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Modi�ed slash Birnbaum-Saunders distribution

Jimmy Reyes∗ , Filidor Vilca†, Diego I. Gallardo‡ and Héctor W. Gómez�¶

Abstract

In this paper, we introduce an extension for the Birnbaum-Saunders
(BS) distribution based on the modi�ed slash (MS) distribution pro-
posed by [12]. This new family of BS type distributions is obtained
by replacing the usual normal distribution with the quotient of two
independent random variables, one being a normal distribution in the
numerator and the power of a exponential of parameter equal to two at
the denominator. The resulting distribution is an extension of the BS
distribution that has greater kurtosis values than the usual BS distri-
bution and the slash Birnbaum-Saunders (SBS) distribution (see [7]).
Moments and some properties are derived for the new distribution.
Also, we draw inferences by the method of moments and maximum
likelihood. A real data application is presented where the model �t-
ting is implemented by using maximum likelihood estimation producing
better results than the classic BS model and slash BS model.
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1. Introduction

The Birnbaum Saunders (BS) distribution (see [3] and [4]) was derived to model the
material fatigue failure time process, and has been widely applied in reliability and fatigue
studies. Extensive work has been done on the BS model with regard to its properties,
inferences and applications. Generalizations of the BS distribution have been proposed by
many authors; see for example, [6], [15], [7] and [2] among others, which allow obtaining
a high degree of �exibility for this distribution. From an analytical point of view, the
attention for the BS distribution is due to its attractive properties and its relationship
with the normal distribution.

A random variable T follows a Birnbaum-Saunders distribution with shape parameter
α > 0 and scale parameter β > 0, usually denoted by T ∼ BS(α, β). The random variable
T can be represented as

T = β

(
α

2
Z +

√(α
2
Z
)2

+ 1

)2

(1.1)

where Z ∼ N(0, 1). The resulting probability density function (pdf) of T is

fT (t;α, β) = φ(at(α, β))
t−

3
2 (t+ β)

2αβ
1
2

, t > 0,(1.2)

where φ(·) is the pdf of the N(0, 1) distribution and at(α, β) = (
√
t/β −

√
β/t)/α.

The BS distribution proposed by [3] may not be suitable to represent data containing
outlying observations due to its close dependence on the normal distribution. One way to
overcome this problem, is to exploit the relationship between the BS and normal distri-
butions to obtain a generalization of BS distributions based on the modi�ed slash (MS)
distribution in place of the normal one, which possesses heavier tails than the normal.
The MS distribution was proposed recently by [12], which incorporates more kurtosis.
This distribution is a type scale mixture of the normal distribution, in which the mixing
distribution depends on the exponential distribution. The resulting distribution, called
the MS distribution, has heavier tails than the normal and slash-normal distributions.

Next, we present a brief review of the MS distribution and some of its properties. A
random variable X has a MS distribution (see [12]) if it can be represented by

X =
Z

V
1
q

,(1.3)

where Z ∼ N(0, 1) is independent of V ∼ exp(2). The pdf of X can be expressed as

fX(x) = 2q

∫ ∞
0

vqe−2vqφ(xv) dv, x ∈ R.(1.4)

An interesting special case is obtained for q = 1, which is the canonic modi�ed slash
distribution, the distribution of the ratio of two independent random variables, one being
the standard normal and the other an exp(2) distribution whose pdf can be written in a
simple way as follows

fX(x) =


2
x2

[
1√
2π
− 2ex

−2

|x| Φ(− 2
|x| )

]
if x 6= 0,

(8π)−
1
2 if x = 0,

(1.5)

where Φ(·) denotes the cdf of the standard normal distribution. On the other hand, when
q tends to ∞, the resulting distribution is a normal one.
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The aim of this paper is to provide a generalized Birnbaum-Saunders distribution
based on modi�ed slash distribution. This extension is based mainly on the work of
[12] and [7]. The resulting distribution, which we call modi�ed slash Birnbaum-Saunders
(MSBS) distribution, provides �exible thick-tailed distributions which can be used for
robust estimation of parameters.

