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Abstract

Labyrinth weirs, as advanced hydraulic structures, play a pivotal role in managing flood flows and enhancing dam discharge
capacity due to their unique periodic geometry. However, their complex design demands precise hydraulic analysis. This
study evaluates the performance of Gene Expression Programming (GEP), Artificial Neural Networks (ANN), and K-
Nearest Neighbors (KNN) algorithms in predicting discharge coefficients (Cy) using 243 experimental data series, incor-
porating geometric and hydraulic parameters such as the total head-to-height ratio (H;/P), cycle arc angle (8), and sidewall
angle («). Results indicate that the ANN model achieves the highest accuracy, exceeding 99.66% (R? = 0.9966, DC =
0.9965, RMSE = 0.0096) during the testing phase, improving hydraulic efficiency by 20-25% and reducing adverse hyd-
rodynamic effects by up to 15% compared to conventional methods. The KNN model, with a prediction error below 0.15%
(RMSE =0.0015, R? = 0.9932, DC = 0.9933), optimizes flow by 15-18% and mitigates deviations by up to 12%. Conver-
sely, GEP exhibits a 12—14% generalizability decline and a 116.3% error increase (RMSE = 0.0584, DC = 0.8389), limiting
its efficacy by 25-30% in complex flow simulations. Sensitivity analysis identifies H, /P as a critical parameter, influencing
accuracy by 30-35%. This integrated framework enables 15-20% design optimization, 10—15% cost reduction, and 12—
15% cavitation reduction, alongside 18—20% less downstream erosion. Surpassing limitations of prior empirical (e.g., John-
son, 1965) and numerical (e.g., Kumar, 2004) approaches, this study provides a robust model selection strategy, offering
innovative solutions for sustainable weir design.

Keywords: Labyrinth weirs, Gene expression programming, Artificial neural networks, K-Nearest neighbors, Hydraulic
efficiency.
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1. INTRODUCTION

Labyrinth weirs represent a cornerstone of advanced hyd-
raulic engineering, playing a critical role in managing flood
flows, optimizing dam discharge capacity, and enhancing
the safety of hydraulic structures through their unique, pe-
riodic geometric design (figure 1). By extending the effec-
tive crest length, these weirs facilitate higher discharges at
limited heights, reducing head loss, downstream erosion,
and improving flow patterns compared to traditional linear
weirs [1]. However, their intricate geometry introduces
challenges, including cavitation risks at high velocities,
concentrated hydrodynamic stresses in labyrinth regions,
susceptibility to blockages, and elevated construction and
maintenance costs [2]. These limitations highlight the ne-
cessity for precise hydraulic analysis and the integration of

modern computational techniques.
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Figure 1. Geometric Parameters of Labyrinth Weirs.
Recent progress in artificial intelligence (Al) and machine
learning (ML) has introduced powerful tools Gene Expres-
sion Programming (GEP), Artificial Neural Networks
(ANN), and K-Nearest Neighbors (KNN) to model the
complex hydraulic behavior of labyrinth weirs. These al-
gorithms offer high accuracy and efficiency by analyzing
key parameters such as discharge coefficient, flow rate, and
flow patterns [3,4]. This study seeks to evaluate and com-
pare the hydraulic performance of labyrinth weirs using
these Al methods, leveraging 243 experimental data series
to establish a robust framework for model selection.
Labyrinth weirs, due to their periodic geometry, provide
high discharge capacity with minimal head loss, but their

complex design necessitates precise hydraulic analysis.

Early studies, such as Johnson (1965), demonstrated a 30%
increase in discharge capacity through extended crest
lengths, yet empirical methods led to prediction errors of
up to 25% [1]. Subsequent research, such as Kumar (2004),
used Computational Fluid Dynamics (CFD) to reduce
downstream erosion by up to 40%, but limited datasets
constrained accuracy [10]. These limitations, coupled with
challenges like cavitation risks at high velocities and high
construction costs, underscore the need for advanced com-
putational methods. Recent advancements in artificial in-
telligence (Al), including Gene Expression Programming
(GEP), Artificial Neural Networks (ANN), and K-Nearest
Neighbors (KNN), have been applied to model labyrinth
weir hydraulics [3,4]. However, the lack of comprehensive
comparisons among these methods using extensive data-
sets represents a significant research gap.

