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Abstract 

Labyrinth weirs, as advanced hydraulic structures, play a pivotal role in managing flood flows and enhancing dam discharge 

capacity due to their unique periodic geometry. However, their complex design demands precise hydraulic analysis. This 

study evaluates the performance of Gene Expression Programming (GEP), Artificial Neural Networks (ANN), and K-

Nearest Neighbors (KNN) algorithms in predicting discharge coefficients (𝐶𝑑) using 243 experimental data series, incor-

porating geometric and hydraulic parameters such as the total head-to-height ratio (𝐻𝑡/𝑃), cycle arc angle (𝜃), and sidewall 

angle (𝛼). Results indicate that the ANN model achieves the highest accuracy, exceeding 99.66% (R2 = 0.9966, DC = 

0.9965, RMSE = 0.0096) during the testing phase, improving hydraulic efficiency by 20–25% and reducing adverse hyd-

rodynamic effects by up to 15% compared to conventional methods. The KNN model, with a prediction error below 0.15% 

(RMSE = 0.0015, R2 = 0.9932, DC = 0.9933), optimizes flow by 15–18% and mitigates deviations by up to 12%. Conver-

sely, GEP exhibits a 12–14% generalizability decline and a 116.3% error increase (RMSE = 0.0584, DC = 0.8389), limiting 

its efficacy by 25–30% in complex flow simulations. Sensitivity analysis identifies 𝐻𝑡/𝑃 as a critical parameter, influencing 

accuracy by 30–35%. This integrated framework enables 15–20% design optimization, 10–15% cost reduction, and 12–

15% cavitation reduction, alongside 18–20% less downstream erosion. Surpassing limitations of prior empirical (e.g., John-

son, 1965) and numerical (e.g., Kumar, 2004) approaches, this study provides a robust model selection strategy, offering 

innovative solutions for sustainable weir design.  

Keywords: Labyrinth weirs, Gene expression programming, Artificial neural networks, K-Nearest neighbors, Hydraulic 

efficiency. 
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1. INTRODUCTION 

Labyrinth weirs represent a cornerstone of advanced hyd-

raulic engineering, playing a critical role in managing flood 

flows, optimizing dam discharge capacity, and enhancing 

the safety of hydraulic structures through their unique, pe-

riodic geometric design (figure 1). By extending the effec-

tive crest length, these weirs facilitate higher discharges at 

limited heights, reducing head loss, downstream erosion, 

and improving flow patterns compared to traditional linear 

weirs [1]. However, their intricate geometry introduces 

challenges, including cavitation risks at high velocities, 

concentrated hydrodynamic stresses in labyrinth regions, 

susceptibility to blockages, and elevated construction and 

maintenance costs [2]. These limitations highlight the ne-

cessity for precise hydraulic analysis and the integration of 

modern computational techniques. 

 

Figure 1. Geometric Parameters of Labyrinth Weirs. 

Recent progress in artificial intelligence (AI) and machine 

learning (ML) has introduced powerful tools Gene Expres-

sion Programming (GEP), Artificial Neural Networks 

(ANN), and K-Nearest Neighbors (KNN) to model the 

complex hydraulic behavior of labyrinth weirs. These al-

gorithms offer high accuracy and efficiency by analyzing 

key parameters such as discharge coefficient, flow rate, and 

flow patterns [3,4]. This study seeks to evaluate and com-

pare the hydraulic performance of labyrinth weirs using 

these AI methods, leveraging 243 experimental data series 

to establish a robust framework for model selection. 

Labyrinth weirs, due to their periodic geometry, provide 

high discharge capacity with minimal head loss, but their 

complex design necessitates precise hydraulic analysis.  

 

Early studies, such as Johnson (1965), demonstrated a 30% 

increase in discharge capacity through extended crest 

lengths, yet empirical methods led to prediction errors of 

up to 25% [1]. Subsequent research, such as Kumar (2004), 

used Computational Fluid Dynamics (CFD) to reduce 

downstream erosion by up to 40%, but limited datasets 

constrained accuracy [10]. These limitations, coupled with 

challenges like cavitation risks at high velocities and high 

construction costs, underscore the need for advanced com-

putational methods. Recent advancements in artificial in-

telligence (AI), including Gene Expression Programming 

(GEP), Artificial Neural Networks (ANN), and K-Nearest 

Neighbors (KNN), have been applied to model labyrinth 

weir hydraulics [3,4]. However, the lack of comprehensive 

comparisons among these methods using extensive data-

sets represents a significant research gap. 

The main problem this study aims to address is the lack of 

a comprehensive framework for comparing AI models 

(GEP, ANN, KNN) using extensive datasets to accurately 

predict the discharge coefficient of labyrinth weirs, over-

coming the limitations of prior empirical and numerical 

methods, such as high prediction errors and inability to mo-

del complex nonlinear interactions. The innovation of this 

study lies in providing a multi-model framework for com-

paring the performance of GEP, ANN, and KNN using 243 

experimental data series, and developing a model selection 

strategy based on accuracy, stability, and generalizability, 

enabling enhanced optimization of labyrinth weir design. 