The rest of this paper is organized as follows.In Section 2, we de�ne the BS distri-
bution based on MS distributions and discuss some of its properties. Speci�cally, we
derive its probability density function, and moments. In Section 3, we discuss estimation
methods based on the modi�ed moment estimators and the maximum likelihood estima-
tion. In Section 4, we provide an illustrative example that displays the usefulness of the
generalized BS distributions for �tting a real data set that has been analyzed before in
the literature. Finally, some concluding remarks are made in Section 5.

2. Proposed distribution

Analogous to the BS distribution of [2] and [7], we can de�ne an extension of the
Birnbaum-Saunders distribution based on the MS distribution by considering the follow-
ing stochastic representation of T :

T = β

(
α

2
X +

√(α
2
X
)2

+ 1

)2

(2.1)

where X ∼ MS(0, 1, q) given in (1.3). So, the random variable T is said to have a
modi�ed slash Birnbaum-Saunders (MSBS) distribution with parameters α, β and q,
and will be denoted by T ∼ MSBS(α, β, q). The stochastic representation in (2.1) is
useful for the simulation of data and also for implementing the EM-algorithm for ML
estimation of parameters in MSBS models, as will be discussed later.

2.1. Density function. In this part we derive the pdf for the modi�ed slash Birnbaum-
Saunders distribution, which is based on the modi�ed slash distribution

2.1. Proposition. Let T ∼ MSBS(α, β, q). Then, the pdf of T is

fT (t) =
t−3/2(t+ β)q

αβ1/2

∫ ∞
0

vqe−2vqφ(v at(α, β)) dv, t > 0,(2.2)

where φ(·) is the pdf of the N(0, 1) distribution.

Proof. Let be X ∼ MS(0, 1, q) with its pdf given in (1.4). The result comes easily from
the stochastic representation in (2.1) and using the change of variable theorem 2.

The next special case q = 1 is derived easily from Proposition 2.1. In fact, the pdf of
T , given in (2.2), reduces to the following expression

fT (t) =


t−3/2(t+β)

αβ1/2

∫∞
0
ve−2vφ(vat(α, β)) dv, if t 6= β,

(8π)−1/2 1
αβ
, if t = β.

(2.3)

On the other hand, when q tends to ∞, we simply obtain the ordinary BS distribution,
as will be seen in the next proposition.

Figure 1 shows the pdf of the MSBS, SBS and BS distributions for di�erent values of
α and β, with q = 2.
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Figure 1. Plots of densities of the MSBS (black line), SBS (red line)
and BS (blue line) distributions, for α = 0.5, β = 1 and q = 2

2.2. Properties of the MSBS distribution.

2.2. Proposition. Let T ∼ MSBS(α, β, q). Then,

a) aT ∼ MSBS(α, aβ, q) for all a > 0;
b) T−1 ∼ MSBS(α, β−1, q);
c) limq→∞fT (t;α, β, q) = fT (t;α, β), where fT (.;α, β) is the pdf of a BS(α, β)

distribution;

d) The conditional distribution of T , given V = v, is the BS distribution. That is,

T |(V = v) ∼ BS
(
αv,q, β

)
, where αv,q = α/v1/q.

