 6523
1814400

h10u
(10)
n +O(h12), tn−4 = −30073

3628800
h10u

(10)
n +O(h12)),

Boundary equations of sixth order:
(ν0, ν1, ν2, ν3, ν4, ν5, ν6, ν7) = ( 1301

23100
, 15223

5775
, 24611
11550

,− 332
5775

, 131
3300

,− 31
5775

, 0, 0),

(ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7) = ( 2515
66528

, 32345
16632

, 65815
33264

, 205
1188

, 2455
66528

,− 65
16632

, 0, 0),

(t1 = 37
19800

h12u
(12)
0 +O(h14), t2 = 305

199584
h12u

(12)
0 +O(h14)),

(tn−1 = 37
19800

h12u
(12)
n +O(h14), tn−2 = 305

199584
h12u

(12)
n +O(h14)),

(σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7) = (−34697
604800

, −76723
129600

, −133901
907200

, −1253
21600

, 4979
259200

, −2833
907200

, 0, 0),

(ψ0, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) = ( −6493
1209600

, −56327
259200

, −142327
259200

, −65719
302400

, −29303
3628800

, −11
259200

,
0, 0),

(t3 = 106927
39916800

h12u
(12)
0 +O(h14), t4 = 499

79833600
h12u

(12)
0 +O(h14)),

(tn−3 = 106927
39916800

h12u
(12)
n +O(h14), tn−4 = 499

79833600
h12u

(12)
n +O(h14)),

Boundary equations of eight order:
(ν0, ν1, ν2, ν3, ν4, ν5, ν6, ν7) = ( 184253

3153150
, 4726277
1801800

, 23209
10725

, −186409
1801800

, 34379
450450

, −373
17160

, 808
225225

,
−3097

12612600
),

(ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7) = ( 480985
12108096

, 10029805
5189184

, 3476285
1729728

, 221855
1729728

, 381715
5189184

, −36875
1729728

,
2465

576576
, −14255
36324288

),

(t1 = − 33587
63063000

h14u
(14)
0 +O(h16), t2 = − 4793

26417664
h14u

(14)
0 +O(h16)),

(tn−1 = − 33587
63063000

h14u
(14)
n +O(h16), tn−2 = − 4793

26417664
h14u

(14)
n +O(h16)),

(σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7) = ( −65357
1247400

, −8304601
13305600

, −590767
9979200

, −7661869
39916800

, 697307
4989600

,
−538177
7983360

, 17011
907200

, −13093
5702400

),

(ψ0, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7) = ( −5941
1108800

, −1928191
8870400

, −10955801
19958400

, −5789947
26611200

, −9799
1247400

,
−12409
79833600

, 19
604800

, −41
11404800

),

(t3 = 108013637
54486432000

h14u
(14)
0 +O(h16), t4 = 1018379

54486432000
h14u

(14)
0 +O(h16)),

(tn−3 = 108013637
54486432000

h14u
(14)
n +O(h16), tn−4 = 1018379

54486432000
h14u

(14)
n +O(h16)).

4. Convergence analysis

In this section, we investigate the convergence analysis of the presented eight-order
method, in the same manner we can prove the convergence analysis for the rest of other
classes of methods. The system of equations (2.4) along with boundary conditions (3.1)
or (3.2) yields the non-linear system of equations, and may be written in matrix form as

(4.1) A0U
(1) + h6Bf(1)(U (1)) = R(1), (A0U

(1) + h6Bf(1)(U (1)) = R
(1)

),

in (4.1) the matrices A0, B and B are order n− 1 and are given by

A0 = P 3,
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P = (pij) is monotone tri diagonal matrix de�ned by

(4.2) pij =


2, i = j = 1, 2, 3, ..., n− 1,
−1, |i− j| = 1,
0, otherwise.

By using Henrici [9] the matrix P is a monotone matrix and we have

(4.3) ‖(P )−1‖ ≤ (b− a)2

8h2
,

and the matrix B and B in case of eight-order method de�ned by

(4.4) B =



ν1 ν2 ν3 ν4 ν5 ν6 ν7
ω1 ω2 ω3 ω4 ω5 ω6 ω7

β γ δ γ β α
α β γ δ γ β α

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

α β γ δ γ β α
α β γ δ γ β

ω7 ω6 ω5 ω4 ω3 ω2 ω1

ν7 ν6 ν5 ν4 ν3 ν2 ν1



,

(4.5) B =



σ1 σ2 σ3 σ4 σ5 σ6 σ7

ψ1 ψ2 ψ3 ω4 ψ5 ψ6 ψ7

β γ δ γ β α
α β γ δ γ β α

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

α β γ δ γ β α
α β γ δ γ β

ψ7 ψ6 ψ5 ω4 ψ3 ψ2 ψ1

σ7 σ6 σ5 σ4 σ3 σ2 σ1



,

We get that

(4.6) A0 = P 3,

where A0 is seven-diagonal matrix thus we have

(4.7) ‖A−1
0 ‖ ≤

(b− a)6

512h6
.

