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A generalized class of di�erence type estimators
for population median in survey sampling
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Abstract

In this paper, we propose a generalized class of di�erence type estima-
tors of �nite population median in simple and strati�ed random sam-
pling. The expressions for bias and mean square error are derived up
to �rst order of approximation. Numerical comparisons reveal that the
proposed class of estimators performs better than the unbiased sample
median estimator, ratio estimator, exponential estimator, usual di�er-
ence estimator, Rao [10] estimator and other di�erence type estimators.
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1. Introduction

Several authors have developed some estimators for the �nite population mean under
di�erent sampling schemes. However lesser degree of attention has been paid to estima-
tion of median. Kuk and Mak [8] introduced a median estimator that makes use of the
auxiliary information. Gupta et al. [5] have suggested a class of estimators for population
median using two auxiliary variables. Other important contributions in this area include
Al and Cingi [2], Singh and Solanki [14], Jhajj et al. [7], Sharma and Singh [12], Solanki
and Singh [15] and Aladag and Cingi [3].

In this paper we consider the problem of median estimation for �nite population and
propose a generalized class of di�erence type estimators that makes use of the auxiliary
information in simple and strati�ed random sampling.

Consider a �nite population with N units. Let yi and xi (i = 1, 2, ..., N) be the values
on the ith unit for the study variable (Y )and the auxiliary variable (X) respectively. Let
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us draw a sample of size n from this population by using simple random sampling without
replacement. Let My and Mx respectively be the population medians and M̂y and M̂x

respectively be the sample medians for Y and X. Let the correlation coe�cient between
(M̂y, M̂y) be ρ(M̂y,M̂y)

= ρc = 4P11(y, x)− 1, where P11(y, x) = P (Y ≤ My ∩X ≤ Mx).

It is assumed that the limiting distribution of (Y,X) is a continuous distribution with
marginal densities fy(y) and fx(x) for Y and X respectively. It is further assumed that
fy(My) and fx(Mx) are positive.

To obtain the properties of the proposed median estimator, we de�ne the following
error terms. Let e0 = (M̂y − My)/My and e1 = (M̂x − Mx)/Mx such that E(e0) =
E(e1) = 0. To �rst degree of approximation, we have E(e20) = λC2

My, E(e21) = λC2
Mx,

E(e0e1) = λCMyx, where CMy = 1/[Myfy(My)],
CMx = 1/[Mxfx(Mx)], CMyx = ρcCMyCMx and λ = 1

4

(
1
n
− 1

N

)
.

2. Some existing median estimators in simple random sampling

In this section, we discuss some of the existing estimators of population median (My).
All expressions are given to �rst degree approximation.
The most common median estimator is the sample median (M̂y) whose variance is, given
by

V ar(M̂y) = λM2
yC

2
My =MSE(M̂y).(2.1)

Kuk and Mak [8] have introduced the following ratio estimator:

M̂R = M̂y

(
Mx

M̂x

)
,(2.2)

where Mx is known.
The bias and MSE of M̂R, are given by

Bias(M̂R) ∼= λMy

(
C2
Mx − CMyx

)
(2.3)

and

MSE(M̂R) ∼= λM2
y

(
C2
My + C2

Mx − 2CMyx

)
.(2.4)

The exponential ratio type estimator is given by

M̂EX = M̂yexp

(
Mx − M̂x

Mx + M̂x

)
.(2.5)

The bias and MSE of M̂EX , are given by

Bias(M̂EX) ∼= λMy

(
3

8
C2
Mx −

1

2
CMyx

)
(2.6)

and

MSE(M̂EX) ∼= λM2
y

(
C2
My +

1

4
C2
Mx − CMyx

)
.(2.7)

An unbiased di�erence estimator (M̂D), is given by

M̂D = M̂y + d
(
Mx − M̂x

)
,(2.8)

where d is an unknown constant.
The minimum MSE of M̂D, at optimum value of d i.e. dopt =

MyρcCMy

MxCMx
is given by

MSE(M̂D)min = λM2
yC

2
My

(
1− ρ2c

)
.(2.9)
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The minimum MSE of M̂D is always smaller than the sample median estimator (M̂y),

ratio estimator (M̂R) and exponential type estimator (M̂EX).