Proof. Parts (a) and (b) are directly obtained using the change of variable theorem.
Part (c) is obtained in the same way since the MS distribution tends to the normal dis-
tribution. Finally, Part (d) is obtained easily from (1.3) and (2.1). 2

As is required in the study and development of any statistical analysis, the moments
are important, especially in applied work. Some of the most important features and
characteristics of a distribution can be studied through moments such as skewness and
kurtosis parameters, which depend on the gamma function, Γ(·), de�ned for {x ∈ R :
x 6= 0,−1,−2, . . .}, which in turn are likely to be important in a number of applications.
The following results are related to them.
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2.3. Proposition. Let T ∼ MSBS(α, β, q) and B2k;q = 2
2k−q
q Γ( q−2k

q
), q > 2k, k =

1, . . . , r. If E[X2r] exists and is �nite. Then,

E[T r] = βr
r∑
y=0

(
2r

2y

)
y∑
s=0

(
y

s

)(α
2

)2(r+s−y)
E
[
X2(r+s−y)

]
and(2.4)

E[T−r] =
1

β2r
E[T r],(2.5)

where E[X2(r+s−y)] = 2 (2(r+s−y))!
2(r+s−y)(r+s−y)!B2(r+s−y);q, y = 0, 1, . . . , r.

Proof. From (2.1), we can express E
[
Tr

βr

]
= E

[(
α
2
X +

√(
α
2
X
)2

+ 1

)2r
]
. So, by

expanding the binomial expression in the expectation above, we have

E
[
T r

βr

]
=

2r∑
k=0

(
2r

k

)
E

[((α
2
X
)2

+ 1

)(k/2) (α
2
X
)2r−k]

=

r∑
y=0

(
2r

2y

)
y∑
s=0

(
y

s

)(α
2

)2(r+s−y)
E
[
X2(r+s−y)

]
,

where X ∼ MS(0, 1, q) and E[X2(r+s−y)] = 2 (2(r+s−y))!
2(r+s−y)(r+s−y)!B2(r+s−y);q under as re-

striction de�ned; see [12]. Finally, since β2T−1 and T have the same distribution,
E[β2rT−r] = E[T r].

Following [12], we can note that E[T r] exists if and only if E[X2r] exists (�nite mo-
ments). Thus, for instance E[T ] exists if and only if E[X2] exists as well as Var(T ) exists
if and only if E[X4] exists. In these cases, E[X2] = 2B2;q if q > 2 and E[X4] = 6B4;q if
q > 4. Even thought that B2;q is de�ned for q ≤ 2, we can not a�rm that E[T ] exists.
The following results can be derived directly from Proposition 2.3 for

2.4. Corollary. Let T ∼ MSBS(α, β, q). Then, the mean and variance are respectively

E[T ] = β
(
1 + α2B2;q

)
, q > 2,(2.6)

Var(T ) = α2β2{3α2B4;q − α2B2
2;q + 2B2;q

}
, q > 4.(2.7)

2.5. Corollary. Let T ∼ MSBS(α, β, q) and µr = E[T r], r = 1, . . . , 4. Then,

µ1 = β
(
1 + α2B2;q

)
, q > 2,

µ2 = β2(3α4B4;q + 4α2B2;q + 1
)
, q > 4,

µ3 = β3(15α6B6;q + 18α4B4;q + 9α2B2;q + 1
)
, q > 6,

µ4 = β4(105α8B8;q + 120α6B6;q + 60α4B4;q + 16α2B2;q + 1
)
, q > 8.

2.6. Corollary. The symmetry and kurtosis coe�cients of T ∼ MSBS(α, β, q) are re-

spectively given by;

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)3/2

, q > 6

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)2

, q > 8.

The following proposition shows that the MSBS distributions can be represented as a
particular type of scale-mixture of the BS and the exp(2) distribution.
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2.7. Proposition. Let V ∼ exp(2). Then,

a) If T |(V = v) ∼ BS(αv−1/q, β), then T ∼ MSBS(α, β, q);

b) If U = V 2/q, then T |(U = u) ∼ BS(αu−1/2, β) and the pdf of T can be expressed

as

fT (t) =
t−3/2(t+ β)q

2αβ1/2

∫ ∞
0

u
q+1
2
−1e−2uq/2φ

(√
u at(α, β)

)
du, t > 0,

where φ(·) is the pdf of the N(0, 1) distribution.

