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Investigating an overdetermined system of linear
equations by using convex functions

Zlatko Pavi¢ * T and Vedran Novoselac

Abstract

The paper studies the application of convex functions in order to prove
the existence of optimal solutions of an overdetermined system of lin-
ear equations. The study approaches the problem by using even convex
functions instead of projections. The research also relies on some spe-
cial properties of unbounded convex sets, and the lower level sets of
continuous functions.
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1. Introduction
We consider a system of m linear equations with n unknowns over the field of real
numbers given by
a11x1+ ... FaintTn =b1
(1.1) : :
am1Z1+ ... +OGmn%n = bnm
Including the matrices
a1 ... Qin 1 b1
(1.2) A= : : , T = : , b= : ,
Ami ... Qmn Tn bm
the given system gets the matrix form
(1.3) Az =0b.
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Identifying the matrix A with a linear operator from R"™ to R™, the column matrix x
with a vector of R™, and the column matrices Az and b with vectors of R™, the given
system takes the operator form.

If the vector b is not contained in the image R(A) of the operator A, then the equation
in formula (1.3) has no solution. Respectively, the system in formula (1.1) is said to be
inconsistent. A system of linear equations is said to be overdetermined if there are
more equations than unknowns. The overdetermined system with linearly independent
equations is evidently inconsistent.

To summarize, employing a linear operator A : R" — R™ where n < m, and a vector
b € R™, we receive the equation Az = b with unknown vectors z € R™. If b € R(A), the
set of solutions is the preimage of b as

(1.4)  ATY(b) ={z € R": Az = b}.
If b ¢ R(A), the equation has no solution. To include both cases, we use a norm on the
space R™, and the function f :R"™ — R defined by
(15)  f(z) = [Az —b|.
Then we are looking for the global minimum points x of the function f. Expressed as an
equation, it is f(z) = minyern f(y) or
1.6 Az — b|| = min ||Ay — b
(1.6)  [lAz -] ;gg}l\l y — b,

and its solutions are called optimal solutions of the equation Az = b respecting the given
norm. The above equation is reduced to Az = b if b € R(A).

The existence of the solution of the minimization problem in formula (1.6) is provided
in the framework of the theory of projections. In order to remake it without using
projections, we will utilize even convex functions.

Methodical introduction to overdetermined systems of linear equations can be seen in
[12]. The general insight into the problem of least absolute deviations can be found in
[1]. Linear optimization problems were presented in [2].

2. Affinity and convexity, rays, lower level sets

Let X be a real vector space. Let z1,22 € X be vectors, and let ti1,t2 € R be
coefficients. Then the linear combination tix1 + tax2 is said to be affine (convex) if
to=1—1t1 (0<ta=1—1t1 <1). Aset SC Xissaid to be affine (convex) if it contains
all binomial affine (convex) combinations of its vectors.

The set AV (b) C R™ in formula (1.4) is affine. In general, if a set B C R(A) is affine
(convex), then its preimage A" (B) C R" is affine (convex) too.

Let S be an affine (convex) set. A function f:.S — R is said to be affine (convex) if
the equality (inequality)
(21)  f(tizws + toxa) = () taf(21) + taf(22)
holds for all affine (convex) combinations t121 + taxz2 of points z1,z2 € S.

If 1,22 € X are vectors, then the ray or half-line R from z; passing through x5 is the
subset of X defined as

R:{(l—t)ml +tm2:t20}.

If f:S — Ris a function, then the lower level set L of the function f with a height
[ € R is the subset of S defined as

L={zeS: f(z) <1}
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The lower level sets of a convex function are convex.

The following lemma can be found in [3, Theorem 1, page 23]. We offer the proof by
using convex combinations.

2.1. Lemma. Let S CR" be an unbounded closed convez set, and let s € S be a point.
Then there is a ray from s belonging to S.

Proof. Without loss of generality, using the translation in the space R™ by the vector —s,
we can assume that the set S contains the origin o. So, we are looking for a ray from o
contained in S.

