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Abstract

This paper investigates the implementation and performance of adaptive control techniques for a 12V small geared DC
motor characterized by modeling errors and input disturbances. This paper discusses the following two primary
approaches: Adaptive Radial Basis Function Neural Network (ARBFNN) Controllers and Model Reference Adaptive Control
(MRAC). In model uncertainty, MRAC and ARBFNN outperformed the simple Proportional-Integral (PI) controller. The
study is further expanded to involve Robust MRAC and Adaptive Sliding Mode Radial Basis Function Neural Network
(ASRBFNN) Controllers to counter the compounded effects of model uncertainty and input disturbances. The versions of
the robust controllers performed better than the conventional PI controller in cases involving both uncertainties and
disturbances. Implementations were done on a 12V geared DC motor testbed with an Arduino microcontroller and
MATLAB's System Identification Toolbox. The results from simulations and experimental applications highlight the greater
flexibility and disturbance rejection capability of the developed advanced adaptive control schemes, making them perform
better than standard PI controllers under challenging conditions.

Keywords: Model-based adaptive control, Adaptive sliding mode control, DC motor, Speed control, Unknown system
parameters

12V KUCUK DC DiSLI MOTORUNUN HIZ DUZENLEMESI iCIN GELISMIS
UYARLANABILIR KONTROL STRATEJILERI UYGULAMASI

Ozet

Bu makale, modelleme hatalari ve giris bozukluklari ile karakterize edilen 12 V kii¢iik dislili DC motor i¢cin uyarlamali
kontrol tekniklerinin uygulanmasini ve performansini arastirmaktadir. Bu makale asagidaki iki temel yaklasimi
tartismaktadir: Uyarlamali Radyal Baz Fonksiyonlu Sinir Agi (ARBFNN) Denetleyicileri ve Model Referansh Uyarlamali
Kontrol (MRAC). Model belirsizliginde, MRAC ve ARBFNN basit Oransal-integral (PI) denetleyiciden daha iyi performans
goéstermistir. Calisma, model belirsizliginin ve giris bozukluklarinin bilesik etkilerini dengelemek icin Glirbtiz MRAC ve
Uyarlamali Kayan Modlu Radyal Baz Fonksiyonlu Sinir Agi (ASRBFNN) Denetleyicilerini icerecek sekilde daha da
genisletilmigtir. Giirbiiz denetleyicilerin versiyonlari, hem belirsizlik hem de bozukluk iceren durumlarda geleneksel Pl
denetleyicisinden daha iyi performans gdstermistir. Uygulamalar, bir Arduino mikrodenetleyici ve MATLAB'In Sistem
Tanimlama Aract ile bir 12 V diglili DC motor test ortaminda gerceklestirilmistir. Simiilasyon ve deneysel uygulamalardan
elde edilen sonuglar, gelistirilen ileri adaptif kontrol semalarinin daha fazla esneklik ve bozulmayi reddetme kabiliyetine
sahip oldugunu ve bu sayede zorlu kogullar altinda standart PI kontrolérlerinden daha iyi performans gésterdigini ortaya
koymaktadir.

Anahtar Kelimeler: Model tabanli adaptive control, Adaptif kayan Kipli kontrol, DC motor, Hiz kontrolii, Bilinmeyen sistem
parametreleri
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and controlled motion applications, and thus are a staple
in robotic drive and actuator systems. They are most
useful in regulating the speed and placement of robot
systems with varying loads, providing the desired
flexibility and response for intricate maneuvers and
operations [1,2]. Proper mathematical models must be
used in constructing effective control systems. Various

1. Introduction

DC motors are found to be used extensively to control
robotics, automotive, and industrial systems. DC motors,
such as gearmotors, are used extensively in robotics due
to their ability to deliver high torque and decent speed
and position control. The motors are essential in smooth
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models can be used in DC motors, even though DC motors
are largely nonlinear due to effects like friction, load
variation, and electrical behavior [3].

Typically, systems are often approximated during
modeling, which subsequently introduces inaccuracies
into the model. When a system can be precisely modeled
and remains untouched by external disturbances like
delay, noise, or fluctuating parameters, conventional
controllers with fixed parameters tend to suffice.
However, in cases where these disruptions come into
play, such as an unknown system model, standard
controllers fall short of delivering the desired
performance. To counteract the adverse impact of these
disruptions and achieve optimal performance,
sophisticated control methods like Adaptive control,
robust control, and resilient control techniques come
into play.