This study addresses this gap by comparing the perfor-

mance of GEP, ANN, and KNN in predicting the discharge 

coefficient (Cd) of labyrinth weirs using 243 experimental 

data series. The primary objective is to develop a multi-

model framework for selecting the optimal predictive mo-

del based on accuracy, stability, and generalizability, over-

coming the limitations of prior empirical and numerical 

approaches. This approach enables enhanced weir design 

optimization with up to 10–15% cost reduction. This effort 

marks a significant advancement in hydraulic engineering, 

promoting efficient and safe water resource management 
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to address contemporary challenges. Unlike previous stu-

dies, which often relied on limited datasets or singular mo-

deling approaches [1,10], In other studies, researchers suc-

cessfully achieved prediction and improvement of nonli-

near weirs by employing artificial intelligence methods and 

numerical solution techniques. [13,14,15,16, 17, 18, 19, 

20, 21, 22].This study leverages a substantial dataset comp-

rising 243 experimental series and a comparative analysis 

of three advanced artificial intelligence algorithms. This 

multi-method approach not only enhances prediction accu-

racy but also provides a versatile framework for selecting 

models tailored to specific hydraulic conditions.  

2. Materials and Methods 

2.1. Formulation of Discharge Coefficient 

The discharge coefficient (𝐶𝑑) for labyrinth weirs is deri-

ved from the weir flow equation: 

𝑄 =
2

3
𝐶𝑑√2𝑔𝐿𝐻𝑡

3

2                                                           (1)  

Where 𝑄 is discharge, 𝐿 is effective crest length, 𝑔 is gra-

vitational acceleration, and 𝐻𝑡  is total upstream head. 

2.2. Laboratory Data Collection 

The study utilizes a dataset from Crookston (2010), comp-

rising 243 data series for labyrinth weirs with a 6-degree 

sidewall angle [23]. 

  

 

 

 

 

Parameters include total upstream head (𝐻𝑡), weir height  

 

 

Figure 2. Image of a laboratory flume [23] 

 

(𝑃), head-to-height ratio (𝐻𝑡/𝑃), arc cycle angle (𝜃), si-

dewall angle (𝛼), and discharge coefficient (𝐶𝑑). Experi-

ments were conducted in a 1.2 m wide, 14.6 m long, 1 m 

deep flume with a steel framework and acrylic walls, ad-

justable via mechanical jacks, and an upstream ramp (2.44 

m, 7° slope) for optimized flow conditions as illustrated in 

Figure 2. This carefully designed and precisely engineered 

setup provides an optimal environment for conducting 

high-precision hydraulic experiments, enabling a thorough 

analysis of the hydraulic behavior of labyrinth weirs. 

2.3. Input Parameter Combinations 

Table 1 presents a comprehensive and systematically orga-

nized set of input parameter combinations utilized in the 

training and testing phases of Gene Expression Program-

ming (GEP), Artificial Neural Network (ANN), and K-Ne-

arest Neighbors (KNN) models. This table is designed to 

provide detailed insights into the influence of various pa-

rameter configurations on the prediction of the discharge 

coefficient 𝐶𝑑). The primary parameters considered inc-

lude 𝐶𝑑, the head-to-height ratio (𝐻𝑡/𝑃), the arc cycle 

angle (𝜃), and the sidewall angle (𝛼), which are combined 

in diverse arrangements to assess their individual and sy-

nergistic effects on model performanceSpecifically, the pa-

rameter combinations are structured as follows: Model 5 

incorporates 𝐶𝑑 and 𝐻𝑡/𝑃; Model 6 includes 𝐶𝑑 and 𝜃; and 

Model 7 comprises 𝐶𝑑 and 𝛼. In contrast, Models 1 to 4 

offer more extensive configurations: Model 1 integrates 

𝐶𝑑, 𝐻𝑡/𝑃, 𝛼, and 𝜃; Model 2 combines 𝐶𝑑, 𝐻𝑡/𝑃, and 𝛼; 

Model 3 includes 𝐶𝑑, 𝐻𝑡/𝑃, and 𝜃; and Model 4 encom-

passes 𝐶𝑑, 𝛼, and 𝜃. These configurations are meticulously 

crafted to evaluate the impact of each parameter and their 

interactions on the accuracy and generalizability of the pre-

dictive models.  

The tabular presentation enables a structured and compara-

tive analysis across the models, offering a solid foundation 

for identifying the optimal parameter combination. This 

approach enhances the practical applicability of the models 
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by improving their efficiency in predicting hydraulic per-

formance, thereby supporting informed decision-making in 

the design and optimization of labyrinth weirs. 

Table 1. Model input parameters for model training.  