Some more di�erence type estimators M̂Di(i = 1, 2, 3) which are similar to Rao [10],
Gupta et al. [5] and Shabbir and Gupta [11] estimators respectively, are given by

M̂D1 = d1M̂y + d2
(
Mx − M̂x

)
,(2.10)

M̂D2 =
[
d3M̂y + d4(Mx − M̂x)

](Mx

M̂x

)
,(2.11)

M̂D3 =
[
d5M̂y + d6(Mx − M̂x)

]
exp

(
Mx − M̂x

Mx + M̂x

)
,(2.12)

where di(i = 1, 2, . . . , 6) are unknown constants whose optimal values are to be deter-
mined.
The biases and minimum MSEs of M̂Di(i = 1, 2, 3), are given by

Bias(M̂D1) ∼=My(d1 − 1),(2.13)

Bias(M̂D2) ∼= (d3 − 1)My + d3λMy(C
2
Mx − CMyx) + d4MxλC

2
Mx,(2.14)

Bias(M̂D3) ∼= (d5 − 1)My + d5λMy

{
3

8
C2
Mx −

1

2
CMyx

}
+

1

2
d6MxλC

2
Mx,(2.15)

MSE(M̂D1)min ∼=
MyλC

2
My(1− ρ2c)

1 + λC2
My(1− ρ2c)

,(2.16)

MSE(M̂D2)min ∼=M2
y

[
(1− λC2

Mx)−
(1− λC2

Mx)
2

(1− λC2
Mx) + λC2

My(1− ρ2c)

]
or

MSE(M̂D2)min ∼=M2
y

[
(1− λC2

Mx)λC
2
My(1− ρ2c)

(1− λC2
Mx) + λC2

My(1− ρ2c)

]
,(2.17)

MSE(M̂D3)min ∼=M2
y

[
(1− 1

4
λC2

Mx)−
(1− 1

8
λC2

Mx)
2

1 + λC2
My(1− ρ2c)

]
or

MSE(M̂D3)min ∼=M2
y

[
λC2

My(1− ρ2c)− 1
64
λ2C4

Mx − 1
4
λ2C2

MyC
2
Mx(1− ρ2c)

1 + λC2
My(1− ρ2c)

]
,(2.18)

where optimum values of di(i = 1, 2, . . . , 6) are given by:

d1(opt) =
1

1+λC2
My

(1−ρ2c)
, d2(opt) =

My

Mx

[
ρcCMy/CMx

1+λC2
My

(1−ρ2c)

]
, d3(opt) =

1−λC2
Mx

1−λC2
Mx

+λC2
My

(1−ρ2c)
,

d4(opt) =
My

Mx

[
1 + d3(opt)

(
ρcCMy

CMx
− 2
)]
, d5(opt) =

1−(λC2
Mx/8)

1+λC2
My

(1−ρ2c)
,

d6(opt) =
My

Mx

[
1
2
+ d5(opt)

(
ρcCMy

CMx
− 1
)]
.

We can get the corresponding bias of M̂Di(i = 1, 2, 3) by substituting the optimum values
of di(i = 1, 2, . . . , 6) in Eqs (2.13)−(2.15).
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3. Proposed median estimator in simple random sampling

Motivated by Singh and Solanki [14], Jhajj et al. [7], Sharma and Singh [12] and
Solanki and Singh [15], we propose the following generalized di�erence type estimator of
My.

M̂G
P =

[
m1M̂y +m2(Mx − M̂x)

]
[(

aMx + b

aM̂x + b

)α1

exp

{
α2a(Mx − M̂x)

a{(γ − 1)Mx + M̂x}+ 2b

}]
,(3.1)

where a and b are the known population parameters.; m1 and m2 are unknown constants
whose values are to be determined and α1 , α2 and γ are scalar quantities which can take
di�erent values.
Note: By substituting di�erent values of α1, α2, γ, a, b, we can obtain many estimators
as described earliar.
Let substitute α1 = b = 0, α2 = γ = a = 1 in Eq.(3.1), the class of generalized type
estimators becomes

M̂G
PP =

[
m1M̂y +m2(Mx − M̂x)

] [
exp

(
Mx

M̂x

− 1

)]
.(3.2)

Solving Eq.(3.2), the bias and minimum MSE of M̂G
PP at optimum values: m1(opt) =

1− 1
2
λC2

Mx

1+λC2
My

(1−ρ2c)
and m2(opt) =

My

Mx

[
1 +m1(opt){

ρcCMy

CMx
− 2}

]
, are given by

Bias(M̂G
PP ) ∼= (m1 − 1)My +m2Myλ

{
3

2
C2
Mx − CMy

}
+m2MxλC

2
Mx(3.3)

and

MSE(M̂G
PP ) ∼=M2

y

[
(1− λC2

Mx)−
{
1− 1

2
λC2

Mx

}2
1 + λC2

My(1− ρ2c)

