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Abstract 

This paper investigates the implementation and performance of adaptive control techniques for a 12V small geared DC 
motor characterized by modeling errors and input disturbances. This paper discusses the following two primary 
approaches: Adaptive Radial Basis Function Neural Network (ARBFNN) Controllers and Model Reference Adaptive Control 
(MRAC). In model uncertainty, MRAC and ARBFNN outperformed the simple Proportional-Integral (PI) controller. The 
study is further expanded to involve Robust MRAC and Adaptive Sliding Mode Radial Basis Function Neural Network 
(ASRBFNN) Controllers to counter the compounded effects of model uncertainty and input disturbances. The versions of 
the robust controllers performed better than the conventional PI controller in cases involving both uncertainties and 
disturbances. Implementations were done on a 12V geared DC motor testbed with an Arduino microcontroller and 
MATLAB's System Identification Toolbox. The results from simulations and experimental applications highlight the greater 
flexibility and disturbance rejection capability of the developed advanced adaptive control schemes, making them perform 
better than standard PI controllers under challenging conditions. 
Keywords: Model-based adaptive control, Adaptive sliding mode control, DC motor, Speed control, Unknown system 
parameters 

12V KÜÇÜK DC DİŞLİ MOTORUNUN HIZ DÜZENLEMESİ İÇİN GELİŞMİŞ 
UYARLANABİLİR KONTROL STRATEJİLERİ UYGULAMASI 

Özet 

Bu makale, modelleme hataları ve giriş bozuklukları ile karakterize edilen 12 V küçük dişlili DC motor için uyarlamalı 
kontrol tekniklerinin uygulanmasını ve performansını araştırmaktadır. Bu makale aşağıdaki iki temel yaklaşımı 
tartışmaktadır: Uyarlamalı Radyal Baz Fonksiyonlu Sinir Ağı (ARBFNN) Denetleyicileri ve Model Referanslı Uyarlamalı 
Kontrol (MRAC). Model belirsizliğinde, MRAC ve ARBFNN basit Oransal-İntegral (PI) denetleyiciden daha iyi performans 
göstermiştir. Çalışma, model belirsizliğinin ve giriş bozukluklarının bileşik etkilerini dengelemek için Gürbüz MRAC ve 
Uyarlamalı Kayan Modlu Radyal Baz Fonksiyonlu Sinir Ağı (ASRBFNN) Denetleyicilerini içerecek şekilde daha da 
genişletilmiştir. Gürbüz denetleyicilerin versiyonları, hem belirsizlik hem de bozukluk içeren durumlarda geleneksel PI 
denetleyicisinden daha iyi performans göstermiştir. Uygulamalar, bir Arduino mikrodenetleyici ve MATLAB'ın Sistem 
Tanımlama Aracı ile bir 12 V dişlili DC motor test ortamında gerçekleştirilmiştir. Simülasyon ve deneysel uygulamalardan 
elde edilen sonuçlar, geliştirilen ileri adaptif kontrol şemalarının daha fazla esneklik ve bozulmayı reddetme kabiliyetine 
sahip olduğunu ve bu sayede zorlu koşullar altında standart PI kontrolörlerinden daha iyi performans gösterdiğini ortaya 
koymaktadır. 
Anahtar Kelimeler: Model tabanlı adaptive control, Adaptif kayan kipli kontrol, DC motor, Hız kontrolü, Bilinmeyen sistem 
parametreleri 
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1.  Introduction 

DC motors are found to be used extensively to control 
robotics, automotive, and industrial systems. DC motors, 
such as gearmotors, are used extensively in robotics due 
to their ability to deliver high torque and decent speed 
and position control. The motors are essential in smooth 

and controlled motion applications, and thus are a staple 
in robotic drive and actuator systems. They are most 
useful in regulating the speed and placement of robot 
systems with varying loads, providing the desired 
flexibility and response for intricate maneuvers and 
operations [1,2]. Proper mathematical models must be 
used in constructing effective control systems. Various 
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models can be used in DC motors, even though DC motors 
are largely nonlinear due to effects like friction, load 
variation, and electrical behavior [3]. 

Typically, systems are often approximated during 
modeling, which subsequently introduces inaccuracies 
into the model. When a system can be precisely modeled 
and remains untouched by external disturbances like 
delay, noise, or fluctuating parameters, conventional 
controllers with fixed parameters tend to suffice. 
However, in cases where these disruptions come into 
play, such as an unknown system model, standard 
controllers fall short of delivering the desired 
performance. To counteract the adverse impact of these 
disruptions and achieve optimal performance, 
sophisticated control methods like Adaptive control, 
robust control, and resilient control techniques come 
into play. 

Adaptive control is widely used and an effective control 
technique for real-time implementation of controlling a 
plant, which can be both linear and nonlinear, since it is 
capable of adapting controller parameters to maintain a 
desired response in scenarios where the parameters of 
the system are unknown or time-varying [4,5]. Adaptive 
control can be classified into two primary subcategories: 
model-based adaptive control and data-driven adaptive 
control. In model-based adaptive control, e.g., MRAC, the 
controller and adaptation laws are devised according to 
the system model. Conversely, in learning-based control, 
e.g., ARBFNN, which is a subcategory of model-based 
adaptive control, the controller draws from a system 
model, but the adaptation mechanism is tailored using 
data gathered from the system. Data-driven controllers 
only rely on sensor measurements of the system [6]. 

The authors in [7] developed an extension theory-based 
sliding mode controller for brushless DC motors that 
adaptively adjusts sliding surface gains, achieving faster 
speed tracking and improved robustness over 
conventional SMC 

Using an actor–critic reinforcement learning agent, the 
authors in [8]  achieved automatic PID gain tuning for DC 
motor speed control, resulting in superior tracking 
performance compared to a classical fixed PID controller. 

In [9], two adaptive neural architectures were proposed 
by the authors. These designs were validated using 
comparative simulations and practical experiments on a 
turntable servo motor system. The first approach 
introduces a robust term, dependent on control gain-
bound information, to address NN approximation errors. 
Alternatively, in the second method designed for cases 
lacking this information, a new NN structure is created. 
This structure involves updating only a scalar weight to 
manage unknown nonlinearities, leading to reduced 
computational expenses. 

In [10], an adaptive control method is devised for 
tracking a DC motor system with a dead zone. This 
technique effectively incorporates an asymmetric barrier 
Lyapunov function to ease initial condition constraints. 
Radial basis function neural networks (RBFNN) 

approximate unknown functions in the DC system. The 
study demonstrates the motor's ability to trace a desired 
path while ensuring signal boundedness. 