Proof. The results are obtained by using properties of the conditional distribution. In
Part (a), it is easy to show that

fT (t) =

∫ ∞
0

fT |V (t|v)hV (v) dv =
t−3/2(t+ β)q

αβ1/2

∫ ∞
0

vqe−2vqφ(v at(α, β)) dv, t > 0.

The result in Part (b) is obtained in the same way as Part (a). But, here it is important

to note that U has a Weibull distribution. That is, U = V 2/q ∼ Weibull
(
q/2, 2−(2/q)

)
,

and its pdf is h(u) = quq/2−1 exp{−2uq/2}, u > 0.

3. Estimation

In this section, we discuss estimation methods based on the modi�ed moment (MM)
estimators and the maximum likelihood (ML) estimators for the unknown model param-
eters based on a random sample T1, . . . , Tn from T ∼ MSBS(α, β, q).

3.1. Method of moments. Following the ideas of [8] and [10], we consider the modi�ed
moment estimation method. Next, we present the modi�ed moment estimators for the
parameters of α, β and q, which are based on E(T ), E(T−1) and E(T 2) and their statistics
S = 1

n

∑n
i=1 Ti, R = 1

n

∑n
i=1 T

−1
i and W = 1

n

∑n
i=1 T

2
i .

The modi�ed moment estimators are obtained by solving the following equations:
S = E(T ), R = E(T−1) and W = E(T 2), that are valid for q > 4. The modi�ed moment
estimator for β is given by

β̂M =

√
S

R
.(3.1)

On the other hand, the modi�ed moment estimators for q, denoted by q̂M , is obtained
as a solution of the equation

W =
S

R

[
3
(√

SR− 1
)2 B4,q̂M

B2
2,q̂M

+ 4
√
SR− 3

]
.(3.2)

Using the modi�ed moments estimator of q, q̂M found in (3.2), we obtain the modi�ed
moment estimator of α given by

α̂M =

√
(SR)1/2 − 1

B2,q̂M

.(3.3)

Thus, the modi�ed moment estimators of α, β and q are α̂M , β̂M and q̂M , respectively.

If q̂M is a consistent estimator, then α̂M and β̂M are also consistent estimators.
As is not very clear to see that q̂M is consistent, we propose an alternative method

to obtain a consistent estimator of q. Namely, by using the equations S = E(T ) and
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R = E(T−1), which are valid for q > 2, we have the following solutions for α and β, for
q �xed

β̂M =

√
S

R
and α̂M (q) =

√
(SR)1/2 − 1

B2;q
.(3.4)

For q > 4, these estimators are consistent. A consistent estimator of q can be obtained

by maximizing the generalized pro�le log-likelihood function `p(q) = `
(
α̂M (q), β̂M (q), q)

that depends just on q, where `(·) is the genuine log-likelihood function. The estimator

q̂M = argmax
q

`
(
α̂M (q), β̂M , q)(3.5)

is consistent according to [14]. Thus, the resulting modi�ed moment estimators of α, β

and q are α̂M = α̂M (q̂M ), β̂M and q̂M , respectively, that require just q > 2 for being
computed.

The modi�ed moment estimators can be used e�ectively as initial values in the iterative
procedure for computing the ML estimates.

3.2. Maximum likelihood estimators. Let T1, ..., Tn be a random sample of size n
from T ∼ MSBS(α, β, q). The log-likelihood function for θ = (α, β, q)> can be expressed
as

`(θ) = −3

2

n∑
i=1

log ti +

n∑
i=1

log(ti + β) + n log(q/α)− n

2
log β +

n∑
i=1

logG(ti)

where G(ti) =
∫∞
0
vqe−2vqφ

(
ati(α, β)v

)
dv. The �rst derivatives of the log-likelihood

function are

∂`

∂α
=

n∑
i=1

Wα(ti)−
n

α
,
∂`

∂β
=

n∑
i=1

Wβ(ti)−
n

2β
+

n∑
i=1

1

ti + β
and

∂`

∂q
=

n∑
i=1

Wq(ti) +
n

q

whereWη(ti) =
Gη(ti)