]
(3.4)

or

MSE(M̂G
PP ) ∼=M2

y

[
λC2

My(1− ρ2c)− 1
4
λ2C4

Mx − λ2C4
MxC

2
Mx(1− ρ2c)

1 + λC2
My(1− ρ2c)

]
.(3.5)

4. Comparison of estimators in simple random sampling

In this section, we compare the mean square error of the new class of generalized
di�erence type estimators M̂G

PP at optimum condition with other existing estimators.

Condition (i)

By (2.1) and (3.5), MSE(M̂G
PP )min < MSE(M̂y) if

1
θ2

[
λC2

Myρ
2
c + λ2θ1

]
> 0,

where θ1 = 1
4
C4
Mx + C4

My(1− ρ2c) + C2
MxC

2
My(1− ρ2c) and θ2 = 1 + λC2

My(1− ρ2c).

Condition (ii)

By (2.4) and (3.5), MSE(M̂G
PP )min < MSE(M̂R) if

1
θ2

[
λ(CMx − ρcCMy)

2 + λC2
My(1− ρ2c)MSE(M̂R)

M2
y

+ λ2θ1
]
> 0.

Condition (iii)

By (2.7) and (3.5), MSE(M̂G
PP )min < MSE(M̂EX) if

1
θ2

[
λ( 1

2
CMx − ρcCMy)

2 + λC2
My(1− ρ2c)MSE(M̂EX )

M2
y

+ λ2θ1
]
> 0.
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Condition (iv)

By (2.9) and (3.5), MSE(M̂G
PP )min < MSE(M̂D)min if

1
θ2

[{
λC2

My(1− ρ2c)
}2

+ λ2θ1
]
> 0.

Condition (v)

By (2.16) and (3.5), MSE(M̂G
PP )min < MSE(M̂D1)min if

1
θ2

[
λ2θ1

]
> 0.

Condition (vi)

By (2.17) and (3.5), MSE(M̂G
PP )min < MSE(M̂D2)min if

1
θ2θ3

[
λ2C2

MyC
2
Mx(1− ρ2c)(1− 3

4
λC2

MyC
2
Mx) +

1
4
λ2C4

Mx(1− λC2
Mx)

]
> 0,

where θ3 = 1− λC2
Mx + λC2

My(1− ρ2c).

Condition (vii)

By (2.18) and (3.5), MSE(M̂G
PP )min < MSE(M̂D3)min if

1
θ2

[
( 3
4
λ2C2

Mx)
{
C2
My(1− ρ2c) + 5

16
C2
Mx

}]
> 0.

5. Numerical study in simple random sampling

In this section, we consider seven natural populations to perform a numerical com-
parison of di�erent estimators.
Population I: Source: [PDS [6], Pages 114-116]
Let y be the number of teaching sta� and x be the number of students in 4 di�erent
types of schools under 36 districts in Punjab province of Pakistan.
Population II: Source: [Singh [13]]
Let y be the number of �sh caught in the year 1995 and x be the number of �sh caught
by the marine recreational �shermen in the previous year 1994 in USA.
Population III: Source: [Singh [13]]
Let y be the number of �sh caught in the year 1995 and x be the number of �sh caught
by the marine recreational �shermen in the previous year 1993 in USA.
Population IV: Source: [Aladag and Cingi [3]]
Let y be the number of teachers and x be the number of students in elementary schools
for 340 medium-developed districts in Turkey in 2007.
Population V: Source: [Chen et al. [4]; Al and Cingi [2]]
Let y be the entire height of conifer trees in feet and x be the diameter of conifer trees
in centimeters at breast height.
Population VI: Source: [Aczel and Sounderpandian [1]]
Let y be the U.S. exports to Singapore in billions of Singapore dollars and x be the money
supply �gures in billions of Singapore dollars.
Population VII: Source: MFA [9]
Let y be the district-wise tomato production in tons in Pakistan in the year 2003 and x
be the district-wise tomato production in tons in Pakistan in the year 2002.
The summary data of Populations (I−VII) are given in Table 1. We use the following
expression to obtain the percent relative e�ciency (PRE) of various estimators relative
to the sample median i.e.

PRE =
MSE(M̂y)

MSE(.) orMSE(.)min
× 100.