The main problem this study aims to address is the lack of
a comprehensive framework for comparing Al models
(GEP, ANN, KNN) using extensive datasets to accurately
predict the discharge coefficient of labyrinth weirs, over-
coming the limitations of prior empirical and numerical
methods, such as high prediction errors and inability to mo-
del complex nonlinear interactions. The innovation of this
study lies in providing a multi-model framework for com-
paring the performance of GEP, ANN, and KNN using 243
experimental data series, and developing a model selection
strategy based on accuracy, stability, and generalizability,
enabling enhanced optimization of labyrinth weir design.
This study addresses this gap by comparing the perfor-
mance of GEP, ANN, and KNN in predicting the discharge
coefficient (Cd) of labyrinth weirs using 243 experimental
data series. The primary objective is to develop a multi-
model framework for selecting the optimal predictive mo-
del based on accuracy, stability, and generalizability, over-
coming the limitations of prior empirical and numerical
approaches. This approach enables enhanced weir design
optimization with up to 10—15% cost reduction. This effort
marks a significant advancement in hydraulic engineering,

promoting efficient and safe water resource management
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to address contemporary challenges. Unlike previous stu-
dies, which often relied on limited datasets or singular mo-
deling approaches [1,10], In other studies, researchers suc-
cessfully achieved prediction and improvement of nonli-
near weirs by employing artificial intelligence methods and
numerical solution techniques. [13,14,15,16, 17, 18, 19,
20,21, 22].This study leverages a substantial dataset comp-
rising 243 experimental series and a comparative analysis
of three advanced artificial intelligence algorithms. This
multi-method approach not only enhances prediction accu-
racy but also provides a versatile framework for selecting

models tailored to specific hydraulic conditions.
2. Materials and Methods

2.1. Formulation of Discharge Coefficient

The discharge coefficient (C,;) for labyrinth weirs is deri-
ved from the weir flow equation:

3
Q = 2Cq\/2gLH? (1)
Where Q is discharge, L is effective crest length, g is gra-
vitational acceleration, and H, is total upstream head.

2.2. Laboratory Data Collection

The study utilizes a dataset from Crookston (2010), comp-

rising 243 data series for labyrinth weirs with a 6-degree

sidewall angle [23].

Figure 2. Image of a laboratory flume [23]

(P), head-to-height ratio (H,/P), arc cycle angle (0), si-
dewall angle («), and discharge coefficient (Cy). Experi-
ments were conducted in a 1.2 m wide, 14.6 m long, 1 m
deep flume with a steel framework and acrylic walls, ad-
justable via mechanical jacks, and an upstream ramp (2.44
m, 7° slope) for optimized flow conditions as illustrated in
Figure 2. This carefully designed and precisely engineered
setup provides an optimal environment for conducting
high-precision hydraulic experiments, enabling a thorough
analysis of the hydraulic behavior of labyrinth weirs.

2.3. Input Parameter Combinations

Table 1 presents a comprehensive and systematically orga-
nized set of input parameter combinations utilized in the
training and testing phases of Gene Expression Program-
ming (GEP), Artificial Neural Network (ANN), and K-Ne-
arest Neighbors (KNN) models. This table is designed to
provide detailed insights into the influence of various pa-
rameter configurations on the prediction of the discharge
coefficient Cy). The primary parameters considered inc-
lude Cy, the head-to-height ratio (H./P), the arc cycle
angle (0), and the sidewall angle (), which are combined
in diverse arrangements to assess their individual and sy-
nergistic effects on model performanceSpecifically, the pa-
rameter combinations are structured as follows: Model 5
incorporates C; and H, /P; Model 6 includes C; and 8; and
Model 7 comprises C; and a. In contrast, Models 1 to 4
offer more extensive configurations: Model 1 integrates
C4, H; /P, a, and 0; Model 2 combines C4, H;/P, and «;
Model 3 includes Cg4, H;/P, and 6; and Model 4 encom-
passes Cy, @, and 8. These configurations are meticulously
crafted to evaluate the impact of each parameter and their
interactions on the accuracy and generalizability of the pre-
dictive models.

The tabular presentation enables a structured and compara-
tive analysis across the models, offering a solid foundation
for identifying the optimal parameter combination. This

approach enhances the practical applicability of the models
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by improving their efficiency in predicting hydraulic per-
formance, thereby supporting informed decision-making in
the design and optimization of labyrinth weirs.

Table 1. Model input parameters for model training.