The main contributions of this paper are as follows: 

 Hybrid Adaptive Framework: By combining 
Model Reference Adaptive Control (MRAC) and 
Adaptive Radial Basis Function Neural Network 
(ARBFNN), this article proposes a new hybrid 
adaptive control framework for a 12V geared DC 
motor operating under model uncertainty and 
input disturbance conditions. 

 Robust Adaptive Extension: The proposed 
structure is extended to Robust MRAC, including 
σ- and e-modifications, as well as Adaptive 
Sliding-Mode RBFNN (ASRBFNN), to further 
enhance the robustness against simultaneous 
parameter variations and external disturbances. 

 Real-time Hardware Implementation: Unlike in 
most of the previous studies that remained in a 
simulation stage, the proposed controllers are 
experimentally implemented on a real 12V 
geared DC motor testbed using an Arduino 
microcontroller together with the MATLAB 
System Identification Toolbox. 

 Performance Verification: Experimental and 
simulation results demonstrate that the 
proposed adaptive and robust controllers 
significantly outperform conventional PI 
controllers in terms of settling time, overshoot, 
and disturbance rejection in practical 
applications. 

The remaining content of this paper is structured as 
outlined below: Section 2 presents the modeling of a DC 
motor. In Section 3, the MRAC and Robust MRAC designs 
are introduced. The design of ARBFNN is detailed in 
Section 4, and ASRBFNN is detailed in Section 5. The 
validation of the proposed approaches through 
simulations and implementation is discussed in Section 
6. Section 7 contains concluding remarks. 

2.  DC Motor Model 

 

Figure 1. Electric equivalent circuit of the armature and 
rotor [11]. 

 
Dynamics of the DC Motor given in Figure 1 is 
represented by the equations given below [12], 

𝐽𝜃̈(𝑡) + 𝑏𝜃̇(𝑡) = 𝐾𝑖(𝑡) (1) 

𝐿𝑖̇̇(𝑡) + 𝑅𝑖(𝑡) = 𝑉(𝑡) − 𝐾𝜃̇(𝑡) (2) 
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where, 𝜃 is the angular position of the motor, 𝑖 is the 
armature current of the motor, and V is the applied input 
voltage. 
The physical parameters of the motors are,   
𝐽:     moment of inertia of the rotor     (𝑘𝑔 × 𝑚2) 
𝑏:     motor viscous friction constant    (𝑁 × 𝑚 × 𝑠) 
𝐾:    electromotive force constant and motor torque 

constant   (𝑉/𝑟𝑎𝑑/𝑠𝑒𝑐),  (𝑁
𝑚

𝐴𝑚𝑝
) 

𝑅 :   electric resistance    (𝑂ℎ𝑚) 
𝐿 :    electric inductance   (𝐻) 
 
Taking the Laplace transform of Equations (1) and (2) 

𝑠(𝐽𝑠 + 𝑏)𝜃(𝑠) = 𝐾𝐼(𝑠) (3) 

(𝐿𝑠 + 𝑅)𝐼(𝑠) = 𝑉(𝑠) − 𝐾𝑠𝜃(𝑠) (4) 

𝐼(𝑠) =
𝑉(𝑠)−𝐾𝑠𝜃(𝑠)

(𝐿𝑠+𝑅)
  is obtained from Equation (4). By 

replacing the obtained value of 𝐼(𝑠) into Equation (3) and 
taking the inverse Laplace transform, 𝐼 term is 
eliminated, and the following differential equation is 
achieved. 

𝐽𝐿𝜃(𝑡) + (𝑅𝐽 + 𝑏𝐿)𝜃̈(𝑡) + 𝑏𝑅𝜃̇(𝑡)

= 𝐾𝑉(𝑡) − 𝐾2𝜃̇(𝑡) 
(5) 

The approximated second-order model of the DC Motor 
can be obtained below, if the electrical time constant 𝑇𝑒 =
𝐿

𝑅
  is much smaller than the mechanical one, the term 

𝐽𝐿𝜃(𝑡) may be neglected. This yields, 

(𝑅𝐽 + 𝑏𝐿)𝜃̈(𝑡) + 𝑏𝑅𝜃̇(𝑡) = 𝐾𝑉(𝑡) − 𝐾2𝜃̇(𝑡) (6) 

Reconstructing Equation (6) we have 
 

𝜃̈(𝑡) = −
(𝐾2 + 𝑏𝑅)

(𝑅𝐽 + 𝑏𝐿)
𝜃̇(𝑡) +

𝐾

(𝑅𝐽 + 𝑏𝐿)
𝑉(𝑡) (7) 

Based on the Equations (6) and (7), derivation of the 
first-order state space equation and the output equation 
for the system is, 

 Let  𝑥1 = 𝜃̇(𝑡), 𝑢 = 𝑉(𝑡) 

𝑥̇1 = −
(𝐾2 + 𝑏𝑅)

(𝑅𝐽 + 𝑏𝐿)
𝑥1 +

𝐾

(𝑅𝐽 + 𝑏𝐿)
𝑉(𝑡) 

(8) 

which can be written as a state space equation form as, 

𝑥̇ = −
(𝐾2 + 𝑏𝑅)

(𝑅𝐽 + 𝑏𝐿)
𝑥 +

𝐾

(𝑅𝐽 + 𝑏𝐿)
𝑢, 𝑦 = 𝑥 (9) 

 

where 𝒙 ∈  𝓡 is the state, 𝒖(𝑡) ∈ 𝓡 is the control input, 
and 𝒚 ∈ 𝓡 is the measurement. 

 

3.  MRAC Design  

 

Figure 2. Direct MRAC and Robust MRAC Scheme. 

 
Although the DC motor model introduced in this study is 
a first-order single-state system, the MRAC design 
procedure is initially presented in a general Linear Time-
Invariant (LTI) form to provide a complete theoretical 
foundation. This general formulation allows the same 
adaptive control structure to be directly applicable to 
higher-order or multi-input systems. In the subsequent 
subsections, this general MRAC framework is specifically 
adapted and implemented for the first-order DC motor 
model defined in Section 2.  
Consider a general LTI continuous system, 

𝒙̇(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) (10) 

with the measurement equation 

𝒚(𝒕) = 𝑪𝒙(𝒕) (11) 

where 𝒙(𝒕) ∈ ℛ𝑛 is the state vector, 𝒖(𝑡) ∈ ℛ𝑝 is the 
control input, and 𝒚(𝑡) ∈ ℛ𝑚 is the measurement vector. 
𝐴 ∈ ℛ𝑛𝑥𝑛 is the state matrix,  𝐵 ∈ ℛ𝑛𝑥𝑝  is the input 
matrix and 𝐶 ∈ ℛ𝑚𝑥𝑛 is the output matrix. Assuming 𝐵 is 
known and 𝐴  is not exactly known. 
Consider the LTI continuous-time system reference 
model. 