The Bias, MSE and PRE results are given in Tables 2-4 respectively. Based on the
results in Tables 2-4, it is observed that the proposed estimator M̂G

PP outperforms other

competing estimators. Also in Table 2, the absolute bias of M̂G
PP is smaller in most
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cases. The ratio estimator (M̂R) and exponential estimator (M̂EX) show poorest PREs
probably because of weaker correlation between the study variable and the auxiliary
variable. The performance of the proposed estimator M̂G

PP is not a�ected by this weak
correlation.

Table 1. Summary statistics for seven populations.

Estimator Pop. I Pop. II Pop. III Pop. IV Pop. V Pop. V I Pop. V II

N 144 69 69 340 396 67 97

n 10 17 17 150 65 23 46

My 2023 2068 2068 178 30 4.8 1242

Mx 64659 2011 2307 3526 14.6 7.0 1233

fy(My) 0.00024 0.00014 0.00014 0.00182 0.01178 0.07630 0.00021

fx(Mx) 0.00001 0.00014 0.00014 0.00008 0.02194 0.05260 0.00022

ρc 0.8611 0.1505 0.3136 0.92 0.84 0.6624 0.2096

Table 2. Bias of di�erent estimators.

Estimator Pop. I Pop. II Pop. III Pop. IV Pop. V Pop. V I Pop. V II

M̂R -16.522 246.828 171.241 0.414 0.224 0.084 37.718

M̂EX -22.332 87.271 53.769 -0.053 -0.005 0.011 12.829

M̂D1 -50.326 -236.651 -219.863 -0.242 -0.226 -0.139 -47.952

M̂D2 -50.253 -232.330 -216.626 -0.242 -0.226 -0.139 -47.878

M̂D3 -49.531 -227.820 -212.652 -0.241 -0.223 -0.137 -47.459

M̂G
PP -45.999 -149.613 -185.758 -0.233 -0.211 -0.129 -45.640

6. Some median estimator in strati�ed random sampling

Strati�ed random sampling is commonly used when population is heterogeneous. Re-
cently Aladag and Cingi [3] suggested some median estimators in strati�ed random sam-
pling. We give below some notations and some of the existing median estimators in
strati�ed sampling.

Consider a �nite population U = (1, 2, . . . , N) of N identi�able units divided into L
strata with the hth stratum (h = 1, 2, ..., L) having Nh units such that∑L
h=1Nh = N . Let yhi and xhi be the values of the study variable Yh and the auxil-

iary variable Xh respectively for the ith(i = 1, 2, ..., N) population element of the hth
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Table 3. MSE values of di�erent estimators.

Estimator Pop. I Pop. II Pop. III Pop. IV Pop. V Pop. V I Pop. V II

M̂y 403886.96 565443.57 565443.57 281.18 23.17 1.23 64795.08

M̂R 109312.95 988372.76 746752.56 57.87 8.43 0.82 98581.89

M̂EX 199668.00 627420.21 524362.05 76.80 8.75 0.72 66712.60

M̂D 104407.52 552636.13 508766.02 43.19 6.82 0.69 61948.49

M̂D1 101810.17 489395.24 454675.78 43.13 6.77 0.67 59556.73

M̂D2 101661.15 480458.29 447982.61 43.13 6.76 0.67 59463.97

M̂D3 100200.79 471131.76 439763.44 42.94 6.70 0.66 58943.58

M̂G
PP 93055.81 402459.28 384146.79 41.78 6.34 0.62 56684.80

Table 4. PRE of di�erent estimators.

Estimator Pop. I Pop. II Pop. III Pop. IV Pop. V Pop. V I Pop. V II

M̂y 100.00 100.00 100.00 100.00 100.00 100.00 100.00

M̂R 369.478 57.210 75.720 485.914 274.799 148.891 65.727

M̂EX 202.279 90.122 107.835 366.094 264.860 169.932 97.126

M̂D 386.837 102.318 111.140 651.042 339.674 178.181 104.595

M̂D1 396.608 115.539 124.362 651.929 342.246 183.503 108.796

M̂D2 397.287 117.688 126.220 651.940 342.331 183.799 108.965

M̂D3 403.078 120.018 128.579 654.512 345.654 186.224 109.927

M̂G
PP 434.027 140.497 147.195 676.860 365.545 198.566 114.308

stratum. Let M̂yh and M̂xh be the sample medians respectively corresponding to popu-

lation medians M̂yh and M̂xh in the hth stratum. Let M̂yst =
∑L
h=1WhM̂yh and M̂xst =∑L

h=1WhM̂xh be weighted sample medians respectively corresponding to population me-

diansMy =Myst =
∑L
h=1WhMyh andMx =Mxst =

∑L
h=1WhMxh, whereWh = Nh/N

is the known stratum weight. Let the correlation coe�cient between(M̂yh, M̂xh) be
ρ(M̂yh,M̂xh) = ρch = 4P11h(yh, xh)− 1, where P11h(yh, xh) = P (Yh ≤Myh ∩Xh ≤Mxh).