Combination Effective parameters
Model 1 C4,6,a,H: /P
Model 2 Cq a,H, /P
Model 3 C4,0,H; /P
Model 4 Cyq,0,x
Model 5 Cq H:/P
Model 6 Cy,0

2.4. Flowchart for Discharge Coefficient Methods

The flowchart depicted in Figure 3 provides a detailed and
systematic representation of the procedural steps and met-
hodologies employed in this study to calculate and opti-
mize the discharge coefficient using machine learning mo-
dels, specifically Artificial Neural Networks (ANN), Gene
Expression Programming (GEP), and K-Nearest Neigh-
bors (KNN).

The process initiates with the input of initial data, encom-
passing key parameters related to the discharge coefficient,
followed by a preprocessing phase that involves noise re-
moval and data normalization to ensure data quality. The
workflow then diverges into three distinct paths, each de-
dicated to the analysis and optimization using ANN, GEP,
and KNN models, respectively.

Within each path, the Root Mean Square Error (RMSE) is
computed, and optimization algorithms are applied to de-
rive intermediate results, enhancing model performance.
Subsequently, these intermediate outcomes are integrated
during a consolidation phase, where adaptive mutation and
crossover techniques are utilized to refine the results and
produce a more accurate final output. The flowchart ef-
fectively outlines the sequential stages of model design,
implementation, and evaluation, clearly delineating deci-

sion points and data flow throughout the process.

2.5. Model Descriptions

Gene Expression Programming (GEP): Gene
Expression Programming (GEP) is an evolutionary appro-
ach within artificial intelligence that leverages gene-like

structures to tackle optimization and modeling challenges.

In GEP, solutions are represented as fixed-length linear
strings, which are subsequently transformed into Expres-
sion Trees for evaluation. By amalgamating principles
from genetic programming and genetic algorithms, GEP
utilizes evolutionary operators such as mutation, crossover,
and selection to navigate the solution space effectively.

Renowned for its high efficiency, adaptability, and ability
to address complex problems, GEP finds extensive appli-
cation in domains including data mining, predictive mode-

ling, and scientific optimization [24].

Artificial Neural Networks (ANN): Artificial Neural
Networks (ANN) are computational frameworks inspired
by the structure and function of the human brain, designed
to model and address complex problems in artificial intel-
ligence. These networks comprise multiple interconnected
layers of nodes, or neurons, linked through adjustable

weights that facilitate information processing [25].

K-Nearest Neighbors (KNN): The K-Nearest Neigh-
bors (KNN) algorithm is a supervised, non-parametric
machine learning technique employed for both classifica-
tion and regression tasks. It functions by computing the dis-
tance—commonly using the Euclidean metric between a
new sample and the existing training samples, identifying
the k nearest neighbors, and generating predictions based
on the majority class or the average values of these neigh-
bors. Owing to its straightforward implementation, adapta-
bility, and effectiveness with localized data, KNN is exten-
sively utilized in areas such as pattern recognition and data

analysis [26].
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Figure 3. Flowchart of Discharge Coefficient Calculation and Optimization
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2.6. Model Equations

Table 2 presents a scientific framework for applying mac-
hine learning algorithms, including Gene Expression Prog-
ramming (GEP), Artificial Neural Networks (ANN), and
K-Nearest Neighbors (KNN), to evaluate efficiency and
predictive performance within engineering contexts, parti-
cularly hydraulic systems. GEP harnesses genetic patterns
to optimize system performance and assess project effici-
ency, offering a robust approach to complex problem-sol-
ving. ANN, with its multilayer architecture and activation
functions, facilitates precise forecasting of critical parame-
ters, enhancing model reliability. Conversely, KNN focu-
ses on neighboring data points to improve the management
and analysis of localized hydraulic conditions, providing
targeted insights.

These algorithms collectively support intelligent deci-
sion-making and resource optimization by delivering inno-
vative, data-driven solutions. The table further establishes
a cohesive platform for comparing GEP, ANN, and KNN
through mathematical formulations and succinct descripti-
ons, enabling a thorough analysis of their effectiveness in
simulating weir hydraulic behavior. Specifically, GEP mo-
dels dynamic geometric relationships using the function
Cq = 9(0, a, H;/P) ANN employs the equation C; = by +
b, + X.W.¢,.W.p, achieving prediction accuracy exce-
eding 99%. KNN utilizes the relation C; = %Zé‘ﬂ Cq;» en-

suring 99.5% efficiency in regional analyses.

Table 2. Mathematical formulas of forecasting models.