𝒙𝒓̇(𝒕) = 𝑨𝒓𝒙𝒓(𝒕) + 𝑩𝒓𝒓(𝒕) (12) 

where 𝒙𝒓(𝑡) ∈ ℛ𝑛 is the state vector, 𝒓(𝑡) ∈ ℛ𝑝 is the 
reference input. 𝐴𝒓 ∈ ℛ𝑛𝑥𝑛 is the state matrix,  𝐵𝑟 ∈ ℛ𝑛𝑥𝑝  
is the input vector. 𝐴𝑟 , 𝐵𝑟  are Hurwitz matrix. 
 
Our objective is to design a controller for the DC motor 
that follows a reference model that gives the desired 
response. For this purpose, a Direct MRAC design [5] is 
proposed.  
Open loop error dynamic is calculated as; 

𝒆̇(𝒕) = 𝒙̇(𝒕) − 𝒙̇𝒓(𝒕) (13) 

𝒆̇(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) − 𝑨𝒓𝒙𝒓(𝒕)−𝑩𝒓𝒓(𝒕) (14) 

Direct MRAC is to be designed as 

𝒖(𝒕) = 𝒌̂𝒙(𝒕)𝒙(𝒕) + +𝒌̂𝒓(𝒕)𝒓(𝒕) (15) 

where 𝒌̂𝒙(𝑡) ∈ ℛ𝑝𝑥𝑛 , 𝒌̂𝒓(𝑡) ∈ ℛ𝑝𝑥𝑝 are feedback 
controller gains that are assigned to the controller by a 
designed online adaptive controller. 
Closed loop error dynamics is obtained after replacing 
Equation (15) into the Equation (14) 

𝒆̇(𝒕) = (𝑨 + 𝑩𝒌̂𝒙(𝒕)) 𝒙(𝒕) + −𝑨𝒓𝒙𝒓(𝒕)

+ 𝑩𝒌̂𝒓(𝒕)𝒓(𝒕) − 𝑩𝒓𝒓(𝒕) 
(16) 

Assuming matching conditions in the Equation (17) is 
hold 

𝑨 + 𝑩𝒌𝒙 = 𝑨𝒓 
𝑩𝒌𝒓 = 𝑩𝒓 

(17) 

Where 𝒌𝑥, 𝒌𝑟  are ideal feedback controller gains,  
error dynamics becomes, 

𝒆̇(𝒕) = 𝑨𝒓𝒆(𝒕) − 𝑩𝒌̃𝒙(𝒕)𝒙(𝒕) − 𝑩𝒌̃𝒓(𝒕)𝒓(𝒕) (18) 

Where 𝒌̃𝒙(𝒕) ≜ 𝒌𝒙 − 𝒌̂𝒙(𝒕) and  𝒌̃𝒓(𝒕) ≜ 𝒌𝒓 − 𝒌̂𝒓(𝒕) 
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A Lyapunov function candidate is constructed to design 
adaptive controller gains.  

𝑽 =
𝟏

𝟐
𝒆(𝒕)𝑻𝑷𝒆(𝒕) +

𝟏

𝟐
𝒕𝒓 (𝒌̃𝒙(𝒕)𝑻𝜞𝒙

−𝟏𝒌̃𝒙(𝒕))

+
𝟏

𝟐
𝒕𝒓(𝒌̃𝒓(𝒕)𝑻𝜞𝒓

−𝟏𝒌̃𝒓(𝒕)) 

(19) 

Where 𝑃 ∈ ℛ𝑛𝑥𝑛 is a positive definite matrix, which is the 
solution of the 𝑃𝐴𝑟 + 𝐴𝑟

𝑇𝑃 = −𝑄, 𝑄 ∈ ℛ𝑛𝑥𝑛 is a positive 
definite symmetric matrix. Different selection of 𝑄  does 
not affect boundedness or the asymptotic behavior, but 
affects the transient response. The matrices 𝛤𝑥  and 𝛤𝑟  are 
positive definite matrices that serve as adaptation gains 
in the adaptive law. They determine the rate at which the 

adaptive parameters 𝒌̂𝒙(𝑡) and 𝒌̂𝒓(𝑡)  are updated. 
Specifically, 𝛤𝑥  and 𝛤𝑟  are typically diagonal matrices, 
chosen to ensure the stability of the adaptive system and 
to adjust the responsiveness of the parameter adaptation 
process [5]. 
After taking the derivative of the function in Equation 
(19) and simplifying the resulting equation, we have 

𝑽̇ =
𝟏

𝟐
𝒆̇(𝒕)𝑻𝑷𝒆(𝒕) +

𝟏

𝟐
𝒆(𝒕)𝑻𝑷𝒆̇(𝒕)

+
𝟏

𝟐
𝒕𝒓 (𝒌̃𝒙

̇ (𝒕)𝑻𝜞𝒙
−𝟏𝒌̃𝒙(𝒕))

+
𝟏

𝟐
𝒕𝒓 (𝒌̃𝒙(𝒕)𝑻𝜞𝒙

−𝟏𝒌̃𝒙
̇ (𝒕)𝑻)

+
𝟏

𝟐
𝒕𝒓 (𝒌̃𝒓

̇ (𝒕)𝑻𝜞𝒓
−𝟏𝒌̃𝒓(𝒕))

+
𝟏

𝟐
𝒕𝒓 (𝒌̃𝒓(𝒕)𝑻𝜞𝒓

−𝟏𝒌̃𝒓
̇ (𝒕)𝑻) 

(20) 

By substituting Equation (18) into Equation (20) and 
simplifying the resulted equation, we have 

𝑽̇ =
𝟏

𝟐
𝒆(𝒕)𝑻(𝑷𝑨𝒓 + 𝑨𝒓

𝑻𝑷)𝒆(𝒕)

+ 𝒆(𝒕)𝑻𝑷(−𝑩𝒌̃𝒙(𝒕)𝒙(𝒕)

− 𝑩𝒌̃𝒓(𝒕)𝒓)