Since S is unbounded, we can pick out a sequence (yx)r of points yr € S such that
|lyx|| = k for every k € N.

Since S is convex, each line segment between o and y is contained in S. Then it
follows that the convex combination

k—1 1 1
Ty = —F—0+ 7Yk = 7Yk

k k k

belongs to S for every k € N. Each zj, satisfies ||zx|| = 1. We have the sequence () of
points zj, belonging to the intersection Sy of the set S and the unit sphere in R™. The
set Sp is compact because it is closed and bounded, and therefore the sequence (x)x has
a subsequence (zr, ), converging to some point zg € So.

Let R be the ray from o passing through zo. We will verify that R is contained in S.
Since R = {tzo : t > 0}, we have to show that each ray point tzo is in S. Let ¢ > 0 be a
nonnegative coefficient. Since S is convex, the points

tx —i —Tk_toJri
e T Yr = - Yry,

Tk
are in S for 7, > t. The above points approach tzo if k approaches infinity. Since S is
closed, the limit txo is in S. O

The proof of Lemma 2.1 is illustrated in Figure 1, and the same is still applicable to
an unbounded convex set of R™ and points of its interior.

Figure 1. A ray in the unbounded convex set of R?

Statements similar to the next lemma and corollary are exposed in [11, Theorem 8.4,
Theorem 8.5 and Theorem 8.6, pages 30-31]. Bounded sets play a decisive role for the
global minimum existence. Considering lower level sets and the global minimum of a
continuous function, one can find the following.



868

2.2. Lemma. Let f : R® — R be a continuous function whose lower level sets are
bounded. Then f has the global minimum.

Proof. First we take a point zp € R™, and a number | > f(zo). Then we specify the
lower level set L of the function f with the height [, which is nonempty. The set L is
bounded by the assumption, and closed by the continuity of f. Thus L is compact, and
there is a point z* € L such that f(z*) = minger f(x). The value f(z*) is the global
minimum, which is easy to demonstrate as follows.

Let © € R" be a point. If € L, then applies f(z*) < f(z) <. If z ¢ L, then we
have f(z*) <1< f(=). O

A convex function on the space R™ approaching infinity on all rays from the origin
being examined.

2.3. Corollary. Let f:R"™ — R be a conver function such that
(2.2) lim f(tz) = o0

t—o0
for every x € R™ \ {o}. Then f has the global minimum.

Proof. Since f is convex on R", it is also continuous (a convex function on an open
domain is continuous). Respecting the continuity of f in the context of Lemma 2.2, it is
sufficient to prove that the lower level sets of f are bounded.

Let L be the lower level set of f with a height [ > f(0). The set L contains the
origin o, and it is closed and convex. If L is not bounded, then it contains some ray R
from the origin o by Lemma 2.1. Thus, a point zo € L \ {0} exists such that the ray
R = {txo :t > 0}. Since R C L, for each t > 0 we have that

f(t:lio) S l.

It follows that the condition in formula (2.2) does not apply to zo € R™ \ {o}. Hence the
lower level set L must be bounded. Consequently, all lower level sets of the function f
are bounded. ]

Very well written and motivated book in [9] can be recommended as an introduc-
tory course to the analysis of convex functions. One chapter of this book refers to the
optimization.

The usage of affine and convex combinations is important in the field of mathematical
inequalities. A refinement of the Jensen inequality was obtained in [7] by using affine
combinations, and improvements of the Hermite-Hadamard inequality were obtained in
[8] by using convex combinations.

The book on level set methods and fast marching methods in [10] is intended for math-
ematicians and applied scientists. This book includes applications from computational
geometry, fluid mechanics, computer vision and materials science.

3. Main results

In this section, we assume that the space R™ is equipped with some norm, and utilize
the property of compactness of bounded closed sets in R"™.