The matrixs f(1), R(1) and R
(1)

each have n− 1 components and are given by

(4.8) f
(1) = (f

(1)
1 , ..., f

(1)
n−1)

t,
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where f
(1)
l (U (1)) = f(xl, u

(1)
l ), l = 1, 2, ..., n− 1, and

(4.9) R(1) =



−τ0u0 − h2ϑ1u
′′
0 − h4%1u

(4)
0 + h6σ0u

(6)
0 ,

−ζ0u0 − h2ϑ2u
′′
0 − h4%2u

(4)
0 + h6ψ0u

(6)
0 ,

−u0 + αh6u
(6)
0 ,

0
...
0

−un + αh6u
(6)
n ,

−ζ0un − h2ϑ2u
′′
n − h4%2u

(4)
n + h6ψ0u

(6)
n ,

−τ0un − h2ϑ1u
′′
n − h4%0u

(4)
n + h6σ0u

(6)
n ,


,

(4.10) R
(1)

=



−η0u0 − hµ1u
′
0 − h2λ1u

(2)
0 + h6ν0u

(6)
0 ,

−κ0u0 − hµ2u
′
0 − h2λ2u

(2)
0 + h6ω0u

(6)
0 ,

−u0 + αh6u
(6)
0 ,

0
...
0

−u0 + αh6u
(6)
n ,

−κ0un + hµ2u
′
n − h2λ2u

(2)
n + h6ω0u

(6)
n ,

−η0un + hµ1u
′
n − h2λ1u

(2)
n + h6ν0u

(6)
n ,


,

where u
(6)
0 = f(x0, u0), u

(6)
n = f(xn, un). We suppose that

(4.11) A0U
(1)

+ h6Bf(1)(U
(1)

) = R(1) + t(1),

where the vector U
(1)

= u(xl), l = 1, 2, ..., n − 1, is the exact solution and t(1) =

[t
(1)
1 , t

(1)
2 , ..., t

(1)
n−1]

T , is the vector of order n − 1 of local truncation errors. Also in the

same way we can prove the convergence analysis for B, and R
(1)
, of the method. From

(4.1) and (4.11) we have:

(4.12) [A]E(1) = [A0 + h6BFk(U
(1))]E(1) = t(1),

where

(4.13)
E(1) = U

(1) − U (1) = [e
(1)
1 , e

(1)
2 , ..., e

(1)
n−1]

T ,

f(1)(U
(1)

)− f(1)(U (1)) = Fk(U
(1))E(1),

and Fk(U
(1)) = diag{ ∂f

(1)
l

∂u
(1)
l

}, l = 1, 2, ..., n− 1, is a diagonal matrix of order n− 1.

Lemma 4.1 If M is a square matrix of order N and ‖M‖ < 1, then (I +M)−1 exist and
‖(I +M)−1‖ ≤ 1

(1−‖M‖) .

Proof : [26]

Lemma 4.2 The matrix [A0 + h6BFk(U
(1))] in (4.12) is nonsingular, provided Y <

2554675200
5506027(b−a)6 , where Y = max| ∂f

(1)
l

∂u
(1)
l

|, l = 1, 2, ..., n− 1. (The norm referred to is the L∞

norm).
Proof :
We know that [A0 + h6BFk(U

(1))] = A0[I + h6A−1
0 BFk(U

(1))], we need to show that

inverse of [I + h6A−1
0 BFk(U

(1))] exist. By using lemma 4.1, we have

(4.14) h6‖A−1
0 BFk(U

(1))‖ ≤ h6‖A−1
0 ‖‖B‖‖Fk(U

(1))‖ < 1,
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by using (4.5) we obtain ‖B‖ ≤ 5506027
4989600

and also we have ‖Fk(U (1))‖ ≤ Y = max| ∂f
(1)
l

∂u
(1)
l

|, l =

1, 2, ..., n− 1, and then by using (4.7) and (4.14) we obtain

Y <
2554675200

5506027(b− a)6 .

As a consequence of Lemmas 4.2 and 4.1 the non-linear system (4.1) has a unique solu-
tion if Y < 2554675200

5506027(b−a)6 .