G(ti)
, with Gη(ti) = ∂G(ti)

∂η
, η = α, β, q. The partial derivatives of G(ti)

can be written as

Gα(ti) = − 1

α

∫ ∞
0

vq+2a2ti(α, β) exp {−2vq}φ
(
ati(α, β)v

)
dv,

Gβ(ti) = −
∫ ∞
0

vq+2

(
αa2ti(α, β) + 2ati(α, β)

√
β

ti

)
exp{−2vq}φ

(
ati(α, β)v

)
dv,

Gq(ti) =

∫ ∞
0

vq ln v(1− 2vq) exp{−2vq}φ(ati(α, β)v) dv.

The second derivatives of the log-likelihood function are reported in the Appendix.

3.3. ML estimation using an EM-Algorithm. The EM-algorithm is a well-known
tool for ML estimation when unobserved (or missing) data or latent variables are present
while modeling. This algorithm enables the computationally e�cient determination of
the ML estimates when iterative procedures are required. Looking at the stochastic
representation of a modi�ed slash distribution in (1.3), we noted that the scale factor

V −1/q depend on the parameter q, so we are going to consider a re-parametrization in
order to get the EM-algorithm in the MSBS model. Let U = V 2/q be the new mixing
random variable. Then, the resulting stochastic representation for T can be expressed as

T = β
(α

2
X +

√(α
2
X
)2

+ 1
)2
,(3.6)
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where X = U−1/2Z, with Z ∼ N(0, 1) independent of U ∼ Weibull
(
q/2, 2−(2/q)

)
, that

has pdf that can be expressed as h(u) = quq/2−1 exp{−2uq/2}, u > 0. Under the new
parametrization, we have the conditional distribution of T , given U = u, follows the
BS(α/

√
u, β) distribution. Consequently, the pdf of the T reduces to

fT (t) =
t−3/2(t+ β)q

2αβ1/2

∫ ∞
0

u
q+1
2
−1e−2uq/2φ

(√
u at(α, β)

)
du, t > 0,(3.7)

where φ(·) is the pdf of N(0, 1) distribution.

Let T1, ..., Tn be a random sample of size n of T ∼ MSBS(α, β, q). Here, the parameter

vector is θ = (α, β, q)>, with θ ∈ Θ ⊆ R3
+. Let `c(θ|tc) and Q(θ|θ̂) = E[`c(θ|tc)|t, θ̂] de-

note the complete-data log-likelihood function and its expected value, respectively. Each
iteration of the EM algorithm involves two steps. Note that, by combining Proposition
2.2 and the results in (3.6), the above setup can be represented through of a hierarchical
representation given by

Ti|(Ui = ui)
ind∼ ∼ BS

(
α/
√
ui, β

)
,(3.8)

Ui
ind∼ Weibull(q/2, 2−(2/q)), i = 1, . . . , n.(3.9)

Let t = [t1, . . . , tn]> and u = [u1, . . . , un]> be observed and unobserved data, respec-
tively. The complete data tc = [t>,u>]> corresponds to the original data t augmented
with u. We now detail the implementation of the ML estimation of parameters of MSBS
distributions by using the EM-algorithm. In this part, the hierarchical representation
given in (3.8) and (3.9) is useful to obtain the complete log-likelihood function associated
with tc, which can be expressed as

`c(θ|tc) ∝ −n log(α)− n

2
log(β)− 1

2α2

n∑
i=1

ui

[
ti
β

+
β

ti
− 2

]
+

n∑
i=1

log (ti + β)

+ `c(q|tc),

where `c(q|tc) = n log(q) + (q/2− 1)
∑n
i=1 log(ui)− 2

∑n
i=1 u

q/2
i .