Adaptive control is widely used and an effective control
technique for real-time implementation of controlling a
plant, which can be both linear and nonlinear, since it is
capable of adapting controller parameters to maintain a
desired response in scenarios where the parameters of
the system are unknown or time-varying [4,5]. Adaptive
control can be classified into two primary subcategories:
model-based adaptive control and data-driven adaptive
control. In model-based adaptive control, e.g.,, MRAC, the
controller and adaptation laws are devised according to
the system model. Conversely, in learning-based control,
e.g, ARBFNN, which is a subcategory of model-based
adaptive control, the controller draws from a system
model, but the adaptation mechanism is tailored using
data gathered from the system. Data-driven controllers
only rely on sensor measurements of the system [6].

The authors in [7] developed an extension theory-based
sliding mode controller for brushless DC motors that
adaptively adjusts sliding surface gains, achieving faster
speed tracking and improved robustness over
conventional SMC

Using an actor-critic reinforcement learning agent, the
authors in [8] achieved automatic PID gain tuning for DC
motor speed control, resulting in superior tracking
performance compared to a classical fixed PID controller.
In [9], two adaptive neural architectures were proposed
by the authors. These designs were validated using
comparative simulations and practical experiments on a
turntable servo motor system. The first approach
introduces a robust term, dependent on control gain-
bound information, to address NN approximation errors.
Alternatively, in the second method designed for cases
lacking this information, a new NN structure is created.
This structure involves updating only a scalar weight to
manage unknown nonlinearities, leading to reduced
computational expenses.

In [10], an adaptive control method is devised for
tracking a DC motor system with a dead zone. This
technique effectively incorporates an asymmetric barrier
Lyapunov function to ease initial condition constraints.
Radial basis function neural networks (RBFNN)
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approximate unknown functions in the DC system. The
study demonstrates the motor's ability to trace a desired
path while ensuring signal boundedness.

The main contributions of this paper are as follows:

e Hybrid Adaptive Framework: By combining
Model Reference Adaptive Control (MRAC) and
Adaptive Radial Basis Function Neural Network
(ARBFNN), this article proposes a new hybrid
adaptive control framework for a 12V geared DC
motor operating under model uncertainty and
input disturbance conditions.

e Robust Adaptive Extension: The proposed
structure is extended to Robust MRAC, including
o- and e-modifications, as well as Adaptive
Sliding-Mode RBFNN (ASRBFNN), to further
enhance the robustness against simultaneous
parameter variations and external disturbances.

e Real-time Hardware Implementation: Unlike in
most of the previous studies that remained in a
simulation stage, the proposed controllers are
experimentally implemented on a real 12V
geared DC motor testbed using an Arduino
microcontroller together with the MATLAB
System Identification Toolbox.

e Performance Verification: Experimental and
simulation results demonstrate that the
proposed adaptive and robust controllers
significantly outperform conventional PI
controllers in terms of settling time, overshoot,
and disturbance rejection in practical
applications.

The remaining content of this paper is structured as
outlined below: Section 2 presents the modeling of a DC
motor. In Section 3, the MRAC and Robust MRAC designs
are introduced. The design of ARBFNN is detailed in
Section 4, and ASRBFNN is detailed in Section 5. The
validation of the proposed approaches through
simulations and implementation is discussed in Section
6. Section 7 contains concluding remarks.

2. DC Motor Model

Fixed
field

Armature
circuit

Figure 1. Electric equivalent circuit of the armature and
rotor [11].

Dynamics of the DC Motor given in Figure 1 is
represented by the equations given below [12],

J6(t) + bO(t) = Ki(t) 1)

Li(t) + Ri(t) = V(t) — KO(t) (2)
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where, 8 is the angular position of the motor, i is the

armature current of the motor, and V is the applied input

voltage.