If f:R™ — R is an even convex function, then its global minimum is f(0). It is easy
to verify by combining the convexity and equation f(—xz) = f(x), from which it follows
that the inequality

10 =1 3o+ 3(-0)) < 3@+ 31(-0) = 1@

holds for every z € R™.
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In the next lemma and corollary, we will use a convex function f : R — R and the
property of nondecreasing slopes of its chords expressed by the double inequality

flt2) = f(t1) _ fts) = f(t2) _ f(ts) = f(t2)
to—ti —  ts—t1 T~ ty—ta
which holds for every triple of points ¢1,%2,t3 € R in the order of t; < t2 < t3.

(3.1)

The inequality of the first and third term in formula (3.1) can be derived by using the
inequality in formula (2.1). To verify the whole double inequality in formula (3.1), we
represent its middle term as the convex combination of the first and third term in the
form of

32 LU= S) _ta=h flt) = f(t)  ta—ts fts) = f(ta)
' ts — t1 ts —t1 ta — 11 ts —t1 ts —t2 '
3.1. Lemma. Let f : R — R be an even convex function. Then f s either constant or

meets the limits lims— 1o f(t) = 0.

Proof. The function f may be a constant because the collection of even convex functions
includes all constants.

Suppose that f is not constant. Then a point ¢1 > 0 exists so that f(¢t1) > f(0).
Let t2 > t1. Applying the left-hand side of the inequality in formula (3.1) to the triple
0 <t1 < t2, we get

f(t) = f(0) < f(tz)—f(o).

t1 —0 - to—0
Then applies f(t2) — f(0) > 0, otherwise we get f(¢1) < f(0), and therefore
t
(33)  f(t1) = f(0) < é(f(h) — f(0)) < f(t2) — f(0),
which yields f(t1) < f(t2). Hence the function f is strictly increasing on the interval
[t1,00). Since f is even, there must be lim;— 4o f(t) = co. O

3.2. Corollary. Let f : R — R be a conver function, and let g : R — R be an even
convex function.
If there exists a number ¢ > 0 such that the inequality

(34)  gt)—ec< f(t) <g(t) +c
holds for every t € R, then the function f has the global minimum.

Proof. According to Lemma 3.1, the function g is constant or meets the limits lim;—, + o g(t) =
0.

If g is constant, then using the assumption in formula (3.4) with ¢; = ¢(0) — ¢ and
c2 = g(0) + ¢, we obtain that ¢1 < f(t) < ¢z for every ¢ € R. We will show that f is
constant. Let t; < t2. Applying the inequality of the first and third term in formula
(3.1) to the triple t < t1 < t2, we get

ft) = f() _ f(t2) = f(t1)
t1 —t - to —t1
Sending ¢t to —oo and respecting the boundedness of the function f, we obtain that
0 < f(t2) — f(t1), and so f(t1) < f(t2). Similarly we get the reverse inequality. The
conclusion is that f(t1) = f(t2).
If lim;,+00 g(t) = o0, then the reflection moment applied to formula (3.4) yields
lim;— 4+ o0 f(t) = co. The function f has the global minimum by Corollary 2.3. O

The above corollary can be generalized to higher dimensions.
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3.3. Theorem. Let f: R" — R be a convez function, and let g : R™ — R be an even
convez function.
If there exists a number ¢ > 0 such that the inequality

(35)  g(@)—c< f(x) <glz)+c

holds for every x € R"™, then the function f has the global minimum.

Proof. The restriction of the function g to any line in R™ passing through the origin is
an even convex function. Then according to Lemma 3.1, for z € R™ \ {0} we have either
lim;—, £ o0 g(tz) = 00 or g(tx) = g(o) for every ¢t € R.

Suppose that g meets the limits lim;— 4+ g(tx) = oo for every = € R™\ {o}. Applying
the reflection moment to the inequality

gltz) —c < fltz) < gltz) +c

by sending ¢ to £oo, it follows that lim;,+oo f(tx) = oo for every z € R™ \ {o}. The
function f has the global minimum by Corollary 2.3.