It is assumed that the distribution of (Yh, Xh) is a continuous distribution with marginal
densities fyh(yh) and fxh(xh) for Yh and Xh respectively. It is further assumed that
fyh(Myh) and fxh(Mxh) are positive.
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To obtain expressions for the biases and MSEs of di�erent estimators, we use the fol-
lowing error terms. Let e0h = (M̂yh −Myh)/Myh and e1h = (M̂xh −Mxh)/Mxh such
that E(e0h) = E(e1h) = 0. To �rst degree of approximation, we have E(e20h) = λhC

2
Myh,

E(e21h) = λhC
2
Mxh, E(e0he1h) = λhCMyxh, where CMyh = 1/[Myhfyh(Myh)], CMxh =

1/[Mxhfxh(Mxh)], CMyxh = ρchCMyhCMxh and λh = 1
4

(
1
nh
− 1

Nh

)
.

The variance of the usual sample median (M̂yst) as an estimator of the population median
My, is given by

V ar(M̂yst) =

L∑
h=1

W 2
hλhM

2
yhC

2
Myh =MSE(M̂yst).(6.1)

The traditional ratio estimator in strati�ed sampling, is given by

M̂Rs =

L∑
h=1

W 2
hMyh

(
Mxh

M̂xh

)
,(6.2)

where Mxh is known for all strata.
The bias and MSE of M̂Rs, are given by

Bias(M̂Rs) ∼=
L∑
h=1

WhλhMyh

{
C2
Mxh − CMyxh

}
,(6.3)

and

MSE(M̂Rs) ∼=
L∑
h=1

W 2
hλhM

2
yh

{
C2
Myh + C2

Mxh − 2CMyxh

}
.(6.4)

The exponential ratio type estimator in strati�ed sampling, is given by

M̂EXs =

L∑
h=1

W 2
hM̂yhexp

(
Mxh − M̂xh

M̂xh + M̂xh

)
.(6.5)

The bias and MSE of M̂EXs, are given by

Bias(M̂EXs) ∼=
L∑
h=1

WhλhMyh

{
3

8
C2
Mxh −

1

2
CMyxh

}
,(6.6)

and

MSE(M̂EXs) ∼=
L∑
h=1

W 2
hλhM

2
yh

{
C2
Myh +

1

4
C2
Mxh − CMyxh

}
.(6.7)

The unbiased di�erence estimator M̂Ds, is given by

M̂Ds =

L∑
h=1

Wh

[
M̂yh + dh

(
Mxh − M̂xh

)]
,(6.8)

where dh is an unknown constant.

The minimum MSE of M̂Ds, at optimum values of dh i.e. dh(opt) =
MyhρchCMyh

MxhCMxh
, is

given by

MSE(M̂Ds)min ∼=
L∑
h=1

W 2
hλhM

2
yhC

2
Myh

(
1− ρ2ch

)
.(6.9)

The minimumMSE of M̂Ds is always smaller than the sample median estimator (M̂yst),

ratio estimator (M̂Rs) and exponential type estimator (M̂EXs).
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Some more di�erence type estimators M̂Dis(i = 1, 2, 3) in strti�ed random sampling, are
given by:

M̂D1s =

L∑
h=1

Wh

[
d1hM̂yh + d2h

(
Mxh − M̂xh

)]
,(6.10)

M̂D2s =

L∑
h=1

Wh

[
d3hM̂yh + d4h(Mxh − M̂xh)

](Mxh

M̂xh

)
,(6.11)

M̂D3s =

L∑
h=1

Wh

[
d5hM̂yh + d6h(Mxh − M̂xh)

]
exp

(
Mxh − M̂xh

Mxh + M̂xh

)
,(6.12)

where dih(i = 1, 2, . . . , 6) are unknown constants whose values are to be determined.