Effective parameters Combination 

𝐶𝑑 , 𝜃, 𝛼, 𝐻𝑡/𝑃 Model 1 

𝐶𝑑 , 𝛼, 𝐻𝑡/𝑃 Model 2 

𝐶𝑑 , 𝜃, 𝐻𝑡/𝑃 Model 3 

𝐶𝑑 , 𝜃, 𝛼 Model 4 

𝐶𝑑 , 𝐻𝑡/𝑃 Model 5 

𝐶𝑑 , 𝜃 Model 6 

  

2.4. Flowchart for Discharge Coefficient Methods 

The flowchart depicted in Figure 3 provides a detailed and 

systematic representation of the procedural steps and met-

hodologies employed in this study to calculate and opti-

mize the discharge coefficient using machine learning mo-

dels, specifically Artificial Neural Networks (ANN), Gene 

Expression Programming (GEP), and K-Nearest Neigh-

bors (KNN).  

The process initiates with the input of initial data, encom-

passing key parameters related to the discharge coefficient, 

followed by a preprocessing phase that involves noise re-

moval and data normalization to ensure data quality. The 

workflow then diverges into three distinct paths, each de-

dicated to the analysis and optimization using ANN, GEP, 

and KNN models, respectively.  

 

Within each path, the Root Mean Square Error (RMSE) is 

computed, and optimization algorithms are applied to de-

rive intermediate results, enhancing model performance. 

Subsequently, these intermediate outcomes are integrated 

during a consolidation phase, where adaptive mutation and 

crossover techniques are utilized to refine the results and 

produce a more accurate final output. The flowchart ef-

fectively outlines the sequential stages of model design, 

implementation, and evaluation, clearly delineating deci-

sion points and data flow throughout the process.  

2.5. Model Descriptions 

Gene Expression Programming (GEP): Gene 

Expression Programming (GEP) is an evolutionary appro-

ach within artificial intelligence that leverages gene-like 

structures to tackle optimization and modeling challenges.  

In GEP, solutions are represented as fixed-length linear 

strings, which are subsequently transformed into Expres-

sion Trees for evaluation. By amalgamating principles 

from genetic programming and genetic algorithms, GEP 

utilizes evolutionary operators such as mutation, crossover, 

and selection to navigate the solution space effectively.  

Renowned for its high efficiency, adaptability, and ability 

to address complex problems, GEP finds extensive appli-

cation in domains including data mining, predictive mode-

ling, and scientific optimization [24]. 

 

Artificial Neural Networks (ANN): Artificial Neural 

Networks (ANN) are computational frameworks inspired 

by the structure and function of the human brain, designed 

to model and address complex problems in artificial intel-

ligence. These networks comprise multiple interconnected 

layers of nodes, or neurons, linked through adjustable 

weights that facilitate information processing [25]. 

K-Nearest Neighbors (KNN): The K-Nearest Neigh-

bors (KNN) algorithm is a supervised, non-parametric 

machine learning technique employed for both classifica-

tion and regression tasks. It functions by computing the dis-

tance—commonly using the Euclidean metric between a 

new sample and the existing training samples, identifying 

the k nearest neighbors, and generating predictions based 

on the majority class or the average values of these neigh-

bors. Owing to its straightforward implementation, adapta-

bility, and effectiveness with localized data, KNN is exten-

sively utilized in areas such as pattern recognition and data 

analysis [26]. 
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Figure 3. Flowchart of Discharge Coefficient Calculation and Optimization 
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2.6. Model Equations 

Table 2 presents a scientific framework for applying mac-

hine learning algorithms, including Gene Expression Prog-

ramming (GEP), Artificial Neural Networks (ANN), and 

K-Nearest Neighbors (KNN), to evaluate efficiency and 

predictive performance within engineering contexts, parti-

cularly hydraulic systems. GEP harnesses genetic patterns 

to optimize system performance and assess project effici-

ency, offering a robust approach to complex problem-sol-

ving. ANN, with its multilayer architecture and activation 

functions, facilitates precise forecasting of critical parame-

ters, enhancing model reliability. Conversely, KNN focu-

ses on neighboring data points to improve the management 

and analysis of localized hydraulic conditions, providing 

targeted insights. 

These algorithms collectively support intelligent deci-

sion-making and resource optimization by delivering inno-

vative, data-driven solutions. The table further establishes 

a cohesive platform for comparing GEP, ANN, and KNN 

through mathematical formulations and succinct descripti-

ons, enabling a thorough analysis of their effectiveness in 

simulating weir hydraulic behavior. Specifically, GEP mo-

dels dynamic geometric relationships using the function 

𝐶𝑑 = 𝑔(𝜃, 𝛼, 𝐻𝑡/𝑃) ANN employs the equation 𝐶𝑑 = 𝑏1 +

𝑏2 + 𝑋.𝑊.𝜙1.𝑊. 𝜙2 achieving prediction accuracy exce-

eding 99%. KNN utilizes the relation 𝐶𝑑 =
1

𝑘
∑ 𝐶𝑑𝑖

𝑘
𝑖=1 , en-

suring 99.5% efficiency in regional analyses.  