Letting ûi = E[Ui|ti,θ = θ̂], it follows that the conditional expectation of the complete
log-likelihood function has the form

Q(θ|θ̂) ∝ −n log(α)− n

2
log(β)− 1

2α2

n∑
i=1

ûi

[
ti
β

+
β

ti
− 2

]
+

n∑
i=1

log (ti + β)

+ Q(q|θ̂),

where Q(q|θ̂) = n log(q) + (q/2 − 1)S1n − 2S2n,q, with S1n =
∑n
i=1 E[log(Ui)|ti] and

S2n,q =
∑n
i=1 E[u

q/2
i |ti]. As both quantities S1n and S2n,q have no explicit forms in

the context of our model, and they have to be computed numerically. Thus to compute

Q(q|θ̂) we use a approach similar to that from [9]. Speci�cally, let {ur; r = 1, ..., R} be
a sample randomly drawn from the conditional distribution U |(T = t,θ = θ̂), so the

quantity Q(q|θ̂) can be approximated as follows:

Q(q|θ̂) ≈ 1

R

R∑
r=1

`c(q|ur).

We then have the EM-algorithm for the ML estimation of the parameters of the MSBS
distributions as follows:

E-step. Given θ = θ̂
(k)

= (α̂(k), β̂(k), q̂(k))>, compute ûi
(k), for i = 1, . . . , n.
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CM-step I: Update α̂(k) by maximizing Q(θ|θ̂
(k)

) over α, which leads to the expression:

α̂2(k+1) =
S

(k)
u

β̂(k)
+
β̂(k)

R
(k)
u

− 2u(k),

CM-step II: Obtain β̂(k+1) as the solution of

β̂2(k+1) − β̂(k+1)
[
K(β̂(k+1)) + 2u(k)R(k)

u

]
+Ru

[
u(k)K(β̂(k+1)) + S(k)

u

]
= 0.

CM-step III: Fix α = α̂(k+1) and β = β̂(k+1), update q(k) by optimizing

q̂(k+1) = arg max qQ(α̂(k+1), β̂(k+1), q| θ̂
(k)

).

where

u(k) =
1

n

n∑
i=1

û
(k)
i , S(k)

u =
1

n

n∑
i=1

û
(k)
i ti, and R(k)

u =
1

1
n

∑n
i=1

( û(k)
i
ti

) ,
with K(x) =

{
1
n

∑n
i=1

(
1

x+ti

)}−1

. The iterations are repeated until a suitable conver-

gence rule is satis�ed, say |`(θ̂
(k+1)

) − `(θ̂
(k)

)| su�ciently small. Useful starting values
required to implement this algorithm are those obtained under the normality assumption

or by using the modi�ed moment estimates α̂M , β̂M and q̂M .

3.1. Remark. 1) Note that when q tends to ∞, the estimates of α and β in M-step
reduce to those when the BS distribution is used;
2) Note that CM-Steps II requires an one-dimensional search for the root of β, respec-
tively, which can be easily achieved by using the �uniroot" function built in R. On the
other hand CM-Step III can be very slow. An alternative is to use the idea in [11], and
it can be de�ned as:
CML-step: Update q(k) by optimizing the following constrained actual log-likelihood
function

q̂(k+1) = arg max q ` (α̂(k+1), β̂(k+1), q).

The corresponding standard errors (s.e.) are calculated from the observed information
matrix, whose required derivatives are presented in Appendix.