The physical parameters of the motors are,

J: moment of inertia of the rotor (kg x m?)

b: motor viscous friction constant (N X m X s)

K: electromotive force constant and motor torque
m

constant (V/rad/sec), (N M)

R : electricresistance (Ohm)
L: electricinductance (H)

Taking the Laplace transform of Equations (1) and (2)
s(Js + b)O(s) = KI(s) 3)

(4)
is obtained from Equation (4). By

(Ls+ R)I(s) =V(s) —KsO(s)
V(s)—Ks6(s)

I(S) = (Ls+R)
replacing the obtained value of I(s) into Equation (3) and
taking the inverse Laplace transform, [term is
eliminated, and the following differential equation is

achieved.
JLO() + (R] + bL)é(t) + bRO(t) )
= KV(t) — K?0(¢t)

The approximated second-order model of the DC Motor
can be obtained below, if the electrical time constant T, =
% is much smaller than the mechanical one, the term

JLE(t) may be neglected. This yields,

(R] + bL)G(t) + bRO(t) = KV (t) — K?6(t)  (6)
Reconstructing Equation (6) we have

s« (K*+bR)

o(t) = —WH(O +MVU) (7)

Based on the Equations (6) and (7), derivation of the
first-order state space equation and the output equation
for the system is,
Let x; = 6(t), u=V(t)

(K? + bR) K

® +bL) T @® T bL)
which can be written as a state space equation form as,

(8)

X = 403)

(K2 +bR) K ~
ENGET T

x 9)

where x € R is the state, u(t) € R is the control input,
and y € R is the measurement.

3. MRAC Design

r (1)

Con?m]_lcr

Controller
Param.
Estimator
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Figure 2. Direct MRAC and Robust MRAC Scheme.

Although the DC motor model introduced in this study is
a first-order single-state system, the MRAC design
procedure is initially presented in a general Linear Time-
Invariant (LTI) form to provide a complete theoretical
foundation. This general formulation allows the same
adaptive control structure to be directly applicable to
higher-order or multi-input systems. In the subsequent
subsections, this general MRAC framework is specifically
adapted and implemented for the first-order DC motor
model defined in Section 2.

Consider a general LTI continuous system,

#(t) = Ax(t) + Bu(t) (10)
with the measurement equation
y(t) = Cx(t) (11)

where x(t) € R" is the state vector, u(t) € R? is the
control input, and y(t) € R™ is the measurement vector.
A € R™"™ is the state matrix, B € R™? is the input
matrix and C € R™" is the output matrix. Assuming B is
known and A is not exactly known.

Consider the LTI continuous-time system reference
model.

%,(6) = A,,(t) + B,r(t) (12)
where x,.(t) € R" is the state vector, r(t) € RP is the

reference input. 4,, € R™" is the state matrix, B, € R™P
is the input vector. A,, B, are Hurwitz matrix.

Our objective is to design a controller for the DC motor
that follows a reference model that gives the desired
response. For this purpose, a Direct MRAC design [5] is
proposed.

Open loop error dynamic is calculated as;

e(t) = x(t) — x,(t) (13)
e(t) = Ax(t) + Bu(t) — A, x,.(t)-B,r(t) (14)
Direct MRAC is to be designed as
u(t) = k,()x(8) + +k, (OT(®) (15)
where k,(t) € RP*", k,(t) € RP*® are feedback

controller gains that are assigned to the controller by a
designed online adaptive controller.
Closed loop error dynamics is obtained after replacing
Equation (15) into the Equation (14)

e(t) = (A + ka(t)) x(t) + —A,%,(t)
+ Bk, (O)r(t) — B,r(t)

Assuming matching conditions in the Equation (17) is
hold

(16)

A+ Bk, = A,

Bk, = B, (17)
Where k,, k, are ideal feedback controller gains,
error dynamics becomes,
e(t) = A,e(t) — Bk, (t)x(t) — Bk,.(t)r(t)  (18)

Where k,(t) 2 k, — k,(t) and k,(t) 2 k, — k,.(t)
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A Lyapunov function candidate is constructed to design
adaptive controller gains.

1 1 e
V= Ee(t)TPe(;) +5tr (kx(t)TI"x1kx(t)) (19)
+ E tr(Er(t)Tr;IEr(t))

Where P € R™™" is a positive definite matrix, which is the
solution of the PA, + ATP = —(Q, Q € R™" is a positive
definite symmetric matrix. Different selection of Q does
not affect boundedness or the asymptotic behavior, but
affects the transient response. The matrices I, and I. are
positive definite matrices that serve as adaptation gains
in the adaptive law. They determine the rate at which the
adaptive parameters k,(t) and k,(t) are updated.
Specifically, I, and I,. are typically diagonal matrices,
chosen to ensure the stability of the adaptive system and
to adjust the responsiveness of the parameter adaptation
process [5].