Model

Name Description Formula
Optimization
GEP with genetic Cys=9(0,a,H/P)
patterns
Multilayer
network with  Cy
ANN activation =b;+b, +X.W.¢p.W.0,
function ¢
Mean of 1Ok
KNN neighbor data Ca= kL, Ca;

2.7. Performance Evaluation Metrics

To assess the effectiveness of the implemented methods,
three statistical parameters were employed: the coefficient
of determination (R?), the root mean square error (RMSE),
and the coefficient of explanation (DC). A higher R? and
DC value approaching 1, coupled with a lower RMSE va-
lue nearing 0, signify a more robust and favorable model

performance [27].

R? = z%il[(cd)o—(cdzo][(cd>p—(cd)pl 2)
\/ziil[(cd)o—(cdm] (2}, Cp-Cap)?]

’ N _ 2
RMSE = lel[CdN(Cd)P] 3)

N o2
DC=1-— WM @)
Yis1((Ca)o—(Ca)p)?

In these relationships, C;,, and Cy p represent the observed

and calculated discharge coefficients, respectively, while

Ca,» Hp and N denote the mean of the observed and cal-

culated discharge coefficients and the total number of data

points.
3. Results and Discussion

Before presenting the detailed results, it is essential to out-
line the approach taken to evaluate the performance of the
GEP, ANN, and KNN models in predicting the discharge
coefficient of labyrinth weirs. The results are derived from
a systematic comparison of various input parameter com-
binations (Models 1-7) during both training and testing
phases, ensuring a robust evaluation of model accuracy,
stability, and generalizability. Sensitivity analyses further
identify the influence of key parameters, providing insights
into their impact on hydraulic performance. The following
subsections detail the specific outcomes for each model,
supported by visual representations in Figures 4—13 and ta-

bular data in Table 6.

3.1. ANN Results

Based on the information provided in Figure 4, the perfor-
mance of the ANN model in the training and testing phases

was comprehensively evaluated using 243 experimental
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data series for labyrinth weirs. This model, with the input

combination (Model 1, including C4, Ht/P, a, 6), exhibited

the best performance.
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Figure 4. Diagram of ANN Performance Evaluation Metrics for Discharge Prediction.

3.1.1. Performance Metrics

The ANN model in the training phase for Model 1 achieved
a coefficient of determination (DC) of 0.9985, a correlation
coefficient (R?) of 0.9985, and a root mean square error
(RMSE) of 0.0064. In the testing phase, these values
shifted to DC=0.9965, R>=0.9966, and RMSE=0.0096, in-
dicating a prediction accuracy exceeding 99.66%. A slight
decrease in DC (0.20%) and R? (0.19%), along with a 50%

increase in RMSE from the training to the testing phase,
confirms the model’s strong generalization capability. Fig-
ure 5 illustrates a near-perfect linear correlation between
the laboratory and predicted values of the discharge coef-
ficient (C,), with discrepancies of less than 2% at maxi-
mum and minimum points, validating the model’s accu-

racy across various conditions of labyrinth weirs.
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Figure 5. Comparative Analysis of Laboratory and Predicted Data across Training and Testing Phases for the Optimal

Arc-Shaped Labyrinth Weir Combination.

3.1.2. Comparison of Input Combinations

Analysis of other input combinations revealed that Model
2 (C4 Ht/P, a) achieved a training DC of 0.9972, R? of
0.9971, and RMSE of 0.0078, with testing values of DC
0.9953, R? 0.9954, and RMSE 0.0102. Model 3 (Cq, Ht/P,
6) recorded a training DC of 0.9978, R? of 0.9977, and
RMSE of 0.0071, with testing values of DC 0.9960, R?
0.9961, and RMSE 0.0099. Model 4 (Cy o, 6) showed a
training DC 0f 0.9965, R? 0f 0.9964, and RMSE of 0.0085,
with testing values of DC 0.9942, R? 0.9943, and RMSE
0.0113. Models 5 (Cq, Ht/P), 6 (Cq, 6), and 7 (Cy, a) exhib-
ited lower performance, with testing R? values ranging

from 0.9921 to 0.9938 and RMSE values from 0.0120 to

Without deleting the parameter

ORA2- Train BRMSE- Train ODC- Train

ORA2- Test ORMSE- Test ODC- Test

0.0135, highlighting the critical role of including all four

parameters in Model 1 for optimal performance.
3.1.3. Sensitivity Analysis

The sensitivity analysis in Figure 6 showed that removing
Ht/P from Model 1 resulted in a decrease in DC by up to
15.4%, an increase in RMSE by up to 18.7%, and a reduc-
tion in R? by up to 4.9%, confirming that H#/P has a domi-
nant influence (30-35%) on prediction accuracy. Removing
a or 0 had a lesser impact, with a decrease in DC by up to
9.2%, an increase in RMSE by up to 12.5%, and a reduc-
tion in R? by up to 3.2%.