Theorem 4.3 Let u(xl) be the exact solution of the boundary value problem (1.1)
with boundary conditions (1.2) and we assume ul, l = 1, 2, ..., n − 1, be the numerical
solution obtained by solving the non-linear system (4.1). Then we have:

‖E(1)‖ ≡ O(h8), (providedY <
2554675200

5506027(b− a)6 , for eight-order method.)

Proof : We can write the error equation (4.12) in the following form

E(1) = (A0 + h6BFk(U
(1)))−1t(1) = (I + h6A−1

0 BFk(U
(1)))−1A−1

0 t(1),

‖E(1)‖ ≤ ‖(I + h6A−1
0 BFk(U

(1)))−1‖‖A−1
0 ‖‖t

(1)‖‖,
It follows that

(4.15) ‖E(1)‖ ≤ ‖A−1
0 ‖‖t(1)‖

1− h6‖A−1
0 ‖‖B‖‖Fk(U (1))‖

,

provided that h6‖A−1
0 ‖‖B‖‖Fk(U (1))‖ < 1. Also we have

(4.16) ‖t(1)‖ ≤ 108013637

54486432000
h14M14,

α =
1

30240
, β =

41

5040
, γ =

2189

10080
, δ =

4153

7560
,

where M14 = max|u(14)(ξ)|, a ≤ ξ ≤ b.
Substituting ‖A−1

0 ‖, ‖Fk(U (1))‖, ‖B‖ and ‖t(1)‖ from above relations in (4.15) and sim-
plifying we obtain

(4.17) ‖E(1)‖ ≤ 108013637(b− a)6h8M14

10920(2554675200− 5506027(b− a)6Y )
≡ O(h8),

It is a eight-order convergent method provided

(4.18) Y <
2554675200

5506027(b− a)6 .

5. Numerical illustration

In this section for sake of briefness the eight-order presented method are applied to
the following test problems. If we choose α = 1

30240
, β = 41

5040
, γ = 2189

10080
and δ = 4153

7560

we obtained the eight-order method. Examples 1-9 have been solved and also compared
the obtained solution with the exact solution. The maximum absolute errors in solutions
of eight-order method are tabulated in Tables 1-10. The maximum absolute errors in
solutions of examples 1-9 are compared with methods in [12, 13, 25, 11, 15, 18, 19, 20]
moreover, in �gures 1-3 we plot the graphs of exact and numerical solution for the non-
linear examples 5, 8 and 9, with di�erent values of step size h.

Example 1. Consider the following linear problem [12, 19, 20]

u(6)(x) = u(x)− 6ex, 0 ≤ x ≤ 1,

u(0) = 1, u
′
(0) = 0, u

′′
(0) = −1, u(1) = 0, u

′
(1) = −e, u

′′
(1) = −2e.
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The exact solution for this problem is u(x) = (1− x)ex.

Example 2. Consider the following linear problem [12, 19]

u(6)(x) = −u(x) + 6 cos(x), 0 ≤ x ≤ 1,

u(0) = 0, u′(0) = −1, u
′′
(0) = 2, u(1) = 0, u′(1) = sin(1), u

′′
(1) = 2 cos(1).

The exact solution for this problem is u(x) = (x− 1) sin(x).

Example 3. Consider the following linear problem [20]

u(6)(x) = −(5x+ 1)u(x) + (185x− 25x2 + 10x4) cos(x) + (270− 36x2) sin(x),

−1 ≤ x ≤ 1,

u(−1) = 4 cos(1), u′(−1) = cos(1) + 4 sin(1), u
′′
(−1) = −16 cos(1) + 2 sin(1),

u(1) = −2 cos(1), u′(1) = cos(1) + 2 sin(1), u
′′
(1) = 14 cos(1)− 2 sin(1).

The exact solution for this problem is u(x) = (2x3 − 5x+ 1) cos(x).

Example 4. Consider the following linear problem [20]

u(6)(x) = −u(x) + 6(2x cos(x) + 5 sin(x)), −1 ≤ x ≤ 1,

u(−1) = 0, u′(−1) = 2 sin(1), u
′′
(−1) = −4 cos(1)− 2 sin(1),

u(1) = 0, u′(1) = 2 sin(1), u
′′
(1) = 4 cos(1) + 2 sin(1).

The exact solution for this problem is u(x) = (x2 − 1) sin(x).

Example 5. Consider the following non-linear problem [11, 15, 25]

u(6)(x) = exu2(x), 0 ≤ x ≤ 1,

u(0) = −u′(0) = u
′′
(0) = 1, u(1) = −u′(1) = u

′′
(1) = e−1.

The exact solution for this problem is u(x) = e−x.