After taking the derivative of the function in Equation
(19) and simplifying the resulting equation, we have

1 1
V= Eé(t)TPe(t) + Ee(t)TPé(t)
+otr (Ex(t)Tr;lﬁx(t))

+otr (Ex(t)Tr;lk:x(t)T)

=Y OIS

(20)

YN

+otr (Er(t)Tr;lkr(t))
+ % tr (E,.(t)Tr;lir(t)T)

By substituting Equation (18) into Equation (20) and
simplifying the resulted equation, we have

1
V= Ee(t)T(PAr +ATP)e(t)
+ e(t)TP(—Bk,()x(t)
— Bk,()r)
—tr (Ex(t)Tr;Iﬁx(t))
— tr(k, (DT K, (1))

(21)

Where PA, + ATP = —Q
k,(t), k,(t) are selected as below to cancel out some
terms in the Equation (20)

k,(t) = —I',BTPe(t)x () (22)

k.(t) = —I,BTPe()r (t) (23)
After replacing the Equations (22) and (23) into the
Equation (20), we have;

V() = — 5 e(®7 Qe(t) - e(t) PBE,(0)x(0
—e(t)"PBE,.(t)r
+ tr(k, ()" T TB"Pe(t)x(t)")
+ tr(k,(t)"T; BT Pe(t)r(t)")

Taking the transpose of the terms in Equation (24) and
using trace properties, we can cancel out the terms

except —%e(t)TQe(t) so the Equation (24) is simplified
to,

(24)
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V() = —5 e(®)"Qe(t) (25)

Since Q is positive definite symmetric matrix V < 0 and
V € L, so the equilibrium point is Lyapunov stable
[5,13].

a) Based on the Equation (19) if V € Lo,, k,(t) ,k,(t),
e(t) € Ly

b) Since ‘a’ holds, based on the Equation (18), k,(t)
ke (), T(0),x(t) € L

c) Since ‘b’ holds, Based on the Equation (15), u(t) € L,
thus, Equation (22) and Equation (23) are obtained as
adaptive controller gain estimators for the controller in
Figure 2 and Robust MRAC adaptive controller gains can
be derived as [5,14];

k(t) = —T,BTPe(t)x™(t) — I'yo,|lel [k (t) (26)

/kr(t) = _rrBTPe(t)rT(t) - rrarllellﬁr(t) (27)
The addition of e-mode (error-driven adaptation) and o-
mode (model error-driven adaptation) to MRAC
enhances its robustness against uncertainties and
disturbances. In the e-mode, the control law adjusts
parameters based on the output error and the reference
model, ensuring effective tracking even in the face of
system changes. The o-mode employs the actual plant
output versus the identified model to minimize
deviations, making the controller resilient to
uncertainties [14-16].

Therefore, the combination of these modes boosts MRAC
in the following ways;

The e-mode adjusts parameters via the error signal,
while the o-mode corrects based on model error.
Together, they ensure accurate tracking during
unexpected system shifts. The o-mode lessens sensitivity
to model inaccuracies, actively adapting to differences
between plant behavior and the reference model.
Incorporating both modes improves stability and
performance under uncertainties, expanding the
controller's versatility in real-world scenarios.

4. ARBFNN Controller Design

r(t) X(1)
B Ref.
Model
rmj
| Plant \ e(t)
Controller

<

<
ParfnnA <
Estimator

C on;"l"q! ler

Figure 3. ARBFNN and ASRBFNN controller scheme.

Consider the first-order linear state space equation of the
proposed DC motor in Equation (9) and rewrite the
equation in general form;

x=f(x)+gu

y=x

(28)
(29)
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Assuming the desired speed of the motor is 7y,
The error of the output becomes,
e=r1r;,—x (30)

The control law is to be designed by isolating u in the
Equation (28) and using Equation (33) by disregarding
M

—f(x) + 74 + kye

u=
g

Where f(x) is the predicted f(x) by 1-5-1 RBENN
structure, k,, is the proportional gain,

(31)

The process of obtaining f(x) is as follows [17-19];
Let,

e j=12,..5andi=1

e xisthe input vector,

e ¢ is the coordinate value of the center point of
the Gaussian function of neuron j for the input i

e b = b; is the width value of Gaussian function
for neuron j,

e The weight values of 1-5-1 RBF structure is
w = W] ,

e h=h; represents the radial basis function

vector in the hidden layer of 1-5-1 RBF
Note that, ¢;; and b; should be chosen based on the

scope of input, so that the Gaussian function is mapped
effectively [18,19].