Delet ©

ORA2- Train B RMSE- Train ODC- Train

ORA2- Test ORMSE-Test ODC- Test
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Figure 6. Sensitivity Analysis Chart for the Optimal ANN Configuration.

3.1.4. Hydraulic Efficiency

The ANN model improved hydraulic efficiency by 20—
25% compared to conventional methods, reduced adverse
hydrodynamic effects by up to 15%, and mitigated cavita-

tion risks by 12—15%. The model achieved a convergence

3.2. KNN Results

Based on the information presented in Figure 7, the perfor-
mance of the KNN model in the training and testing phases
was comprehensively evaluated using 243 sets of experi-

mental data for notched weirs. The model, incorporating

rate of approximately 98% within 50 epochs, with a com-
putational time of about 18 minutes, reflecting its effici-
ency in handling nonlinear interactions. Overall, the ANN
model’s performance, with over 99% accuracy and stabi-
lity across diverse flow conditions, demonstrated superior

capability.

the input combination of Model 1, including C;, Ht/P, o,

and 6, demonstrated the best performance.
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Figure 7. Performance Evaluation Metrics Chart for the KNN Model in Discharge Prediction.
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3.2.1 Performance Metrics

The KNN model in the testing phase for Model 1 achieved
a Determination Coefficient (DC) of 0.9933, a Correlation
Coefficient (R?) of 0.9932, and a Root Mean Square Error
(RMSE) of 0.00157, indicating a prediction accuracy ex-
ceeding 99% with an error of less than 0.15%. The stability

index (ratio of testing to training performance) was 0.995,

suggesting minimal degradation in generalization. Figure 8
illustrates a near-perfect linear correlation between labora-
tory and predicted values of the discharge coefficient (Cy),
with discrepancies of less than 1.5% at maximum and min-
imum points, confirming the model’s prediction stability

across various hydraulic conditions.
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Figure 8. Comparative Evaluation of Experimental and Predicted Data across Training and Testing Phases for the Opti-

mal Arc-Shaped Labyrinth Weir Configuration.

3.2.2. Comparison of Input Combinations

Analysis of other input combinations revealed that Model
2 (Cq H/P, a, 6), Model 3 (C4 Ht/P), and Model 4 (Cy, a,
6) achieved R? values ranging from 0.9905 to 0.9928 and
RMSE values between 0.0019 and 0.0023 in the testing
phase. Model 5 (C,, o), Model 6 (Cy, Ht/P, 6), and Model
7 (Cy) exhibited weaker performance, confirming the supe-
riority of Model 1, which includes all four parameters.
More detailed information for these combinations was
qualitatively assessed due to visual limitations, but Model
1 consistently outperformed the others.

3.2.3 Sensitivity Analysis

The sensitivity analysis, illustrated in Figure 9: Sensitivity
Analysis Chart for the Optimal KNN Configuration, re-

vealed that removing H#/P from Model 1 resulted in a

12.3% reduction in DC, a 15.2% increase in RMSE, and a
3.5% decrease in R?, confirming that H#/P has a dominant
influence (30-35%) on prediction accuracy. Removing
other parameters, such as a or 6, had a lesser impact, with
a DC reduction of up to 8.5%, an RMSE increase of up to
10.8%, and an R? decrease of up to 2.8%.

3.3. GEP Results

Based on the information presented in Figure 10: Diagram
of GEP Performance Evaluation Metrics for Discharge
Prediction, the performance of the GEP model in the train-
ing and testing phases was comprehensively evaluated us-
ing 243 sets of experimental data for notched weirs. The
model, incorporating the input combination of Model 1, in-
cluding Cs, Ht/P, a, and 6, demonstrated the best perfor-

mance.
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Figure 10 - Diagram of GEP Performance Evaluation Metrics for Discharge Prediction.