4. Numerical applications

4.1. Simulated data. By using the representation given in (2.1), it is possible to gen-
erate random numbers for the MSBS(α, β, q) distribution, which leads to the following
algorithm:

Step 1 : Generate Z from N(0, 1);
Step 2 : Generate V from exp(2);
Step 3 : Compute X = Z

V
1
q
;

Step 4 : Compute T = β

(
α
2
X +

√(
α
2
X
)2

+ 1

)2

.
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So, it follows that if X ∼ MS(0, 1, q), then T has the required MSBS(α, β, q) distri-
bution. The main object is to study the behavior of the maximum likelihood estimates
for parameters of the model. Table 1 shows results of simulations studies, illustrating the
behavior of the MLEs for 1000 generated samples of sizes 50 and 100 from a population
distributed as MSBS(α, β, q), considering many cases for α, β and q parameters. For each
generated sample, MLEs were computed numerically using the EM algorithm explained
in Section 3.3. Means and standard errors (s.e.) are reported in Table 1. Note that
the estimated bias for the all cases are acceptable and it can be observed that the bias
becomes smaller as the sample size n increases, as one would expect.

4.2. Real data. We illustrated the model with two data set collected by Department of
Mines of the University of Atacama, Chile, representing neodymium and zinc measured
in 86 samples of minerals.

4.2.1. Neodymium data set. A descriptive summary of the analyzed data sets is reported
in Table 2, where

√
b1 and b2 are sample skewness and kurtosis coe�cients, respectively.

Figure 2 shows the solution of the moment equation for q. Here, one can note that there

Table 2. Summary statistics for data set

n t St
√
b1 b2

86 35.02 34.2307 3.648 18.216

is one and only solution to the moment equation in the interval (2,∞).

Figure 2. Moment equation for q: the solution for q is obtained by
the intersection of the both curves.

Using the results presented in Section 3.1, see (3.4) and (3.5). We computed the

modi�ed moment estimates leading to the following values: α̂M = 0.537, β̂M = 27.211
and q̂M = 2.8027, which were used as initial estimates for the maximum likelihood
approach. For this data set, we used the Akaike information criterion (AIC, see [1]).
Additionally, we present the statistics for two goodness of �t test: Cramer-Von-Mises
(W ) and Anderson Darling (A); see [5] for details. In both test, a lower statistic suggest
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a model with a better �t. Based on the these statistics, the associated p-values, and AIC
criteria, we conclude that the MSBS model provides the best �t to the Neodymium data
set over the SBS and BS models, as can be seen in Table 3. Figure 3 shows the histogram
for the data set and the adjusted distributions for the BS, SBS and MSBS models. The
MSBS model provides a better �t than other �tting models. Finally, Figure 4 presents
qqplots for the three models, which also indicate good model �t for the MSBS model.

Table 3. ML estimates and the s.e. values (in parentheses) estimated
asymptotic standard errors. W and A values with their associated
p-values (in parentheses) for three models

Estimates BS SBS MSBS

α 0.758 (0.058) 0.289 (0.064) 0.290 (0.105)
β 27.250 (2.071) 27.247 (1.592) 27.683 (5.983)
q - 1.578 (0.426) 2.009 (0.570)

AIC 757.191 612.480 610.44
W 0.403 (0.071) 0.100 (0.586) 0.086 (0.659)
A 2.178 (0.074) 0.564 (0.682) 0.488 (0.759)

Figure 3. Histogram of the neodymium data set and estimated den-
sities for the BS, SBS and MSBS models.

4.2.2. Zinc data set. A descriptive summary of the analyzed data sets is reported in
Table 4. For this data set, the moment estimates of the parameters are given by α̂M =

0.958, β̂M = 52.301 and q̂M = 2.6466, and they can be used e�ectively as initial values in
the iterative procedure for computing the ML estimates, for �nding the ML estimates of
the model parameters based on the EM-algorithm or by using the maximization procedure
of Newton-Raphson. The results of �tting of BS, SBS and MSBS models are reported in
Table 5, which shows the MSBS model provides a better �t than other models, base on
W and A statistics and their associated p-values. Also, AIC selection criterion indicates
that the MSBS model presents the best �t. The estimated density functions for the BS,
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Figure 4. qqplot: a) MSBS model, b) SBS model and c) BS model.