− 𝒕𝒓 (𝒌̃𝒙(𝒕)𝑻𝜞𝒙
−𝟏𝒌̇̂𝒙(𝒕))

− 𝒕𝒓(𝒌̃𝒓(𝒕)𝑻𝜞𝒓
−𝟏𝒌̇̂𝒓(𝒕)) 

 

(21) 

Where 𝑷𝑨𝒓 + 𝑨𝒓
𝑻𝑷 = −𝑸 

 𝒌̇̂𝒙(𝒕), 𝒌̇̂𝒓(𝒕) are selected as below to cancel out some 
terms in the Equation (20) 

𝒌̇̂𝒙(𝒕) = −𝜞𝒙𝑩𝑻𝑷𝒆(𝒕)𝒙𝑻(𝒕) (22) 

𝒌̇̂𝒓(𝒕) = −𝜞𝒓𝑩𝑻𝑷𝒆(𝒕)𝒓𝑻(𝒕) (23) 

After replacing the Equations (22) and (23) into the 
Equation (20), we have; 

𝑽̇(𝒕) = −
𝟏

𝟐
𝒆(𝒕)𝑻𝑸𝒆(𝒕) − 𝒆(𝒕)𝑻𝑷𝑩𝒌̃𝒙(𝒕)𝒙(𝒕)

− 𝒆(𝒕)𝑻𝑷𝑩𝒌̃𝒓(𝒕)𝒓

+  𝒕𝒓(𝒌̃𝒙(𝒕)𝑻𝜞𝒙
−𝟏𝜞𝑩𝑻𝑷𝒆(𝒕)𝒙(𝒕)𝑻)

+ 𝒕𝒓(𝒌̃𝒓(𝒕)𝑻𝜞𝒓
−𝟏𝜞𝑩𝑻𝑷𝒆(𝒕)𝒓(𝒕)𝑻) 

(24) 

Taking the transpose of the terms in Equation (24) and 
using trace properties, we can cancel out the terms 

except −
1

2
𝒆(𝑡)𝑻𝑄𝒆(𝑡) so the Equation (24) is simplified 

to, 

𝑽̇(𝒕) = −
𝟏

𝟐
𝒆(𝒕)𝑻𝑸𝒆(𝒕) (25) 

    
Since 𝑄 is positive definite symmetric matrix 𝑉̇ ≤ 0 and 
𝑉 ∈ 𝐿∞ so the equilibrium point is Lyapunov stable 
[5,13]. 

a) Based on the Equation (19) if 𝑉 ∈ 𝐿∞,  𝒌̃𝑥(𝑡) , 𝒌̃𝑟(𝑡), 
𝒆(𝑡) ∈ 𝐿∞  

b) Since ‘a’ holds, based on the Equation (18), 𝒌̂𝑟(𝑡) 

,𝒌̂𝒙(𝑡),   𝒓(𝑡),𝒙(𝑡) ∈ 𝐿∞ 
c) Since ‘b’ holds, Based on the Equation (15),  𝒖(𝑡) ∈ 𝐿∞ 
thus, Equation (22) and Equation (23) are obtained as 
adaptive controller gain estimators for the controller in 
Figure 2 and Robust MRAC adaptive controller gains can 
be derived as [5,14]; 

𝒌̇̂𝒙(𝒕) = −𝜞𝒙𝑩𝑻𝑷𝒆(𝒕)𝒙𝑻(𝒕) − 𝜞𝒙𝝈𝒙||𝒆||𝒌̂𝒙(𝒕) (26) 

𝒌̇̂𝒓(𝒕) = −𝜞𝒓𝑩𝑻𝑷𝒆(𝒕)𝒓𝑻(𝒕) − 𝜞𝒓𝝈𝒓||𝒆||𝒌̂𝒓(𝒕) (27) 

The addition of e-mode (error-driven adaptation) and σ-
mode (model error-driven adaptation) to MRAC 
enhances its robustness against uncertainties and 
disturbances. In the e-mode, the control law adjusts 
parameters based on the output error and the reference 
model, ensuring effective tracking even in the face of 
system changes. The σ-mode employs the actual plant 
output versus the identified model to minimize 
deviations, making the controller resilient to 
uncertainties [14-16]. 
Therefore, the combination of these modes boosts MRAC 
in the following ways; 
The e-mode adjusts parameters via the error signal, 
while the σ-mode corrects based on model error. 
Together, they ensure accurate tracking during 
unexpected system shifts. The σ-mode lessens sensitivity 
to model inaccuracies, actively adapting to differences 
between plant behavior and the reference model. 
Incorporating both modes improves stability and 
performance under uncertainties, expanding the 
controller's versatility in real-world scenarios. 

4.  ARBFNN Controller Design 

 
Figure 3. ARBFNN and ASRBFNN controller scheme. 

 
Consider the first-order linear state space equation of the 
proposed DC motor in Equation (9) and rewrite the 
equation in general form; 

𝒙̇ = 𝑓(𝒙) + 𝑔𝒖 (28) 

𝒚 = 𝒙 (29) 
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Assuming the desired speed of the motor is 𝑟𝑑 , 
The error of the output becomes, 

𝒆 = 𝑟𝑑 − 𝑥 (30) 

 
The control law is to be designed by isolating 𝒖 in the 
Equation (28) and using Equation (33) by disregarding 
ϻ 

𝒖 =
−𝑓(𝑥) + 𝑟̇𝑑 + 𝑘𝑝𝑒

𝑔
 (31) 

Where 𝑓(𝑥) is the predicted 𝑓(𝑥) by 1-5-1 RBFNN 
structure, 𝑘𝑝 is the proportional gain,  

 

The process of obtaining 𝑓(𝑥) is as follows [17-19]; 
Let, 

 𝑗 = 1,2, . . ,5 and 𝑖 = 1 
 𝒙 is the input vector, 
 𝑐𝑖𝑗  is the coordinate value of the center point of 

the Gaussian function of neuron 𝑗 for the input 𝑖 
 𝒃 = 𝑏𝑗  is the width value of Gaussian function 

for neuron 𝑗, 

 The weight values of 1-5-1 RBF structure is  
       𝑾 = 𝑤𝑗  , 

 𝒉 = ℎ𝑗  represents the radial basis function 

vector in the hidden layer of 1-5-1 RBF  
Note that, 𝑐𝑖𝑗  and 𝑏𝑗  should be chosen based on the 

scope of input, so that the Gaussian function is mapped 
effectively [18,19].  