Suppose that g is constant on the line X = {txo : t € R} for some point zo € R"\ {o}.
Then f is constant on the line X by the proof of Corollary 3.2. Without loss of generality,
using the rotation in the space R™! around the function axis Tn+1 which the line X
turns into axis z,, we can assume that f and g are constant on the axis x,. To prove that
f has the global minimum, we will apply the mathematical induction on the dimension
n. The theorem holds for n = 1 by Corollary 3.2. We assume that the theorem holds for
n — 1, where n > 2.

Then we define the convex functions fo and go on the space R™™! by

fo(l‘l,, .. ,xnfl) = f($1, .. .,xnfl,O)
and
go(z1,. .. xTn-1) = g(x1,...,2n-1,0),

which satisfy the assumptions of the theorem. Including the function fy into the induction
premise, we can consider that it has the global minimum. The global minimum of fy is
also the global minimum of f. |

Theorem 3.3 can be applied to overdetermined systems as follows.

3.4. Corollary. Let A : R"™ — R™ be a linear operator where n < m, and let b € R™
be a point. Let |||| be a norm on R™, and let f : R®™ — R be a function defined by
f(z) =||Axz — b||. Then f has the global minimum.

Proof. The convexity of the function f follows from the norm triangle inequality.
Using the inequality

[Az|| — bl < [[Az — bl < || Az[| + ||b]

in the context of formula (3.5) with f(z) = ||Az — b||, g(z) = ||Az|| and ¢ = ||b]|, we can
conclude that f has the global minimum. O

3.5. Corollary. Let the assumptions of Corollary 3.4 be fulfilled. Let S CR" be the set
of the global minimum points of f. Then S is nonempty, closed respecting any norm on
R™, and convexz.

Proof. The set S is nonempty by Corollary 3.4.
The set S is closed respecting any norm on R" because the operator A is continuous
respecting any pair of norms on R™ and R™.
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To demonstrate the convexity of S, let us take a convex combination t1x] + t2x3 of
points z7, x5 € S. Then the convexity of f yields

fltrx] +tows) < tif(x]) + tof(x3)

= f(21) = f(a2),
and therefore f(t12]+t225) = f(z7) = f(x3) because the value f(z]) = f(x3) is minimal.
Thus the combination ¢127 4 t2z5 belongs to the set S, providing its convexity. ]
4. Applications to overdetermined systems by using p-norms

In numerous studies related to an estimation, we need norms that depend on real
numbers. Let y = (y1,...,ym) € R™ be a point, where m > 2. The p-norms on the
space R™ are defined for numbers p > 1 by

1
m P
41 lyll, = (Z Iyip> ;
i=1
and their limit case the maz-norm is expressed by
42)  llylloe = max yil.

Let A, z and b be as in formula (1.2). Applying the above norms to the point y = Az,
and thus to the coordinates y; = >°7_ a;;x; — b, the function f in formula (1.5) takes

the forms
p> 3

n
E ;55 — b-L
Jj=1

The investigation of overdetermined systems by using the p-homogeneous metric for
0 < p < 1 was done in [6]. General analysis of convex functions including their extreme
values can be found in [4]. Optimization problems concerning convex functions were
discussed in [5].

m

(43)  folz) = | Az — b, = (Z

i=1

n
E AijTj — bi

j=1

and

(44)  foo(z) =||Az — b]loc = max

1<i<m

In the next two examples, we will illustrate the application of functions in formula
(4.3) and formula (4.4) in finding the optimal solutions of overdetermined systems. As
usual, the functions f1, f2 and fo will mostly be used.

To make it easier to present the set of optimal solutions, we will use a notion of the
convex (affine) hull. Given a set S in a real vector space, the convex hull convS (affine
hull aff S) represents the smallest convex (affine) set in the respective vector space which
contains the set S.