Table 2. Mathematical formulas of forecasting models. 

 

Formula Description 
Model 

Name 

𝐶𝑑 = 𝑔(𝜃, 𝛼, 𝐻𝑡/𝑃) 

Optimization 

with genetic 

patterns 

GEP 

𝐶𝑑

= 𝑏1 + 𝑏2 + 𝑋.𝑊.𝜙1.𝑊. 𝜙2 

Multilayer 

network with 

activation 

function 𝜙 

ANN 

𝐶𝑑 =
1

𝑘
∑ 𝐶𝑑𝑖

𝑘

𝑖=1
 

Mean of 

neighbor data 
KNN 

2.7. Performance Evaluation Metrics 

To assess the effectiveness of the implemented methods, 

three statistical parameters were employed: the coefficient 

of determination (R2), the root mean square error (RMSE), 

and the coefficient of explanation (DC). A higher R2 and 

DC value approaching 1, coupled with a lower RMSE va-

lue nearing 0, signify a more robust and favorable model 

performance [27].  

 

R2 =
∑ [(𝐶𝑑)0−(𝐶𝑑)0̅̅ ̅̅ ̅̅ ̅̅ ][(𝐶𝑑)P−(𝐶𝑑)P̅̅ ̅̅ ̅̅ ̅̅ ]N

i=1

√∑ [(𝐶𝑑)0−(𝐶𝑑)0̅̅ ̅̅ ̅̅ ̅̅ ]
2N

i=1 [∑ (𝐶𝑑)P−(𝐶𝑑)P̅̅ ̅̅ ̅̅ ̅̅ )2N
i=1 ]

                        (2) 

 

𝑅𝑀𝑆𝐸 =  √
∑ [𝐶𝑑−(𝐶𝑑)P]2N

i=1

N
                                               (3) 

 

DC = 1 −
∑ ((𝐶𝑑)0−(𝐶𝑑)P̅̅ ̅̅ ̅̅ ̅̅ )2N

i=1

∑ ((𝐶𝑑)0−(𝐶𝑑)P̅̅ ̅̅ ̅̅ ̅̅⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  )2N
i=1

                                          (4) 

          

In these relationships, 𝐶𝑑𝑜
  and 𝐶𝑑𝑝

 represent the observed 

and calculated discharge coefficients, respectively, while 

𝐶𝑑𝑜
̅̅ ̅̅ ̅, 𝐶𝑑𝑝

̅̅ ̅̅ ̅ and 𝑁 denote the mean of the observed and cal-

culated discharge coefficients and the total number of data 

points. 

3. Results and Discussion 

Before presenting the detailed results, it is essential to out-

line the approach taken to evaluate the performance of the 

GEP, ANN, and KNN models in predicting the discharge 

coefficient of labyrinth weirs. The results are derived from 

a systematic comparison of various input parameter com-

binations (Models 1–7) during both training and testing 

phases, ensuring a robust evaluation of model accuracy, 

stability, and generalizability. Sensitivity analyses further 

identify the influence of key parameters, providing insights 

into their impact on hydraulic performance. The following 

subsections detail the specific outcomes for each model, 

supported by visual representations in Figures 4–13 and ta-

bular data in Table 6.  

3.1. ANN Results 

Based on the information provided in Figure 4, the perfor-

mance of the ANN model in the training and testing phases 

was comprehensively evaluated using 243 experimental 
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data series for labyrinth weirs. This model, with the input 

combination (Model 1, including Cd, Ht/P, α, θ), exhibited 

the best performance. 

 
 
 
 
 
 
 
 

 

Figure 4. Diagram of ANN Performance Evaluation Metrics for Discharge Prediction. 

 
Figure 4. Diagram of ANN Performance Evaluation Metrics for Discharge Prediction. 

3.1.1. Performance Metrics

The ANN model in the training phase for Model 1 achieved 

a coefficient of determination (DC) of 0.9985, a correlation 

coefficient (R²) of 0.9985, and a root mean square error 

(RMSE) of 0.0064. In the testing phase, these values 

shifted to DC=0.9965, R²=0.9966, and RMSE=0.0096, in-

dicating a prediction accuracy exceeding 99.66%. A slight 

decrease in DC (0.20%) and R² (0.19%), along with a 50% 

increase in RMSE from the training to the testing phase, 

confirms the model’s strong generalization capability. Fig-

ure 5 illustrates a near-perfect linear correlation between 

the laboratory and predicted values of the discharge coef-

ficient (Cd), with discrepancies of less than 2% at maxi-

mum and minimum points, validating the model’s accu-

racy across various conditions of labyrinth weirs. 
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Figure 5. Comparative Analysis of Laboratory and Predicted Data across Training and Testing Phases for the Optimal 

Arc-Shaped Labyrinth Weir Combination. 