𝑓(𝒙) = 𝑾̂𝑇ℎ(𝒙)  (32) 

where,  
 

ℎ𝑖𝑗 = e

‖𝒙−𝑐𝑖𝑗‖
2

𝑏𝑗
2

  and 

 
By replacing Equation (31) into Equation (28), the error 
dynamics become, 

𝑒̇ = −𝑘𝑝𝑒 + ϻ (33) 

Where ϻ =  𝑓(𝑥) − 𝑓(𝑥)  
Select 𝑘𝑝 based on Equation (33) so that the root of the 

error dynamic equation is in the left part of the 𝑠 plane 
[18,19]. Thus, the error goes to zero as time goes to 
infinity. 
Optimal weight value can be calculated as, 

𝑾∗ = arg min
𝑊∈𝛺

(ϻ) 

Then the prediction error regarding the optimal weight 
becomes 

𝜔 = 𝑓(𝑥|𝑾∗) − 𝑓(𝑥) , |𝜔| ≤ 𝜔𝑚𝑎𝑥  
 
Write the 𝑓(𝑥) in terms of 𝜔 and replace in Equation 
(33).  Thus, the error dynamics of the system can be 
rewritten as 

𝑒̇ = −𝑘𝑝𝑒 + (𝑓(𝑥) − 𝑓(𝑥|𝑾∗) + 𝜔) (34) 

 
Replace Equation (32) into Equation (34), 

 

𝑒̇ = −𝑘𝑝𝑒 + (𝑾̂ − 𝑾∗)
𝑇

𝒉(𝒙) + 𝜔 (35) 

Define Lyapunov function as, 
 

𝑉 =
1

2
𝒆𝑻𝑃𝒆 +

1

2𝜎
(𝑾̂ − 𝑾∗)

𝑇
(𝑾̂ − 𝑾∗) (36) 

 
Where 𝜎 is a positive constant and 𝑃 is a 1x1 positive 
definite symmetric matrix that can be obtained by 
solving the following equation 

−𝑘𝑝𝑃 − 𝑃𝑘𝑃 = −𝑄 
(37) 

 

In which 𝑄 is 1x1 positive semidefinite matrix 
Taking the derivative of the 𝑉 , 

𝑉̇ =
1

2
𝒆𝑻𝑷𝒆̇ + 𝜎(𝑾̂ − 𝑾∗)

𝑇
𝑾̇̂ (38) 

Replace Equation (35) and (37) into the Equation (34) 

𝑉̇  =  −
1

2
 𝒆ᵀ 𝑄 𝒆 +  (𝑾̂ − 𝑾∗)ᵀ ℎ(𝑥) 𝒆ᵀ 𝑃 

+ 𝒆ᵀ 𝑃𝜔 +  𝜎 (𝑾̂ − 𝑾∗)ᵀ𝑾̇̂ 

(39) 

 
The derivative of the Lyapunov function 
We choose adaptive law (see Figure 3) as 

𝑾̇̂ = −𝜎𝒆𝑃𝒉(𝒙) (40) 

Substitute 𝑾̇̂ into Equation (39) and simplifying the 
achieved equation, we have, 

𝑉̇ = −
1

2
 𝒆ᵀ 𝑄 𝒆 + 𝒆ᵀ𝑃𝜔 (41) 

Since 𝑄 is a positive definite matrix, the term −
1

2
 𝒆ᵀ 𝑄 𝒆 

is non-positive. Also, 𝒆ᵀ𝑃𝜔 can be bounded by some 
small constant value related to the prediction error 𝜔 
and the positive definite matrix 𝑃. 
Thus, with the appropriate choice of control parameters, 
𝑉̇ can be made non-positive, ensuring that 𝑉 does not 
increase, which is a standard approach in Lyapunov 
stability theory. This condition 𝑉̇ ≤ 0 helps in 
guaranteeing the stability of the system, meaning the 
system's trajectories will not diverge over time. 
Therefore, 𝑉̇ ≤ 0 and 𝑉 ∈ 𝐿∞ so the equilibrium point is 
Lyapunov stable.   

5.  ASRBFNN Controller Design 
Consider the first-order linear state space equation of a 
general DC motor in Equation (28), and rewrite the 
equation by adding an input disturbance; 

𝒙̇ = 𝑓(𝒙) + 𝑔𝒖 + 𝒅 (42) 

𝒚 = 𝒙 (43) 

Where |𝑑| ≤ 𝐷  is the input disturbance 
Assuming the desired speed of the motor is 𝑟𝑑  , 
error of the output becomes, 

𝒆 = 𝑥 − 𝑟𝑑  (44) 

Sliding mode function for the system selected as, 

𝒔 = 𝑧𝒆 (45) 
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where 𝑧 is a positive constant 
thus 

𝒔̇ = 𝑧(𝑓(𝒙) + 𝑔𝒖 + 𝒅 − 𝑟̇𝑑) (46) 

 
The control law is to be designed by isolating 𝒖 in 
Equation (49) as  

𝒖 =
−𝑓(𝒙) + 𝑟̇𝑑 − 𝜂𝑠𝑔𝑛(𝒔)

𝑔
 (47) 

𝜂 ≥ 𝐷.  and 𝑓(𝒙) is the output neuron of the 1-5-1 RBF 
can be obtained by using the same process described in 
sec.4 

𝑓(𝒙) = 𝑾𝑇ℎ(𝒙) (48) 

 
let define  𝑓(𝒙) by using 1-5-1 RBFNN structure as 
described in sec. 4 regarding to optimal weight with 
small error 𝜀 ≤  𝜀𝑚𝑎𝑥   [18] as 
 

𝑓(𝒙) = 𝑾̂∗𝑇
ℎ(𝒙) + 𝜀 (49) 

Where ℎ(𝒙) can be obtained as 
 

ℎ𝑖𝑗 = e

‖𝒙−𝑐𝑖𝑗‖
2

2𝑏𝑗
2

 

 
Substituting Equation (47) into Equation (46) we have 

𝒔̇ = 𝑧(𝑓(𝒙) − 𝜂𝑠𝑔𝑛(𝒔) + 𝒅) (50) 

 

Where 𝑓(𝒙) = 𝑓(𝒙) − 𝑓(𝒙) = (𝑾̂∗𝑇
− 𝑾𝑇)ℎ(𝒙) 

 
Define lyapunov function as below by letting 𝑾̃ = 𝑾∗ −
𝑾̂ 

𝑉 =
1

2
𝒔2 +

1

2
𝜏 𝑾̃𝑻𝑾̃ (51) 

where 𝜏 is a positive constant 
 

taking derivative of 𝑉,we have 

𝑉̇ = 𝒔𝒔̇ + 𝜏𝑾̃𝑻𝑾̇̃ = 𝑾̃𝑻(𝒔ℎ(𝒙) − 𝜏𝑾̇̂) + 𝒔(𝜀 + 𝑑
− 𝜂𝑠𝑔𝑛(𝒔)) 

(52) 

 
We choose adaptive law (see Figure 3) as 

𝑾̇̂ =
1

𝜏
𝒔𝒉(𝒙) (53) 

Thus, the first term in Equation (52) is canceled. The 
first term in the equation is negative, and choosing 𝜂 ≥

𝜀𝑚𝑎𝑥 + 𝐷 + 𝜂0, 𝜂0 > 0, 𝑉̇ ≤ −𝜂0𝑠𝑔𝑛(𝒔) ≤ 0 so the 
equilibrium point is Lyapunov stable. 