Example 6. Consider the following linear problem [15]

u(6)(x) = u(x)− 6ex, 0 ≤ x ≤ 1,

u(0) = 1, u
′′
(0) = −1, u(4)(0) = −3, u(1) = 0, u

′′
(1) = −2e, u(4)(1) = −4e.

The exact solution for this problem is u(x) = (1− x)ex.
We solved this example with di�erent order of methods and the computed results are
tabulated in tables 6-7.

Example 7. Consider the following linear problem [18]

u(6)(x) = −u(x) + 6(2x cos(x) + 5 sin(x)), 0 ≤ x ≤ 1,

u(0) = u
′′
(0) = u(4)(0) = u(1) = 0,

u
′′
(1) = 2 sin(1) + 4 cos(1), u(4)(1) = −12 sin(1)− 8 cos(1).

The exact solution for this problem is u(x) = (x2 − 1) sin(x).

Example 8. Consider the following non-linear problem [11, 13, 15, 25]

u(6)(x) = e−xu2(x), 0 ≤ x ≤ 1,

u(0) = u′′(0) = u(4)(0) = 1, u(1) = u′′(1) = u(4)(1) = e.

The exact solution for this problem is u(x) = ex.
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Table 1: Maximum absolute errors of Example 1

n Our method Method in [19] Method in [20] Method in [12]

8 6.4170×10−16 3.6463×10−6 1.37×10−6 6.64×10−9

16 1.6230×10−18 3.0209×10−7 1.08×10−7 1.04×10−9

32 7.6442×10−21 2.1369×10−8 2.25×10−8 7.66×10−11

64 3.0225×10−23 1.2289×10−9 7.04×10−9 9.39×10−11

128 1.1822×10−25 1.4821×10−9 7.46×10−9 -
256 4.6183×10−28 - - -
512 1.8040×10−30 - - -

Table 2: Maximum absolute errors of Example 2

n Our method Method in [19] Method in [12]

8 3.5357×10−16 1.8429×10−6 2.95×10−9

16 9.0187×10−19 1.3951×10−7 4.50×10−10

32 4.1814×10−21 9.4848×10−9 3.65×10−11

64 1.6501×10−23 5.6293×10−10 5.92×10−11

128 6.4497×10−26 6.4848×10−10 -
256 2.5198×10−28 - -
512 9.8430×10−31 - -

Table 3: Maximum absolute errors of Example 3

n Our method Method in [20]

8 1.2569×10−10 1.17×10−4

16 6.8147×10−14 1.62×10−5

32 9.2677×10−16 3.80×10−6

64 3.8581×10−18 9.52×10−7

128 1.5136×10−20 8.68×10−7

256 5.9141×10−23 -
512 2.3102×10−25 -

Table 4: Maximum absolute errors of Example 4

n Our method Method in [20]

8 4.8027×10−12 8.25×10−6

16 2.5527×10−15 1.13×10−6

32 3.5500×10−17 2.64×10−7

64 1.4796×10−19 6.96×10−8

128 5.8057×10−22 7.17×10−8

256 2.2684×10−24 -
512 8.8614×10−27 -

Example 9. Consider the following non-linear problem [11, 13, 18]

u(6)(x) = −u2(x) + (x2 − 1)2 sin2(x) + (31− x2) sin(x) + 12x cos(x),

0 ≤ x ≤ 1,

u(0) = u′′(0) = u(4)(0) = u(1) = 0,

u′′(1) = 2 sin(1) + 4 cos(1), u(4)(1) = −12 sin(1)− 8 cos(1).

The exact solution for this problem is u(x) = (x2 − 1) sin(x).



845

Table 5: Maximum absolute errors of Example 5

x Our method Method in [11] Method in [25] Method in [15]