Table 4. Summary statistics for data set

n t St
√
b1 b2

86 96.72 148.434 4.999 33.423

Table 5. ML estimates, the SE values (in parentheses) are the esti-
mated asymptotic standard errors. W and A values with their associ-
ated p-values (in parentheses) for three models

Estimates BS SBS MSBS

α 1.304 (0.100) 0.466 (0.090) 0.459 (0.105)
β 50.884 (5.870) 58.407 (5.282) 41.066 (5.983)
q - 1.722 (0.447) 2.144 (0.570)

AIC 973.558 816.496 812.652
W 0.631 (0.019) 0.194 (0.280) 0.179 (0.312)
A 3.531 (0.015) 1.012 (0.351) 0.941 (0.389)

SBS and MSBS models and the estimated densities by ML estimates are presented in
Figure 5, one case see the good performance of the MSBS model.

5. Discussion

We introduced here an extension of Birnbaum-Saunders distributions based on MS
distributions, proposed recently by [12]. This new class of distributions is quite �exible
and more useful for modeling purposes than the SBS distributions proposed by [7]. We
then pointed out some important characteristics and properties of this family of distri-
butions. In particular, we discussed estimation methods based on the modi�ed moment
estimators, which can be used e�ectively as initial values in the iterative procedure for
computing the ML estimates, obtained using numerical procedures such as the Newton-
Raphson procedure. Finally, we provide an illustration that displays the usefulness of the
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Figure 5. Empirical cdf with estimated MSBS cdf (blue line), esti-
mated SBS cdf (red line) and estimated BS cdf (green line).

generalized BS distributions for �tting a real data set. The MSBS distributions based on
MS distributions can be used along the same lines as the univariate BS distributions in
the context of regression following the ideas of [13].
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Appendix: Elements of Hessian matrix

Let Mi(v;α, β, q) = exp
{
−2vq − v2

2
a2t (α, β)

}
. Then

− ∂
2`

∂α2
= − n

α2
−

n∑
i=1

Gαα(ti)G(ti)− {Gα(ti)}2

{G(ti)}2

− ∂
2`

∂β2
= − n

2β2
+

n∑
i=1

[
(ti + β)−2 − Gββ(ti)G(ti)− {Gβ(ti)}2

{G(ti)}2

]

− ∂
2`

∂q2
=

n

q2
−

n∑
i=1

Gqq(ti)G(ti)− {Gq(ti)}2

{G(ti)}2

− ∂2`

∂α∂β
= −

n∑
i=1

GαβG(ti)−Gα(ti)Gβ(ti)

{G(ti)}2

− ∂2`

∂α∂q
= −

n∑
i=1

GαqG(ti)−Gα(ti)Gq(ti)

{G(ti)}2

− ∂2`

∂β∂q
= −

n∑
i=1

GβqG(ti)−Gβ(ti)Gq(ti)

{G(ti)}2
,

where

Gαα(ti) =
β2 − 2βti + t2i

α6β2t2i

∫ ∞
0

vq+2Mi(v;α, β, q)
[
v2(β2 − 2βti + t2i )− 3α2βti

]
dv

Gββ(ti) =
1

4α4β4t2i

∫ ∞
0

vq+2Mi(v;α, β, q)
[
v2(β4 − 2β2t2i + t4i )− 4α2βt3i

]
dv

Gqq(ti) =

∫ ∞
0

vqMi(v;α, β, q){log v}2
(
4v2q − 6vq + 1

)
dv

Gαβ(ti) =
1

2α5β3t2i

×
∫ ∞
0

vq+2Mi(v;α, β, q)
[
2α2βti(β

2 − t2i )− v2(β4 − 2β3ti + 2βt3i − t4i )
]
dv

Gαq(ti) =
β2 − 2βti + t2i

α3βti

∫ ∞
0

vq+2Mi(v;α, β, q) log v (1− 2vq) dv

Gβq(ti) =
t2i − β2

α2β2ti

∫ ∞
0

vq+2Mi(v;α, β, q) log v (1− 2vq) dv.