The biases and minimum MSEs of M̂Dis(i = 1, 2, 3), are given by

Bias(M̂D1s) ∼=
L∑
h=1

WhM̂yh (d1h − 1),(6.13)

Bias(M̂D2s) ∼=
L∑
h=1

Wh

[
(d3h − 1)M̂yh + d3hλhMyh

{
C2
Mxh − CMyxh

}
+ d4hMxhλhC

2
Mxh

]
,(6.14)

Bias(M̂D3s) ∼=(6.15)

L∑
h=1

Wh

[
(d5h − 1)M̂yh + d5hλhMyh

{
3

8
C2
Mxh −

1

2
CMyxh

}
+

1

2
d6hMxhλhC

2
Mxh

]

MSE(M̂D1s)min ∼=
L∑
h=1

W 2
hM

2
yhλh

(
C2
Myh(1− ρ2ch)

1 + λhC2
Myh(1− ρ2ch)

)
,(6.16)

MSE(M̂D2s)min

∼=
L∑
h=1

W 2
hM

2
yh

[
(1− λhC2

Mxh)−
(1− λhC2

Mxh)
2

(1− λhC2
Mxh) + λhC2

Myh(1− ρ2ch)

]
,

or

MSE(M̂D2s)min ∼=
L∑
h=1

W 2
hM

2
yh

[
(1− λhC2

Mxh)λhC
2
My(1− ρ2ch)

(1− λhC2
Mxh) + λhC2

Myh(1− ρ2ch)

]
,(6.17)

MSE(M̂D3s)min ∼=
L∑
h=1

W 2
hM

2
yh

[
(1− 1

4
λhC

2
Mxh)−

(1− 1
8
λhC

2
Mxh)

2

1 + λhC2
Myh(1− ρ2ch)

]
,

or

MSE(M̂D3s)min(6.18)

∼=
L∑
h=1

W 2
hM

2
yh

[
λhC

2
Myh(1− ρ2ch)− 1

64
λ2
hC

4
Mxh − 1

4
λ2
hC

2
MyhC

2
Mxh(1− ρ2ch)

1 + λhC2
Myh(1− ρ2ch)

]
.

The optimum values of dih(i = 1, 2, . . . , 6), are given by:

d1h(opt) =
1

1+λhC
2
Myh

(1−ρ2
ch

)
, d2h(opt) =

Myh

Mxh

[
ρcCMyh/CMxh

1+λhC
2
Myh

(1−ρ2
ch

)

]
,
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d3h(opt) =
1−λhC

2
Mxh

1−λhC
2
Mxh

+λhC
2
Myh

(1−ρ2
ch

)
, d4h(opt) =

Myh

Mxh

[
1 + d3h(opt){

ρchCMyh

CMxh
− 2}

]
,

d5h(opt) =
1−(λhC

2
Mxh/8)

1+λhC
2
Myh

(1−ρ2
ch

)
, d6h(opt) =

Myh

Mxh

[
1
2
+ d5h(opt)

(
ρchCMyh

CMxh
− 1
)]
.

7. Proposed median estimator in strati�ed random sampling

Motivated by Singh and Solanki [14], Jhajj et al. [7], Sharma and Singh [12], Aladag
and Cingi [3] and Solanki and Singh [15], we propose the following general class of
di�erence type estimators for My in strati�ed random sampling:

M̂G
Ps =

L∑
h=1

Wh

[
m1hM̂yh +m2(Mxh − M̂xh)

]
×

[(
ahMxh + bh

ahM̂xh + bh

)α1h

exp

{
α2hah(Mxh − M̂xh)

ah{(γh − 1)Mxh + M̂xh}+ 2bh

}]
(7.1)

where ah and bh are the known population parameters.; m1h and m2h are unknown
constants whose values are to be determined and α1h , α2h and γh are scalar quantities
which can take di�erent values.
Note: By substituting di�erent values of α1h, α2, γ, a, b, we can generate many estima-
tors.
Putting α1h = bh = 0, α2h = γh = ah = 1 in Eq.(7.1), a new class of generalized
di�erence type estimators in strati�ed sampling becomes:

M̂G
PPs =

L∑
h=1

Wh

[
m1hM̂yh +m2h(Mxh − M̂xh)

] [
exp

(
Mxh

M̂xh

− 1

)]
.(7.2)

Solving Eq.(7.2), the bias and minimum MSE of M̂G
PPs at optimum values: m1h(opt) =