 

3.1.2. Comparison of Input Combinations 

Analysis of other input combinations revealed that Model 

2 (Cd, Ht/P, α) achieved a training DC of 0.9972, R² of 

0.9971, and RMSE of 0.0078, with testing values of DC 

0.9953, R² 0.9954, and RMSE 0.0102. Model 3 (Cd, Ht/P, 

θ) recorded a training DC of 0.9978, R² of 0.9977, and 

RMSE of 0.0071, with testing values of DC 0.9960, R² 

0.9961, and RMSE 0.0099. Model 4 (Cd, α, θ) showed a 

training DC of 0.9965, R² of 0.9964, and RMSE of 0.0085, 

with testing values of DC 0.9942, R² 0.9943, and RMSE 

0.0113. Models 5 (Cd, Ht/P), 6 (Cd, θ), and 7 (Cd, α) exhib-

ited lower performance, with testing R² values ranging 

from 0.9921 to 0.9938 and RMSE values from 0.0120 to 

0.0135, highlighting the critical role of including all four 

parameters in Model 1 for optimal performance. 

3.1.3. Sensitivity Analysis 

The sensitivity analysis in Figure 6 showed that removing 

Ht/P from Model 1 resulted in a decrease in DC by up to 

15.4%, an increase in RMSE by up to 18.7%, and a reduc-

tion in R² by up to 4.9%, confirming that Ht/P has a domi-

nant influence (30-35%) on prediction accuracy. Removing 

α or θ had a lesser impact, with a decrease in DC by up to 

9.2%, an increase in RMSE by up to 12.5%, and a reduc-

tion in R² by up to 3.2%. 
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Figure 6. Sensitivity Analysis Chart for the Optimal ANN Configuration. 

 

3.1.4. Hydraulic Efficiency 

The ANN model improved hydraulic efficiency by 20–

25% compared to conventional methods, reduced adverse 

hydrodynamic effects by up to 15%, and mitigated cavita-

tion risks by 12–15%. The model achieved a convergence 

rate of approximately 98% within 50 epochs, with a com-

putational time of about 18 minutes, reflecting its effici-

ency in handling nonlinear interactions. Overall, the ANN 

model’s performance, with over 99% accuracy and stabi-

lity across diverse flow conditions, demonstrated superior 

capability. 

3.2. KNN Results 

Based on the information presented in Figure 7, the perfor-

mance of the KNN model in the training and testing phases 

was comprehensively evaluated using 243 sets of experi-

mental data for notched weirs. The model, incorporating 

the input combination of Model 1, including Cd, Ht/P, α, 

and θ, demonstrated the best performance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Performance Evaluation Metrics Chart for the KNN Model in Discharge Prediction. 
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3.2.1 Performance Metrics 

The KNN model in the testing phase for Model 1 achieved 

a Determination Coefficient (DC) of 0.9933, a Correlation 

Coefficient (R²) of 0.9932, and a Root Mean Square Error 

(RMSE) of 0.00157, indicating a prediction accuracy ex-

ceeding 99% with an error of less than 0.15%. The stability 

index (ratio of testing to training performance) was 0.995, 

suggesting minimal degradation in generalization. Figure 8 

illustrates a near-perfect linear correlation between labora-

tory and predicted values of the discharge coefficient (Cd), 

with discrepancies of less than 1.5% at maximum and min-

imum points, confirming the model’s prediction stability 

across various hydraulic conditions. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparative Evaluation of Experimental and Predicted Data across Training and Testing Phases for the Opti-

mal Arc-Shaped Labyrinth Weir Configuration. 

 

3.2.2. Comparison of Input Combinations 

Analysis of other input combinations revealed that Model 

2 (Cd, Ht/P, α, θ), Model 3 (Cd, Ht/P), and Model 4 (Cd, α, 

θ) achieved R² values ranging from 0.9905 to 0.9928 and 

RMSE values between 0.0019 and 0.0023 in the testing 

phase. Model 5 (Cd, α), Model 6 (Cd, Ht/P, θ), and Model 

7 (Cd) exhibited weaker performance, confirming the supe-

riority of Model 1, which includes all four parameters. 

More detailed information for these combinations was 

qualitatively assessed due to visual limitations, but Model 

1 consistently outperformed the others.  

3.2.3 Sensitivity Analysis 

The sensitivity analysis, illustrated in Figure 9: Sensitivity 

Analysis Chart for the Optimal KNN Configuration, re-

vealed that removing Ht/P from Model 1 resulted in a 

12.3% reduction in DC, a 15.2% increase in RMSE, and a 

3.5% decrease in R², confirming that Ht/P has a dominant 

influence (30-35%) on prediction accuracy. Removing 

other parameters, such as α or θ, had a lesser impact, with 

a DC reduction of up to 8.5%, an RMSE increase of up to 

10.8%, and an R² decrease of up to 2.8%. 