6.  ASRBFNN Controller Design 

6.1.  System Setup 

 
Figure 4.  Implementation of DC motor speed control 
circuit diagram. 

 
Figure 4 illustrates the implementation's connection 
diagram. For real-time execution of our proposed control 
methods, we utilize a 12V High Power 34:1 DC motor 
with a 48 CPR encoder, which is connected to the 
TB9051FTG motor driver, as depicted in Figure 4. The 
motor's mathematical model is derived through Matlab 
[11] and employed in our simulation. Within the 
diagram, the Arduino assumes the role of controller. 
Motor speed is determined by reading signals from 
Encoder outputs via Pin 2 and 3, and it is converted in 
radians per second (rad/sec). Subsequently, we apply the 
controller techniques outlined in our paper to generate 
the control signal. Following this, the calculated control 
signal is converted to a duty cycle using the equation 
255(𝑢\𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ), where the applied voltage is 
12V in this instance. 
The approximated state-space model for the first-order 
speed control of the DC motor is depicted in Figure 4 is 
obtained using the MATLAB System Identification 
Toolbox. The parameters used are J = 0.009 kg×m2 , b = 
0.01 Nm×s, K = 0.57 V/rad/s, L = 0.006 H, and R = 4.45 Ω. 
Here K, L, and R values are measured, while the values of 
J and b are optimized using the MATLAB System 
Identification Toolbox. The resulting dynamic system of 
the DC motor is as follows: 

𝒙̇(𝑡) = −9.2097𝒙(𝒕) + 14.2109𝒖(𝑡)   
𝒚(𝑡) = 𝒙(𝑡)                 

(54) 

 
Figure 5. Modeling DC motor (system identification). 
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Figure 5 shows the real-time speed measurement of the 
DC motor and response of the estimated state space 
model given in Equation (54), given stepwise input. The 
figure indicates that the DC motor model has significant 
transient and steady-state error. 
To enable real-time implementation of speed control for 
a DC motor using a microcontroller, we adhere to a 
common practice of selecting the sampling time. The 
open-loop system's bandwidth is 9.2 rad/s (refer to 
Figure 6), which translates to a 1.46 Hz sampling 
frequency. To ensure compatibility with both real-time 
implementation and simulation, where a model with 
error is employed, we opt for a sampling frequency that 
is 10 times faster. Consequently, the maximum selectable 
sampling time is reduced to 0.0685 seconds (1/14.6). We 
ultimately choose a sampling time (T) of 0.05 seconds. 
This choice of sampling time allows for the 
transformation of the continuous-time controller design 
into a discrete-time format. Importantly, this selected 
sampling period is consistently used for simulation 
purposes to maintain result consistency. 

 
Figure 6. Bode plot of the open-loop system. 

 

6.2.  MRAC and Robust MRAC Implementation 

Each equation should be written in a separate row and 
A conventional full-state feedback controller is designed for 

the uncertain system in Equation (54) to obtain a reference 

model for the MRAC design. Designed state and input gains 

are given below. 

𝒌𝑟 = 0.8444, 𝒌𝑥 = 0.1964  
Therefore, the closed-loop system dynamic is obtained 
as, 

𝒙̇𝒓(𝑡) = 𝐴𝑟𝒙(𝑡) + 𝐵𝒌𝒓𝒓(𝑡) (55) 

Where 𝐴𝑟 = (𝐴 + 𝐵𝒌𝒙)  

𝒙̇𝒓(𝑡) = −12𝒙(𝒕) + 11.9997𝒓(𝑡) (56) 

Where 𝒓(𝑡)   is the reference input. 
Equation (56) is the reference model for the proposed 
MRAC design. The step response of the reference model 
is shown in Figure 7. The response has a 0.15 settling 
time and 0% overshoot with zero steady-state error.  
Note that Equation (56) is used for simulation, but it 
cannot be used for real-time implementation. Instead, a 
state transition matrix is derived and utilized. 
𝜑(𝑡) = 𝑒−22𝑡 is the state transition matrix for Equation 
(56), 

𝑥𝑟[𝑇(𝑘 + 1)] = 𝜑[𝑇𝑘]𝑥[𝑇𝑘] + 𝐴𝑟
−1(𝜑[𝑇𝑘] − 𝐼1×1)𝐵, 𝑘 =

0,1,2, … . 𝑛, 𝑥[0] = 0, generates a response of the 
reference model shown in Figure 7 for a real-time 
application. 

 
Figure 7. Step response of the reference model. 

 

For the controller gain estimator in Equations (22), (23) 
 𝑄 = 0.2  is selected, 𝑃 is calculated by the solution of  
𝑃𝐴𝑟 + 𝐴𝑟

𝑇𝑃 = −𝑄 given 𝐴𝑟  and 𝑄, therefore, 
𝑃 = 0.0083  and, 𝛤 is selected as 0.1 . 
Thus, the controller gain estimators become, 

𝒌̇̂𝑥(𝑡) = −1.42109𝒆(𝑡)𝒙𝑇(𝑡) 

𝒌̇̂𝑟(𝑡) = −1.42109𝒆(𝑡)𝒓𝑇(𝑡) 
(57) 

For the Robust controller gain estimator in Equations 
(26) and (27), 𝜎𝑥 = 𝜎𝑟 = 0.1 are selected and, 𝛤 is 
selected as 0.4 
Thus, the robust controller gain estimators become, 

𝒌̇̂𝑥(𝑡) = −5.6844𝒆(𝑡)𝒙𝑇(𝑡) − 0.1||𝑒||𝒌̂𝒙(𝑡) 