1− 1
2
λhC

2
Mxh

1+λC2
Myh

(1−ρ2
ch

)
and m2h(opt) =

Myh

Mxh

[
1 +m1h(opt){

ρchCMyh

CMxh
− 2}

]
, are given by

Bias(M̂G
PPs)

∼=
L∑
h=1

Wh

[
(m1h − 1)Myh +m2Myhλh

{
3

2
C2
Mxh − CMyh

}
+m2hMxhλC

2
Mxh

]
(7.3)

and

MSE(M̂G
PPs) ∼=

L∑
h=1

W 2
hM

2
yh

[
(1− λhC2

Mxh)−
(1− 1

2
λhC

2
Mxh)

2

1 + λhC2
Myh(1− ρ2ch)

]
or

MSE(M̂G
PPs)

∼=
L∑
h=1

W 2
hM

2
yh

[
λhC

2
Myh(1− ρ2ch)− 1

4
λ2
hC

4
Mxh − λ2

hC
4
MxhC

2
Mxh(1− ρ2ch)

1 + λhC2
Myh(1− ρ2ch)

]
.(7.4)

8. Comparison of estimators in strati�ed random sampling

In this section, we compare the proposed class of generalized di�erence type estima-
tors M̂G

PPs with other existing estimators.

Condition (i)

By (6.1) and (7.4), MSE(M̂G
PPs)min < MSE(M̂yst) if∑L

h=1W
2
hM

2
yh

1
θ2h

[
λhC

2
Myhρ

2
ch + λ2

hθ1h
]
> 0,

where θ1h = C2
Myh(1− ρ2ch) + C2

MxhC
2
Myh(1− ρ2ch) + 1

4
C4
Mxh and
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θ2h = 1 + λhC
2
Myh(1− ρ2ch).

Condition (ii)

By (6.4) and (7.4), MSE(M̂G
PPs)min < MSE(M̂Rs) if∑L

h=1W
2
hM

2
yh

1
θ2h

[
λh(CMxh − ρchCMyh)

2 + λ2
h(θ

∗
1h + θ3h)

]
> 0.

where θ∗1h = C2
MyhC

2
Mxh(1− ρ2ch) + 1

4
C4
Mxh and

θ3h = C2
Myh(1− ρ2ch)

(
C2
Myh + C2

Mxh − 2CMyxh

)
.

Condition (iii)

By (6.7) and (7.4), MSE(M̂G
PPs)min < MSE(M̂EXs) if∑L

h=1W
2
hM

2
yh

1
θ2h

[
λh(

1
2
CMxh − ρchCMyh)

2 + λ2
h(θ

∗
1h + θ4h)

]
> 0.

where θ4h = C2
Myh(1− ρ2ch)

(
C2
Myh + 1

4
C2
Mxh − CMyxh

)
.

Condition (iv)

By (6.9) and (7.4), MSE(M̂G
PPs)min < MSE(M̂Ds)min if∑L

h=1W
2
hM

2
yh

1
θ2h

[
{λhC2

Myh(1− ρ2ch)}2 + λ2
hθ

∗
1h

]
> 0.

Condition (v)

By (6.16) and (7.4), MSE(M̂G
PPs)min < MSE(M̂D1s)min if∑L

h=1W
2
hM

2
yh

1
θ2h

(
λ2
hθ

∗
1h

)
> 0.

Condition (vi)

By (6.17) and (7.4), MSE(M̂G
PPs)min < MSE(M̂D2s)min if∑L

h=1W
2
hM

2
yh

λ2
h

θ2hθ5h

[
C2
MyhC

2
Mxh(1− ρ2ch)(1− 3

4
λhC

2
Mx) + θ6h

]
> 0

where θ5h = 1− λhC2
Mxh + λhC

2
Myh(1− ρ2ch) and

θ6h = 1
4
C4
Mxh(1− λhC2

Mxh).

Condition (vii)

By (6.18) and (7.4), MSE(M̂G
PPs)min < MSE(M̂D3s)min if∑L

h=1W
2
hM

2
yh

1
θ2h

[
( 3
4
λ2
hC

2
Mxh)

{
C2
Myh(1− ρ2ch) + 5

16
C2
Mxh

}]
> 0.