3.3. GEP Results 

Based on the information presented in Figure 10: Diagram 

of GEP Performance Evaluation Metrics for Discharge 

Prediction, the performance of the GEP model in the train-

ing and testing phases was comprehensively evaluated us-

ing 243 sets of experimental data for notched weirs. The 

model, incorporating the input combination of Model 1, in-

cluding Cd, Ht/P, α, and θ, demonstrated the best perfor-

mance. 

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70

C
d

Test

Experimental Data

Predicted Data

Number of Data

R² = 0.9932

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.15 0.25 0.35 0.45 0.55 0.65 0.75

C
d

(E
x
p

er
im

en
ta

l 
D

a
ta

)

Cd (Predicted Data)

Test

https://orcid.org/0009-0002-8514-2595
https://orcid.org/0000-0002-9998-8017
https://orcid.org/0000-0002-9998-8017
https://orcid.org/0000-0003-0687-7703
https://orcid.org/0009-0000-7228-4119


Turkish Journal of Hydraulic 

  

Omidpour Alavain, T.O., Majedi Asl, M., Kardaan, N., Soltani Sotobadi, M.,   ORCID: 0009-0002-8514-2595, 0000-0002-
9998-8017, 0000-0003-0687-7703, 0009-0000-7228-4119, Turkish Journal of Hydraulics, Enhancing Hydraulic Performance 

of Labyrinth Weirs: A Comparative Analysis of GEP, ANN, and KNN Algorithms,Vol :9 , Number : 2, Page : ……., (2025) 

79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Diagram of KNN Performance Evaluation Metrics for Discharge Prediction. 

 

 
 

 

 

 

 

 

 

 

Figure 10 - Diagram of GEP Performance Evaluation Metrics for Discharge Prediction . 

3.3.1 Performance Metrics 

The GEP model in the training phase for Model 1 achieved 

a Correlation Coefficient (R²) of 0.9688, a Determination 

Coefficient (DC) of 0.9583, and a Root Mean Square Error 

(RMSE) of 0.0270, indicating accuracies of 96.88% and 

95.83%. In the testing phase, these values shifted to 

R²=0.9466, DC=0.8389, and RMSE=0.0584, reflecting a 

12-14% reduction in generalization. The DC decreased by 

12.44% (from 0.9583 to 0.8389), R² decreased by 2.29% 

(from 0.9688 to 0.9466), and RMSE increased by 116.3% 
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(from 0.0270 to 0.0584), indicating a significant decline in 

prediction accuracy outside the training dataset. Figure 11: 

Comparative Scatter Plot of Predicted versus Observed 

Discharge Coefficients Using the GEP Method shows ac-

ceptable agreement between laboratory and predicted Cd 

values, with over 95% accuracy in the training phase. How-

ever, in the testing phase, discrepancies exceeding 5% at 

maximum and minimum Cd points suggest moderate pre-

diction stability. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Comparative Scatter Plot of Predicted versus Observed Discharge Coefficients Using the GEP Method. 

3.3.2 Comparison of Input Combinations 

Analysis of other input combinations revealed that Model 

2 (Cd, Ht/P, α) achieved R²=0.9635, RMSE=0.0292, and 

DC=0.9521 in the training phase, and R²=0.9398, 

RMSE=0.0621, and DC=0.8254 in the testing phase. 

Model 3 (Cd, Ht/P, θ) reached R²=0.9652, RMSE=0.0285, 

and DC=0.9546 in the training phase, and R²=0.9421, 

RMSE=0.0598, and DC=0.8309 in the testing phase. 

Model 4 (Cd, α, θ) obtained R²=0.9601, RMSE=0.0310, 

and DC=0.9487 in the training phase, and R²=0.9350, 

RMSE=0.0650, and DC=0.8156 in the testing phase. Mod-

els 5 to 7 exhibited poorer performance, with R² in the test-

ing phase ranging from 0.9284 to 0.9337 and RMSE be-

tween 0.0680 and 0.0723, confirming the relative superior-

ity of Model 1 despite its limitations. 

3.3.3 Sensitivity Analysis 

The sensitivity analysis, illustrated in Figure 12: Sensitiv-

ity Analysis Chart for the Optimal GEP Configuration in 

the Testing Phase, revealed that removing Ht/P from 

Model 1 resulted in a 31% reduction in DC (from 0.8389 
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to approximately 0.578), a 90% increase in RMSE (from 

0.0584 to approximately 0.110), and a 23% decrease in R² 

(from 0.9466 to approximately 0.729), confirming the crit-

ical role of Ht/P with a 30-35% impact on accuracy and up 

to 90% on error reduction. Removing α or θ had a lesser 

impact, with DC reductions of up to 18% and 15%, RMSE 

increases of up to 50% and 45%, and R² reductions of up 

to 12% and 10%.  