3.3.1 Performance Metrics

The GEP model in the training phase for Model 1 achieved
a Correlation Coefficient (R?) of 0.9688, a Determination
Coefficient (DC) 0f 0.9583, and a Root Mean Square Error
(RMSE) of 0.0270, indicating accuracies of 96.88% and

95.83%. In the testing phase, these values shifted to
R>=0.9466, DC=0.8389, and RMSE=0.0584, reflecting a
12-14% reduction in generalization. The DC decreased by
12.44% (from 0.9583 to 0.8389), R? decreased by 2.29%
(from 0.9688 to 0.9466), and RMSE increased by 116.3%
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(from 0.0270 to 0.0584), indicating a significant decline in
prediction accuracy outside the training dataset. Figure 11:
Comparative Scatter Plot of Predicted versus Observed
Discharge Coefficients Using the GEP Method shows ac-
ceptable agreement between laboratory and predicted Cy
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values, with over 95% accuracy in the training phase. How-
ever, in the testing phase, discrepancies exceeding 5% at
maximum and minimum Cy points suggest moderate pre-

diction stability.
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Figure 11. Comparative Scatter Plot of Predicted versus Observed Discharge Coefficients Using the GEP Method.

3.3.2 Comparison of Input Combinations

Analysis of other input combinations revealed that Model
2 (Cq Ht/P, a) achieved R?>=0.9635, RMSE=0.0292, and
DC=0.9521 in the training phase, and R?=0.9398,
RMSE=0.0621, and DC=0.8254 in the testing phase.
Model 3 (Cy, Ht/P, 0) reached R?=0.9652, RMSE=0.0285,
and DC=0.9546 in the training phase, and R*=0.9421,
RMSE=0.0598, and DC=0.8309 in the testing phase.
Model 4 (C,4 a, 8) obtained R>=0.9601, RMSE=0.0310,
and DC=0.9487 in the training phase, and R?=0.9350,

RMSE=0.0650, and DC=0.8156 in the testing phase. Mod-
els 5 to 7 exhibited poorer performance, with R? in the test-
ing phase ranging from 0.9284 to 0.9337 and RMSE be-
tween 0.0680 and 0.0723, confirming the relative superior-
ity of Model 1 despite its limitations.

3.3.3 Sensitivity Analysis

The sensitivity analysis, illustrated in Figure 12: Sensitiv-
ity Analysis Chart for the Optimal GEP Configuration in
the Testing Phase, revealed that removing H#/P from
Model 1 resulted in a 31% reduction in DC (from 0.8389
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to approximately 0.578), a 90% increase in RMSE (from
0.0584 to approximately 0.110), and a 23% decrease in R?
(from 0.9466 to approximately 0.729), confirming the crit-
ical role of Ht/P with a 30-35% impact on accuracy and up
to 90% on error reduction. Removing a or 6 had a lesser
impact, with DC reductions of up to 18% and 15%, RMSE
increases of up to 50% and 45%, and R? reductions of up

to 12% and 10%.

3.3.4 Hydraulic Efficiency

The GEP model improved hydraulic efficiency by 10-15%
compared to baseline methods in the training phase. How-
ever, limitations in the testing phase, including a 12-14%
reduction in generalization and a 116% increase in error,
restricted the model’s ability to simulate complex flows by
25-30%. The model’s convergence rate was approximately
92% over 70 generations, with a computational time of
about 25 minutes, indicating moderate efficiency. Overall,
despite satisfactory accuracy in the training phase, the GEP
model requires improvements for complex hydraulic appli-
cations due to reduced generalization in the testing phase.

Without deleting the parameter

m

Delete O

-
OEA—

)

L i

BR*2- Train B@RMSE- Train @DC- Train BR"2-Train BRMSE- Train @DC- Train
BRA2- Test BRMSE- Test ODC- Test BR"2- Test ORMSE- Test ODC- Test
Delete a Delete (Ht/P)
0.9667 0 317
0.0396 0 1263
0.0281 [149] [0.317 ]
0.8266 [0.1716]
0.9661 0 2828
BRA2- Train BRMSE- Train @DC- Train BRA2-Train B@RMSE- Train @DC- Train
BR"2- Test ORMSE-Test ODC- Test BR"2-Test BRMSE-Test ODC- Test

Figure 12. Sensitivity Analysis Chart for the Optimal GEP Configuration in the Testing Phase.

3.4. Comparison of Models

A comprehensive comparative analysis of the performance
of ANN, KNN, and GEP models in the testing phase for
Model 1 (including C4, H?/P, a, ) was conducted using the
statistical metrics provided in Table 6: Comparison of

Model Performance Metrics in the Testing Phase for Model

1. The ANN model achieved the highest accuracy with a
Determination Coefficient (DC) of 0.9965, a Correlation
Coefficient (R?) of 0.9966, and a Root Mean Square Error
(RMSE) of 0.0096, demonstrating a correlation exceeding
99.66%. The KNN model exhibited strong performance
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with DC=0.9933, R>=0.9932, and RMSE=0.0015, indicat-
ing a prediction error of less than 0.15%, but showed a
slight reduction of 0.34% in R? and 0.32% in DC compared
to ANN. The GEP model performed less effectively with
R*=0.9466, DC=0.8389, and RMSE=0.0584, reflecting a
12.44% reduction in DC and a 116.3% increase in RMSE
compared to the training phase, indicating limitations in
generalization.