9. A numerical study in strati�ed random sampling

In this section, we consider the following two populations to perform a numerical
comparison of di�erent estimators in strati�ed random sampling.
Population I: [source: PDS [6]]
Let y be the number of teaching sta� as the study variable and x be the number of
students as the auxiliary variable in 4 di�erent types of schools under 36 districts in
Punjab (Pakistan). Equal allocation was used to obtain the sample size in each stratum.
Population II: [source: [Aladag and Cingi [3]]
Let y be the number of teachers as the study variable and x be the number of students as
the auxiliary variable in both primary and secondary schools for 923 districts in 6 regions
(as 1=Marmara, 2=Agean, 3=Mediterranean, 4=Central Anatolia, 5=Black Sea, 6=East
and South Anatolia) in Turkey in 2007. The Neyman allocation was used for allocating
the samples to di�erent strata. The descriptive statistics are given in Tables 5 and 6. We
use the following expression to obtain the percent relative e�ciency (PRE) of various
estimators with respect to the sample median i.e.

PRE =
MSE(M̂yst)

MSE(.) orMSE(.)min
× 100.
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Table 5. Data statistics for population I under strati�ed random sampling.

N = 144 N1 = 36 N2 = 36 N3 = 36 N4 = 36

n = 20 n1 = 5 n2 = 5 n3 = 5 n4 = 5

My1 = 38 My2 = 3056 My3 = 2033 My4 = 2382 Mx1 = 1480

Mx2 = 127289 Mx3 = 54559 Mx4 = 71615 fy1(My1) = 0.007056 fy2(My2) = 0.0003202

fy3(My3) = 0.0004219 fy4(My4) = 0.0003012 fx1(Mx1) = 0.0001641 fx2(Mx2) = 0.000007827 fx3(Mx3) = 0.0000141

fx4(Mx4) = 0.00001026 ρc1 = 0.7776 ρc2 = 0.8888 ρc3 = 0.8888 ρc4 = 0.8888

Table 6. Data statistics for population II under strati�ed random sampling.

N = 923 N1 = 91 N2 = 129 N3 = 204 N4 = 145

N5 = 184 N6 = 170 n = 177 n1 = 18 n2 = 26

n3 = 41 n4 = 29 n5 = 29 n6 = 34 My1 = 81

My2 = 93 My3 = 24 My4 = 54 My5 = 44 My6 = 101

Mx1 = 1265 Mx2 = 1139 Mx3 = 614 Mx4 = 763 Mx5 = 533

Mx6 = 911 fy1(My1) = 0.003160 fy2(My2) = 0.003180 fy3(My3) = 0.011510 fy4(My4) = 0.000299

fy5(My5) = 0.005120 fy6(My6) = 0.000249 fx1(Mx1) = 0.000190 fx2(Mx2) = 0.000240 fx3(Mx3) = 0.000468

fx4(Mx4) = 0.004420 fx5(Mx5) = 0.000523 fx6(Mx6) = 0.000087 ρc1 = 0.84 ρc2 = 0.96

ρc3 = 0.84 ρc4 = 0.88 ρc5 = 0.88 ρc6 = 0.96

The results are given in Tables 7 and 8. From Table 7, we observed that the absolute

Table 7. Bias of di�erent estimators under strati�ed random sampling.

Estimator Population I Population II

M̂Rs 16.977 -35.781

M̂EXs -7.079 -20.569

M̂D1s -25.427 -15.952

M̂D2s -24.777 -9.186

M̂D3s -24.513 -13.930

M̂G
PPs -19.541 -6.001

bias for the proposed estimators M̂G
PPs is the smallest in most cases. In Table 8, M̂G

PPs

has the highest percent relative e�ciency as compared to all other estimators.
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Table 8. MSE and PRE of di�erent estimators with respect to M̂yst.

Estimator Population I Population II

MSE PRE MSE PRE

M̂ys 71075.12 100.000 5160.74 100.000

M̂Rs 16174.55 439.426 3477.74 148.393

M̂EXs 25510.05 278.616 4228.89 122.044

M̂Ds 14938.38 475.789 689.193 748.809

M̂D1s 14736.57 482.304 214.682 2403.900

M̂D2s 14716.18 482.973 88.916 5804.050

M̂D3s 14421.73 492.833 177.453 2908.220

M̂G
PPs 12597.10 564.218 31.969 16142.890

10. Conclusion

We have proposed a generalized class of di�erence type estimators for �nite population
median in both simple and strati�ed random sampling. Some well-known estimators are
particular members of the proposed classes of estimators. Numerical comparisons with
other estimators show that the proposed new class of estimators M̂G

PPs is more e�cient
both in simple and strati�ed random sampling.
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