0.1 6.459×10−20 1.56×10−9 3.1×10−14 -2.347×10−7

0.2 2.664×10−19 3.02×10−9 1.9×10−13 -1.389×10−6

0.3 2.725×10−19 3.84×10−9 4.8×10−13 -3.307×10−6

0.4 1.473×10−19 3.67×10−9 8.0×10−13 -5.203×10−6

0.5 5.148×10−20 2.34×10−9 1.0×10−12 -6.198×10−6

0.6 6.907×10−20 1.58×10−11 1.0×10−12 -5.780×10−6

0.7 1.514×10−19 2.58×10−9 8.1×10−13 -4.082×10−6

0.8 1.663×10−19 5.10×10−9 4.3×10−13 -1.903×10−6

0.9 4.233×10−20 5.02×10−9 9.2×10−13 -3.570×10−7

Table 6: Maximum absolute errors of Example 6

x α = 0, β = 0, α = 0, β = 1
120 ,

γ = 1
4 , δ = 1

2 γ = 13
60 , δ = 11

20

0.1 4.7183×10−9 1.9793×10−12

0.2 8.9841×10−9 3.7550×10−12

0.3 1.2383×10−8 5.1624×10−12

0.4 1.4582×10−8 6.0777×10−12

0.5 1.5361×10−8 6.4198×10−12

0.6 1.4636×10−8 6.1523×10−12

0.7 1.2470×10−8 5.2864×10−12

0.8 9.0702×10−9 3.8842×10−12

0.9 4.7706×10−9 2.0630×10−12

Table 7: Maximum absolute errors of Example 6
(for α = 1

30240 , β = 41
5040 , γ = 2189

10080 and δ = 4153
7560 )

x Our method Method in [15]

0.1 1.9865×10−14 4.0933×10−4

0.2 3.7664×10−14 7.7820×10−4

0.3 5.1722×10−14 1.07048×10−3

0.4 6.0790×10−14 1.25787×10−3

0.5 6.4068×10−14 1.32238×10−3

0.6 6.1232×10−14 1.25787×10−3

0.7 5.2455×10−14 1.07048×10−3

0.8 3.8425×10−14 7.7820×10−4

0.9 2.0357×10−14 4.0933×10−4

Table 8: Maximum absolute errors of Example 7

n Our method Method in [18]

8 2.5215×10−12 1.652489367×10−8

16 2.7189×10−15 2.497231310×10−10

32 4.0730×10−18 2.125805087×10−11

64 9.8572×10−21 -
128 3.2795×10−23 -
256 1.2263×10−25 -
512 4.7374×10−28 -
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Table 9: Maximum absolute errors of Example 8

x Our method Method in [11] Method in [25] Method in [15]

0.1 1.466×10−15 8.34×10−10 -4.8×10−11 -1.233×10−4

0.2 2.780×10−15 8.26×10−10 -9.1×10−11 -2.354×10−4

0.3 3.817×10−15 4.15×10−10 -1.3×10−10 -3.257×10−4

0.4 4.486×10−15 7.90×10−11 -1.5×10−10 -3.855×10−4

0.5 4.726×10−15 4.49×10−10 -1.6×10−10 -4.086×10−4

0.6 4.516×10−15 5.91×10−10 -1.6×10−10 -3.919×10−4

0.7 3.868×10−15 4.98×10−10 -1.4×10−10 -3.361×10−4

0.8 2.833×10−15 2.51×10−10 -9.9×10−11 -2.459×10−4

0.9 1.500×10−15 8.87×10−12 -5.2×10−11 -1.299×10−4

n Our method Method in [13]

8 4.2504×10−14 3.79×10−10

16 4.9352×10−17 2.51×10−11

32 7.5809×10−20 5.10×10−10

64 1.7794×10−22 -
128 5.7714×10−25 -
256 2.1379×10−27 -
512 8.2366×10−30 -

Table 10: Maximum absolute errors of Example 9

n Our method Method in [11] Method in [18] Method in [13]

8 2.5172×10−12 1.78×10−7 1.6497×10−8 9.69×10−9

16 2.7143×10−15 1.43×10−8 2.5983×10−10 2.04×10−10

32 4.0661×10−18 1.01×10−9 6.8631×10−11 5.43×10−11

64 9.8406×10−21 6.75×10−11 - -
128 3.2740×10−23 - - -
256 1.2242×10−25 - - -
512 4.7294×10−28 - - -
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Figure 1: The graph of exact and approximation solutions with 0 ≤ x ≤ 1 and h = 1
20 for

Example 5.
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Figure 2: The graph of exact and approximation solutions with 0 ≤ x ≤ 1 and h = 1
40 for

Example 8.
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Figure 3: The graph of exact and approximation solutions with 0 ≤ x ≤ 1 and h = 1
40 for

Example 9.

Conclusion

We approximate solution of the sixth-order linear and non-linear boundary value prob-
lems by using non-polynomial spline, we developed the class of various order of 4, 6 and
8 methods. The new approach enable us to approximate the solution at every point
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of the range of integration. Tables 1-10 show that our approach produced better in
the sense that max | ei | is minimum in comparison with the methods developed in
[12, 13, 25, 11, 15, 18, 19, 20]. The results obtain by our methods are observed to be
better than that obtained results by Arshad Khan [12, 13], Ullah et al. [25], Navnit Jha
et al. [11], Noor et al. [15], Ramadan et al. [18] and Siddiqi et al. [19, 20] as discussed in
examples 1-9.
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