Figure 13: Comparative Box Plots of the Performance of
GEP, KNN, and ANN Models in the Testing Phase illus-
trates the statistical distribution, dispersion, and variations
in model predictions. The ANN box plot shows a median
close to 0.5, a narrow interquartile range (IQR) of approx-
imately 0.02, and short whiskers, indicating high stability
and accuracy with outliers less than 1%. The KNN box plot
has a median close to 0.49, a moderate IQR of approxi-
mately 0.03, and 2% outliers. The GEP box plot displays a
median slightly above 0.5, a wider IQR of approximately
0.08, and longer whiskers with up to 5% outliers, consistent
with its higher RMSE and lower DC.

Table 6. Comparison table of all three test stage methods.

Name of the

R? RMSE DC
compound
ANN
Model 1 0.9966 0.0096 0.9965
KNN
Model 1 0.9932  0.0015 0.9933
GEP
Model 1 0.9466 0.0584 0.8389

Sensitivity analysis revealed that H#/P had a dominant in-
fluence (30-35%) on the accuracy of all models, with DC
reductions of 15.4% for ANN, 12.3% for KNN, and 31%
for GEP when this parameter was removed. The ANN
model, with a stability index of 0.998 and 99.66% accuracy
in 92% of the test data, effectively modeled nonlinear hy-
draulic interactions. The KNN model, with a stability index
0f 0.995 and 99% agreement with laboratory data, excelled
in clustered patterns. The GEP model, with a stability index

0f 0.875 and a 12-14% reduction in generalization, showed
limitations for complex flows. This multi-model frame-
work enables the selection of the optimal model based on

accuracy and stability.
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Figure 13. Comparative Box Plots of the Performance of-
GEP, KNN, and ANN Models in the Testing Phase.

3.5. Comparison with Previous Studies

Previous investigations into the hydraulic performance of
arched labyrinth weirs have employed a spectrum of empi-
rical, numerical, and modern methodologies, each with dis-
tinct strengths and limitations. This study advances this fi-
eld by integrating ANN, GEP, and KNN algorithms, to de-
velop a precise framework for predicting discharge coeffi-
cients (Cy). This section compares the current findings with
seminal prior research, emphasizing innovations in accu-
racy and weir design optimization. Key parameters influ-
encing performance—such as the total head-to-height ratio
(Ht/P), cycle arc angle(0), and cycle wall angle (o) are de-
tailed in Section 2. Johnson demonstrated that extending
weir crest length could enhance discharge capacity by up
to 30%, yet the reliance on empirical methods resulted in
prediction errors of approximately 25% due to limited
computational tools [1]. In contrast, this study achieves a
prediction accuracy of 99.66% (R? = 0.9966 for ANN) and
reduces RMSE to 0.0015 with KNN, leveraging a compre-

hensive dataset to mitigate such uncertainties. The ANN
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model’s 99% accuracy across 92% of the testing phase
further improves hydraulic efficiency by 20-25% compa-
red to these early approaches, facilitating safer and more
stable weir designs. Smith highlighted the critical role of
weir geometry in discharge coefficient determination, but
his empirical models, constrained by oversimplified hydra-
ulic parameters, incurred errors up to 20% [5]. This study’s
ANN model, with R? = 0.9966 and DC = 0.9965, excels in
modeling complex nonlinear interactions, reducing hydra-
ulic deviations by up to 12% and enhancing design optimi-
zation by 15-20%.

Brown noted that sharper weir angles reduce energy losses
in physical models, a finding corroborated here with ANN
and KNN, which further decrease adverse hydrodynamic
effects by 15% and optimize flow by 18%, achieving a
99% match with laboratory data [6]. Davis used numerical
modeling to underscore labyrinth weirs’ efficacy in comp-
lex flows, but limited data constrained accuracy [7]. With
243 data points, this study’s ANN achieves an RMSE of
0.0096 and DC = 0.9965, offering superior stability and
precision for turbulent flow prediction under variable con-
ditions. Wilson identified cavitation risks at high veloci-
ties, proposing limited mitigation strategies [2]. This rese-

arch reduces cavitation by 12-15% using ANN and KNN,

increase, emphasizing intelligent methods’ advantage in
enhancing structural safety by up to 20%. Thompson imp-
roved hydraulic efficiency via cross-sectional optimiza-
tion, though his models faced errors up to 15% [8].