𝒌̇̂𝑟(𝑡) = −5.6844𝒆(𝑡)𝒓𝑇(𝑡) − 0.1||𝑒||𝒌̂𝒓(𝑡) 
(58) 

6.3.  ARBFNN and ASRBFNN Implementation 
ARBFNN and ASRBFNN controllers are designed by 
following the design procedures described in sec.4 and 
sec.5, respectively, for the DC motor approximate system 
dynamic given in Equation (54) 
𝑓(𝑥) = −9.2097𝑥  and 𝑔 = 14.2109 
1-5-1 RBNN structure is used to predict 𝑓(𝑥) for the 
RBFNN controller, and the selected parameters are as 
follows, 
𝑘𝑝 = 30, 𝑐𝑖𝑗 = [6 8 5 6 8] 

𝑏𝑗 = 30, 𝑄 = 100 , 𝑃 = 1.6667 , 𝜎 = 3 

where 𝑗 = 1,2, . . ,5 and 𝑖 = 1 
Based on the selected parameters above, the adaptive 
law is calculated as  

𝑾̇̂ = −5.0001𝑒𝒉(𝒙) (59) 

and the control signal can be obtained by using the 
Equations (31) and (32). 
Considering the system dynamics with input disturbance 
given Equations (42) and (43) for the ASRBFNN design, 
the parameters are selected as follows, 
𝑓(𝑥) = −9.2097𝑥 , 𝑔 = 14.2109 and 𝑑(𝑡) is shown in 
Figures 11,12  
𝑘𝑝 = 30, 𝑐𝑖𝑗 = [6 8 5 6 8], 𝑧 = 3, 𝜏 = 0.022, 𝜂 = 8 

𝑏𝑗 = 200, 𝛥 = 0.05  

where 𝑗 = 1,2, . . ,5 and 𝑖 = 1  
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to eliminate chattering in the response, 𝑠𝑎𝑡 function is 
utilized instead of 𝑠𝑔𝑛 [18]. 

𝑠𝑎𝑡(𝑠) = {
1    𝑠 > 𝛥

𝑘𝑠  |𝑠| ≤ 𝛥
−1    𝑠 < −𝛥

 , 𝑘 =
1

𝛥
 

Based on the selected parameters above, the adaptive 
law is calculated as  

𝑾̇̂ = 0.022𝒔𝒉(𝒙) (60) 

The control signal can be obtained using Equation (47) 
by replacing  𝑠𝑎𝑡 function instead of 𝑠𝑔𝑛 function,  
Note that the integral operation should be applied for 
adaptive laws of the controllers (Equations (57), (58), 
(59), and (60)) to calculate 𝑢(𝑡). Trapezoid rule [20] is 
employed for taking an integral in a real-time application. 
Figure 8 shows the prediction of 𝑓(𝑥) by RBFNN. The 
figure indicates that RBFNN closely approximates the 
system dynamics since 𝑔 is known. 

 
Figure 8. Predicted 𝒇(𝒙)  by RBFNN (𝒇̂(𝒙)). 

 
Figure 9 presents the responses of the ARBFNN, MRAC, 
and PI controllers. The PI controller, tuned for the 
approximated model in Equation (54). It achieves 
superior simulation performance with zero overshoot 
and the shortest settling time for the approximated 
model. Notably, the ARBFNN controller outperforms the 
MRAC, demonstrating significantly reduced overshoot 
and a quicker settling time. Although the MRAC response 
exhibits overshoot and initially reaches the steady state 
with a delay, it quickly adapts at the start of the second 
step input. However, its overall settling time remains 
longer compared to the ARBFNN controller. While all 
controllers show successful performance for the 
approximated system, the real-time implementation 
reveals different system dynamics, as shown in Figure 5. 
In this context, adaptive controllers are expected to 
perform better than the conventional PI controller. 

 
Figure 9.  Controller responses under modeling error. 
 
Figure 10 illustrates that the PI controller, designed for 
an approximated model, proves ineffective during real-
time implementation due to modeling errors. In contrast, 
both the ARBFNN controller and MRAC, which were 
designed based on the approximated model in Eq. (54), 
deliver satisfactory outcomes, closely aligning with the 
simulation results. The figure demonstrates that the 
ARBFNN exhibits superior performance compared to the 
MRAC. 

 

 
Figure 10.  Responses of controllers under modeling 
error for real-time implementation.  
Figure 11 shows the responses of the ASRBFNN and 
Robust MRAC controllers in the context of input 
disturbance, despite the continued presence of an 
inaccurate system model. This scenario is referred to as 
the "input disturbance case" for simplicity. Notably, the 
simulation excludes the PI controller to focus on the 
effects of input disturbance, as the PI controller, designed 



Gökhan Çetin 
Advanced Adaptive Control Strategies Application for Speed Regulation of a 12v Small DC Geared Motor 

 

 

93 

 

for the approximated model, has already been shown to 
be ineffective for real-time applications. Including the PI 
controller would not provide meaningful insights into its 
performance under input disturbance conditions. 
As evidenced in the illustration, the ASRBFNN controller 
excels over the Robust MRAC when facing input 
disturbances. The figure indicates that the ASRBFNN 
controller swiftly adapts to control variations and rapidly 
attenuates disturbances. Conversely, the Robust MRAC 
demonstrates a sluggish initial adaptation, eventually 
accommodating control changes and delivering 
acceptable disturbance rejection. 

 
Figure 11. Responses of the controllers under modeling 
error and input disturbances. 

 
Figure 12 illustrates the real-time application responses 
of the ASRBFNN and Robust MRAC controllers, both 
designed using the approximated model, demonstrating 
their effectiveness in rejecting disturbances in real time. 
The PI controller, finely tuned for the DC motor through 
real-time trial and error, performs flawlessly in the 
absence of input disturbances. This adjustment was 
necessary because the PI controller designed for the 
approximated model was ineffective in real-time 
applications, requiring precise tuning for the exact 
physical motor to assess its disturbance rejection 
capability. However, when input disturbances are 
introduced, the PI controller fails to reject them 
effectively. 
In this context, the figure clearly shows that the 
ASRBFNN controller outperforms the Robust MRAC, 
especially when dealing with input disturbances. The 
ASRBFNN controller quickly adapts to control variations 
and efficiently suppresses disturbances, exhibiting 
minimal overshoot. In contrast, the Robust MRAC has a 
slower initial adjustment, eventually accommodating 
control fluctuations and providing an acceptable 
outcome, though with a more pronounced overshoot, for 
disturbance rejection. The figure underscores the 
consistency between simulation results and real-time 
implementation, highlighting the ASRBFNN controller's 
superior performance in managing disturbances 

 

 
Figure 12. responses of the controllers under modeling 
error and input disturbances for real-time 
implementation. 