4.1. Example. Using the functions fi, fo and fo, find the optimal solutions of the
overdetermined system

1
(4.5) 1 — 2 = 0.
To = 2
Using the function

fl(thQ) = le - 1‘ + |£E1 - 1’2| + ‘IQ - 2|7
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and eliminating the signs of absolute values, we obtain that fi(z1,22) = 1 on the triangle
with vertices 71 (1,1), T2(1, 2) and 75(2, 2). Combining vertices T4, T>, T3 with coefficients
t1,t2,t3 € [0,1] of the sum ¢1 +¢2 4¢3 = 1, we can conclude that each convex combination
2" =0T + toTo + t3T5 = (t1 + to + 2ts, t1 + 2t2 + 2t3)
is the minimum point, and the global minimum is
fi(ty +t2 + 2t3, 11 + 2t2 + 2t3) = 1.

So, the set S:1 of optimal solutions respecting the 1-norm is the triangle with vertices 71,
T5 and T5. Using the convex hull, we can write

Sl = COHV{Tl,TQ,Tg,}.
Using the function
fo(zr,22) = /(@1 = 1)? + (21 — 22) + (22 — 2)2,

and applying the differential calculus, we find that ™ = (4/3,5/3) is the unique minimum
point, and so the global minimum is

45 V3
folz3) ==
3’3 3
The set of optimal solutions respecting the 2-norm is the singleton
S2 = {(4/3,5/3)}.

Using the function

foo(zr,22) = max {|z1 — 1|, |21 — 22|, [z2 — 2|},

and removing the signs of absolute values, we obtain that z* = (4/3,5/3) is the unique
minimum point, and thus the global minimum is

4 5 1
Joe (575) =3

The set of optimal solutions respecting the maz-norm is
Soo ={(4/3,5/3)}.

Knowing the global minimum points, we can determine the projections of the vector
b onto the space R(A) as vectors in R(A) of the minimal distance to b.

4.2. Remark. As regards the projections of b onto R(A) relating to the system in
formula (4.5), we have to point out the vectors

1 0 1
ay = 1 , a2 = -1 5 b= 0
0 1 2

The space R(A) is the plane in R?® spanned by the vectors a; and az. The projections
of the vector b onto the plane R(A) respecting the 1-norm are the vectors

1 0
bl = (ti+ta+2t3) | 1 |+ (t1+2t2+2t3) [ -1
0 1

1 1 2

= t1 0 +ia | —1 + i3 0

1 2 2

The above convex combinations indicate that the set of projections is the triangle with
vertices V1(1,0,1), Va(1,—1,2) and V3(2,0,2).
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The projection of b onto R(A) respecting the 2-norm and maz-norm is the vector

1 0 4/3
bS:b;zg 1 +§ -1 |=1]-1/3
0 1 5/3

Let ¢ € R be a number, and let f : R — R be the function defined by f(z) = |z — ¢|?
where p > 1. Then the function f is differentiable at each point  with the derivative
, —plz —cPt for z<c
fx) =

plr — ¢! for z>c

Another note regarding Example 4.1. Taking p > 1, and using the functional

folar,w2) = ¥/]er = 1P + |21 — 2P + |22 - 2J7,
we find that z* = (4/3,5/3) is the unique minimum point with the global minimum
L (1) _ 0
P\3'3) 3~
4.3. Example. Using the functions f, for p > 1 and p = oo, find the optimal solutions
of the overdetermined system

X1 — X2 = 0
(46) X1 — X2 = 1.
X1 — X2 = —1

Using the functions f, for p > 1 and p = oo, we find that each point x* of the line
x1 = x2 is the minimum point, and the global minimum is

fp(mlvml) = %

The set S, of optimal solutions respecting any p-norm (p > 1 and p = o) is the line
21 = x2. Using the affine hull of the points 73 (0,0) and 75(1, 1), we can write

Sp = aff{Tl, TQ}

4.4. Remark. As regards the projections of b onto R(A) relating to the system in
formula (4.6), we have to point out the vectors

1 -1 0
ay = 1 , a2 = —1 5 b= 1
1 -1 -1

The space R(A) is the line in R? spanned by the vector a;. The projection of the
vector b onto the line R(A) respecting any p-norm (p > 1 and p = o) is the origin as a
result of

1 -1 0

b; = I 1 +x1 | —1 = 0

1 -1 0
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