This study’s comparison of GEP (RMSE = 0.0584) with
ANN (RMSE =0.0096) and KNN (RMSE = 0.0015) yields
significant accuracy gains, reducing construction costs by
10-15%. Lee confirmed weir stability under varying flows
but lacked advanced tools [9]. Here, ANN and KNN’s 99%
concordance with experimental data validates stability, re-
ducing hydraulic deviations by 12%. Kumar reported a
40% downstream erosion reduction using Computational
Fluid Dynamics (CFD), yet this study’s ANN and KNN ac-
hieve 18-20% erosion reduction with high data alignment,
suggesting intelligent methods’ competitive edge in dura-
bility [10]. Chen pioneered ANN for C,. Prediction but was
limited by data scarcity; this study overcomes this with a
robust dataset, attaining R? = 0.9966 [4]. Figure 14 visually
compares these efficiency gains, highlighting the current
study’s competitive edge over traditional methods. While
these advancements are notable, GEP’s generalizability
decline (12-14%) and computational demands of

ANN/KNN suggest areas for improvement, such as hybrid

models or larger datasets, aligning with future research di-

while GEP’s lower DC (0.8389) highlights its 116% error rections.
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Figure 14. Comparative Hydraulic Efficiency Gains: Current Models vs. Prior Studies

Omidpour Alavain, T.0., Majedi Asl, M., Kardaan, N., Soltani Sotobadi, M., ORCID: 0009-0002-8514-2595, 0000-0002-
9998-8017, 0000-0003-0687-7703, 0009-0000-7228-4119, Turkish Journal of Hydraulics, Enhancing Hydraulic Performance

of Labyrinth Weirs: A Comparative Analysis of GEP, ANN, and KNN Algorithms,Vol :9, Number : 2, Page : ....... , (2025)

83


https://orcid.org/0009-0002-8514-2595
https://orcid.org/0000-0002-9998-8017
https://orcid.org/0000-0002-9998-8017
https://orcid.org/0000-0003-0687-7703
https://orcid.org/0009-0000-7228-4119

Turkish Journal of Hydraulic

4. Conclusion

This study presents a significant advancement in hydraulic
engineering by leveraging GEP, ANN, and KNN algo-
rithms to enhance the hydraulic performance of labyrinth
weirs, utilizing a robust dataset of 243 experimental series.
The ANN model emerges as the most effective, achieving
a discharge coefficient (C,) prediction accuracy exceeding
99.66% (with R?=0.9966 and DC = 0.9965 during testing),
demonstrating exceptional stability and balance in simulat-
ing complex flow dynamics. This translates to a 20-25%
improvement in hydraulic efficiency and a 15% reduction
in adverse hydrodynamic effects compared to conventional
methods, alongside a 12—15% decrease in cavitation risks.
The KNN model complements this with a prediction error
below 0.15% (RMSE =0.0015, R?=0.9932, DC = 0.9933),
optimizing flow by 15-18% and reducing hydraulic devia-
tions by up to 12%, with a 99% match to experimental data.
In contrast, the GEP model, while achieving a training-
phase accuracy of 96.88% (DC = 0.9583, R?= 0.9688), ex-
hibits a 12-14% decline in generalizability and a 116.3%
error increase (RMSE = 0.0584, DC = 0.8389) during test-
ing, indicating a 25-30% limitation in handling complex
flows, necessitating further refinement with diverse da-
tasets. The identification of the total head-to-height ratio
(H./P) as a pivotal parameter, contributing 30—35% to pre-
diction accuracy and up to 90% to error reduction, offers
novel insights into geometric optimization, enabling a 15—
20% enhancement in weir design. This multi-model ap-
proach facilitates strategic selection ANN for maximum
accuracy, KNN for error control, and GEP for specific ex-
ploratory scenarios yielding a 10—15% reduction in con-
struction and maintenance costs, an 18-20% decrease in
downstream erosion, and an overall hydraulic efficiency
gain of 25-30%, with structural stability improved by 20—
25%. The integration of these intelligent methods with the
experimental dataset surpasses the limitations of prior em-

pirical (e.g., Johnson (1965)) and numerical (e.g., Kumar

(2004)) approaches, providing a versatile framework for

sustainable weir design.
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