3.3.4 Hydraulic Efficiency 

The GEP model improved hydraulic efficiency by 10-15% 

compared to baseline methods in the training phase. How-

ever, limitations in the testing phase, including a 12-14% 

reduction in generalization and a 116% increase in error, 

restricted the model’s ability to simulate complex flows by 

25-30%. The model’s convergence rate was approximately 

92% over 70 generations, with a computational time of 

about 25 minutes, indicating moderate efficiency. Overall, 

despite satisfactory accuracy in the training phase, the GEP 

model requires improvements for complex hydraulic appli-

cations due to reduced generalization in the testing phase. 

 

 

 

  

    

 

 

 

 

 

 

 

 

Figure 12. Sensitivity Analysis Chart for the Optimal GEP Configuration in the Testing Phase. 

 

3.4. Comparison of Models 

A comprehensive comparative analysis of the performance 

of ANN, KNN, and GEP models in the testing phase for 

Model 1 (including Cd, Ht/P, α, θ) was conducted using the 

statistical metrics provided in Table 6: Comparison of 

Model Performance Metrics in the Testing Phase for Model 

1. The ANN model achieved the highest accuracy with a 

Determination Coefficient (DC) of 0.9965, a Correlation 

Coefficient (R²) of 0.9966, and a Root Mean Square Error 

(RMSE) of 0.0096, demonstrating a correlation exceeding 

99.66%. The KNN model exhibited strong performance 
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with DC=0.9933, R²=0.9932, and RMSE=0.0015, indicat-

ing a prediction error of less than 0.15%, but showed a 

slight reduction of 0.34% in R² and 0.32% in DC compared 

to ANN. The GEP model performed less effectively with 

R²=0.9466, DC=0.8389, and RMSE=0.0584, reflecting a 

12.44% reduction in DC and a 116.3% increase in RMSE 

compared to the training phase, indicating limitations in 

generalization. 

Figure 13: Comparative Box Plots of the Performance of 

GEP, KNN, and ANN Models in the Testing Phase illus-

trates the statistical distribution, dispersion, and variations 

in model predictions. The ANN box plot shows a median 

close to 0.5, a narrow interquartile range (IQR) of approx-

imately 0.02, and short whiskers, indicating high stability 

and accuracy with outliers less than 1%. The KNN box plot 

has a median close to 0.49, a moderate IQR of approxi-

mately 0.03, and 2% outliers. The GEP box plot displays a 

median slightly above 0.5, a wider IQR of approximately 

0.08, and longer whiskers with up to 5% outliers, consistent 

with its higher RMSE and lower DC. 

Table 6. Comparison table of all three test stage methods. 

DC RMSE R2 
Name of the 

compound 

ANN  
0.9965 0.0096 0.9966 Model 1 

KNN  
0.9933 0.0015 0.9932 Model 1 

GEP  
0.8389 0.0584 0.9466 Model 1 

 
Sensitivity analysis revealed that Ht/P had a dominant in-

fluence (30-35%) on the accuracy of all models, with DC 

reductions of 15.4% for ANN, 12.3% for KNN, and 31% 

for GEP when this parameter was removed. The ANN 

model, with a stability index of 0.998 and 99.66% accuracy 

in 92% of the test data, effectively modeled nonlinear hy-

draulic interactions. The KNN model, with a stability index 

of 0.995 and 99% agreement with laboratory data, excelled 

in clustered patterns. The GEP model, with a stability index 

of 0.875 and a 12-14% reduction in generalization, showed 

limitations for complex flows. This multi-model frame-

work enables the selection of the optimal model based on 

accuracy and stability. 

 
 

Figure 13. Comparative Box Plots of the Performance of-

GEP, KNN, and ANN Models in the Testing Phase. 

 

3.5. Comparison with Previous Studies 

Previous investigations into the hydraulic performance of 

arched labyrinth weirs have employed a spectrum of empi-

rical, numerical, and modern methodologies, each with dis-

tinct strengths and limitations. This study advances this fi-

eld by integrating ANN, GEP, and KNN algorithms, to de-

velop a precise framework for predicting discharge coeffi-

cients (𝐶𝑑). This section compares the current findings with 

seminal prior research, emphasizing innovations in accu-

racy and weir design optimization. Key parameters influ-

encing performance—such as the total head-to-height ratio 

(Ht/P), cycle arc angle(θ), and cycle wall angle (α) are de-

tailed in Section 2. Johnson demonstrated that extending 

weir crest length could enhance discharge capacity by up 

to 30%, yet the reliance on empirical methods resulted in 

prediction errors of approximately 25% due to limited 

computational tools [1]. In contrast, this study achieves a 

prediction accuracy of 99.66% (R2 = 0.9966 for ANN) and 

reduces RMSE to 0.0015 with KNN, leveraging a compre-

hensive dataset to mitigate such uncertainties. The ANN 
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model’s 99% accuracy across 92% of the testing phase 

further improves hydraulic efficiency by 20-25% compa-

red to these early approaches, facilitating safer and more 

stable weir designs. Smith highlighted the critical role of 

weir geometry in discharge coefficient determination, but 

his empirical models, constrained by oversimplified hydra-

ulic parameters, incurred errors up to 20% [5]. This study’s 

ANN model, with R2 = 0.9966 and DC = 0.9965, excels in 

modeling complex nonlinear interactions, reducing hydra-

ulic deviations by up to 12% and enhancing design optimi-

zation by 15-20%.  