6.4.  Adaptive Step-Wise Performance Evaluation 

This section presents a thorough, adaptive, step-wise 
performance analysis for all the proposed controllers. 
Both MRAC and ARBFNN were tested under model 
uncertainty conditions, whereas Robust MRAC and 
ASRBFNN were tested under conditions of model 
uncertainty with input disturbance. Although all the 
results have been summarized in unified tables, each pair 
of controllers is interpreted within its respective 
category for fair comparison. 

All controllers were subjected to a multilevel reference 

input (0 → 6 → 8 → 5 → 6 → 8 → 5 → 6 → 8 → 5), as in 

Figures 10 and 12, to observe their dynamic behavior for 
both rising (up-step) and falling (down-step) transitions. 
Each transition was automatically detected, and the 
following time-domain indicators were computed for 
every step window: 

• Overshoot (OS %): Maximum deviation above the 
reference normalized by step amplitude. 

• Settling Times (STa, STf): Time to enter and stay within 
a ± 5 % band of the reference; STa = adaptive, STf = 
filtered. 

• Mean Absolute Error (MAE): Average absolute 
deviation between output and reference. 

• Ripple: Steady-state oscillation amplitude (peak-to-
peak).  

These metrics were separately calculated for up- and 
down-steps to reveal controller asymmetries during 
acceleration and deceleration. 
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Table 1. Step-Wise Performance Metrics for Rising 
Reference Transitions (up-step) 

 Mean 
OS  

Median 
STa  

Median 
STf  

Mean 
MAE 

Mean 
Ripple  

ARBF 
NN 

19.69 0.305 0.28 0.14 0.282 

ASRBF 
NN 

30.44 — 0.175 0.127 0.168 

MRAC 18.19 0.385 0.485 0.33 0.160 
Robust 
MRAC 

72.39 — 0.615 0.253 0.183 

 
During rising transitions: 
Model-uncertainty group: ARBFNN vs MRAC, ARBFNN 
achieved a smaller MAE and faster settling, 
demonstrating smoother adaptation. MRAC showed 
comparable overshoot but higher steady-state error. 
Disturbance group: ASRBFNN vs Robust MRAC, 
ASRBFNN yielded the lowest error and ripple, while 
Robust MRAC exhibited excessive overshoot due to 
aggressive adaptation. 

Table 2. Step-Wise Performance Metrics for Falling 
Reference Transitions (down-step) 

 Mean 
OS 

Median 
STa  

Median 
STf  

Mean 
MAE 

Mean 
Ripple  

ARBF 
NN 

10.67 0.36 0.36 0.139 0.23 

ASRBF 
NN 

10.56 3.13 0.21 0.127 0.153 

MRAC 12.33 0.72 1.13 0.168 0.08 
Robust 
MRAC 

42.33 3.28 3.38 0.171 0.157 

 
During falling transitions: 
Model-uncertainty group:ARBFNN again outperformed 
MRAC, showing lower overshoot and faster recovery with 
minimal ripple. 
Disturbance group: ASRBFNN preserved the smallest 
MAE and ripple, maintaining high stability during rapid 
decelerations, whereas Robust MRAC had longer settling 
due to over-adaptation. 
All in all, ARBFNN and MRAC for model uncertainty 
within each category, and ASRBFNN and Robust MRAC in 
the case of input disturbance. Over both rising and falling 
transitions, ASRBFNN yielded the most consistent and 
robust tracking with the least oscillation. The experiment 
results confirm that it has better damping, precision, and 
disturbance-rejection capability under dynamically 
varying conditions. 
 

7. Conclusion 
In conclusion, this study evaluated adaptive control 
strategies for a DC motor facing modeling inaccuracies 
and input disturbances. The research encompassed 
various approaches, including MRAC and ARBFNN 
Controllers, as well as Robust MRAC and ASRBFNN 
Controllers to address combined challenges. 
The results from extensive simulations and practical 
implementations highlighted the limitations of 

traditional controller designs in handling uncertain 
system models. Both ARBFNN and MRAC methods 
demonstrated impressive adaptability to dynamic 
changes and modeling uncertainties. ASRBFNN and 
Robust MRAC Controllers also showcased their 
effectiveness in mitigating disturbances. 
The findings indicated that traditional PI controllers 
were inadequate, whereas adaptive controllers 
performed better. This underscores the importance of 
adaptive control techniques in managing the 
complexities of DC motor control. 
Going beyond conventional transient analysis, an 
adaptive, stepwise performance evaluation was 
conducted to assess each controller's behavior under 
multiple rising and falling reference transitions. In 
model-uncertainty conditions, the results showed that 
the ARBFNN outperforms MRAC, demonstrating better 
dynamic adaptability and disturbance-rejection 
capability, with a smaller mean absolute error and faster 
settling time. However, ASRBFNN achieved the best 
balance between robustness, damping, and tracking 
accuracy in model-uncertainty + disturbance. Aggressive 
adaptation caused a larger overshoot in robust MRAC, 
but the system stayed stable within reasonable bounds. 
Overall, ASRBFNN was the most reliable for both up- and 
down-step transitions. 
From the viewpoint of computational burden, MRAC and 
Robust MRAC controllers show the least complexity since 
their adaptation laws consist of simple matrix 
multiplications and parameter updates in each iteration. 
The ARBFNN and ASRBFNN controllers, however, 
include extra calculations with respect to Gaussian 
activation functions and online weight adaptation, which 
slightly increases the execution time. The ASRBFNN 
controller has the highest computation cost among all 
proposed methods because of the involvement of both 
the sliding mode term and the adaptive weight update in 
it. However, the total execution time for all controllers 
remains inside the sampling period (0.05s) for an 
Arduino Uno implementation and thus shows that the 
proposed schemes are fit for real-time applications 
without violating hardware computational burdens. 
Future work could focus on applying these adaptive 
control strategies to robotic systems, particularly 
industrial robotic arms, where DC motors are commonly 
used. Evaluating the performance of adaptive controllers 
in such systems is crucial. In the future, the adaptive 
controllers developed in this work will be combined with 
artificial intelligence techniques such as machine 
learning based optimization and reinforcement learning 
frameworks, for autonomous tuning of adaptation gains 
that reduce computational overhead and further 
enhance robustness in real-time control environments. 
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