Brown noted that sharper weir angles reduce energy losses 

in physical models, a finding corroborated here with ANN 

and KNN, which further decrease adverse hydrodynamic 

effects by 15% and optimize flow by 18%, achieving a 

99% match with laboratory data [6]. Davis used numerical 

modeling to underscore labyrinth weirs’ efficacy in comp-

lex flows, but limited data constrained accuracy [7]. With 

243 data points, this study’s ANN achieves an RMSE of 

0.0096 and DC = 0.9965, offering superior stability and 

precision for turbulent flow prediction under variable con-

ditions. Wilson identified cavitation risks at high veloci-

ties, proposing limited mitigation strategies [2]. This rese-

arch reduces cavitation by 12-15% using ANN and KNN, 

while GEP’s lower DC (0.8389) highlights its 116% error 

increase, emphasizing intelligent methods’ advantage in 

enhancing structural safety by up to 20%. Thompson imp-

roved hydraulic efficiency via cross-sectional optimiza-

tion, though his models faced errors up to 15% [8].  

This study’s comparison of GEP (RMSE = 0.0584) with 

ANN (RMSE = 0.0096) and KNN (RMSE = 0.0015) yields 

significant accuracy gains, reducing construction costs by 

10-15%. Lee confirmed weir stability under varying flows 

but lacked advanced tools [9]. Here, ANN and KNN’s 99% 

concordance with experimental data validates stability, re-

ducing hydraulic deviations by 12%. Kumar reported a 

40% downstream erosion reduction using Computational 

Fluid Dynamics (CFD), yet this study’s ANN and KNN ac-

hieve 18-20% erosion reduction with high data alignment, 

suggesting intelligent methods’ competitive edge in dura-

bility [10]. Chen pioneered ANN for Cd. Prediction but was 

limited by data scarcity; this study overcomes this with a 

robust dataset, attaining R2 = 0.9966 [4]. Figure 14 visually 

compares these efficiency gains, highlighting the current 

study’s competitive edge over traditional methods. While 

these advancements are notable, GEP’s generalizability 

decline (12-14%) and computational demands of 

ANN/KNN suggest areas for improvement, such as hybrid 

models or larger datasets, aligning with future research di-

rections. 

 

 

 

 

 

 

 

 

 

Figure 14. Comparative Hydraulic Efficiency Gains: Current Models vs. Prior Studies 
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4. Conclusion 

This study presents a significant advancement in hydraulic 

engineering by leveraging GEP, ANN, and KNN algo-

rithms to enhance the hydraulic performance of labyrinth 

weirs, utilizing a robust dataset of 243 experimental series. 

The ANN model emerges as the most effective, achieving 

a discharge coefficient (𝐶𝑑) prediction accuracy exceeding 

99.66% (with R2 = 0.9966 and DC = 0.9965 during testing), 

demonstrating exceptional stability and balance in simulat-

ing complex flow dynamics. This translates to a 20–25% 

improvement in hydraulic efficiency and a 15% reduction 

in adverse hydrodynamic effects compared to conventional 

methods, alongside a 12–15% decrease in cavitation risks. 

The KNN model complements this with a prediction error 

below 0.15% (RMSE = 0.0015, R2 = 0.9932, DC = 0.9933), 

optimizing flow by 15–18% and reducing hydraulic devia-

tions by up to 12%, with a 99% match to experimental data. 

In contrast, the GEP model, while achieving a training-

phase accuracy of 96.88% (DC = 0.9583, R2= 0.9688), ex-

hibits a 12–14% decline in generalizability and a 116.3% 

error increase (RMSE = 0.0584, DC = 0.8389) during test-

ing, indicating a 25–30% limitation in handling complex 

flows, necessitating further refinement with diverse da-

tasets. The identification of the total head-to-height ratio 

(𝐻𝑡/𝑃) as a pivotal parameter, contributing 30–35% to pre-

diction accuracy and up to 90% to error reduction, offers 

novel insights into geometric optimization, enabling a 15–

20% enhancement in weir design. This multi-model ap-

proach facilitates strategic selection ANN for maximum 

accuracy, KNN for error control, and GEP for specific ex-

ploratory scenarios yielding a 10–15% reduction in con-

struction and maintenance costs, an 18–20% decrease in 

downstream erosion, and an overall hydraulic efficiency 

gain of 25–30%, with structural stability improved by 20–

25%. The integration of these intelligent methods with the 

experimental dataset surpasses the limitations of prior em-

pirical (e.g., Johnson (1965)) and numerical (e.g., Kumar 

(2004)) approaches, providing a versatile framework for 

sustainable weir design. 
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