f(x) = WTh(x)

where,

(32)

2
||x—02ij||
hij =e bj

and

By replacing Equation (31) into Equation (28), the error
dynamics become,

e =—kpe+n
Where p= f(x) = f(x)
Select k,, based on Equation (33) so that the root of the
error dynamic equation is in the left part of the s plane
[18,19]. Thus, the error goes to zero as time goes to
infinity.
Optimal weight value can be calculated as,

W = argmin(p)

Then the prediction error regarding the optimal weight
becomes

w=fIW)-f),

(33)

|w| < Wmax

Write the f(x) in terms of w and replace in Equation
(33). Thus, the error dynamics of the system can be
rewritten as

é=—kye+ (f(x) — f(x|W") + w) (34)

Replace Equation (32) into Equation (34),
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é=—kye+(W-W) hx)+o (35)
Define Lyapunov function as,
1 1, T, —
V= EeTPe+%(W— w) (W-w) (36)

Where o is a positive constant and P is a 1x1 positive
definite symmetric matrix that can be obtained by
solving the following equation

37
—k,P — Pkp = —Q (37)
In which Q is 1x1 positive semidefinite matrix
Taking the derivative of the V',
.1 — e
V=sePeto(W- w)'w (38)

Replace Equation (35) and (37) into the Equation (34)

V= ! e"Qe + W—-W")"h(x)e" P
2 - (39
+e"Pw + o (W—-W""W
The derivative of the Lyapunov function
We choose adaptive law (see Figure 3) as
W = —cePh(x) (40)

Substitute W into Equation (39) and simplifying the
achieved equation, we have,

. 1
V=-3 e"Qe+e"Pw (41)

Since Q is a positive definite matrix, the term —% e'Qe
is non-positive. Also, e"Pw can be bounded by some
small constant value related to the prediction error w
and the positive definite matrix P.

Thus, with the appropriate choice of control parameters,
V can be made non-positive, ensuring that V does not
increase, which is a standard approach in Lyapunov
stability theory. This condition V <0 helps in
guaranteeing the stability of the system, meaning the
system's trajectories will not diverge over time.
Therefore, V < 0 and V € L, so the equilibrium point is
Lyapunov stable.

5. ASRBFNN Controller Design
Consider the first-order linear state space equation of a
general DC motor in Equation (28), and rewrite the
equation by adding an input disturbance;

x=f(x)+gu+d (42)
y=x (43)
Where |d| < D is the input disturbance
Assuming the desired speed of the motoris r,,
error of the output becomes,
e=x-—r1y (44)
Sliding mode function for the system selected as,
s =ze (45)
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where z is a positive constant

thus
§=z(f(x)+gu+d—1y) (46)
The control law is to be designed by isolating u in
Equation (49) as
—f(x) + 74 — nsgn(s
u= f( ) d — 159 ( ) (47)

g
n = D. and f(x) is the output neuron of the 1-5-1 RBF
can be obtained by using the same process described in
sec.4

fGo =wTh(x) (48)

let define f(x) by using 1-5-1 RBFNN structure as
described in sec. 4 regarding to optimal weight with
small error € < &p,4, [18] as

Fx) =W h(x) +¢ (49)
Where h(x) can be obtained as

2
[lx=cil
2
2b7?

hij =e
Substituting Equation (47) into Equation (46) we have
$=z(f(x) —nsgn(s) + d) (50)

Where f(x) = f(x) — f(x) = (W' — W")h(x)

Define lyapunov function as below by letting W = W* —
w

1 1
V=§s2+zerw (51)

where 7 is a positive constant

taking derivative of VV,we have
V=s5+1W'W=WT"(sh(x) — W) +s(es+d (52)
—nsgn(s))

We choose adaptive law (see Figure 3) as

W= %sh(x) (53)

Thus, the first term in Equation (52) is canceled. The
first term in the equation is negative, and choosing n >
Emax + D + 10,10 >0,V < —nysgn(s) < 0 so the
equilibrium point is Lyapunov stable.
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6. ASRBFNN Controller Design
6.1. System Setup

Motor Driver

34:1,12V DC HP Motor
with 48 CPR Encoder

Arduino

Figure 4. Implementation of DC motor speed control
circuit diagram.

Figure 4 illustrates the implementation's connection
diagram. For real-time execution of our proposed control
methods, we utilize a 12V High Power 34:1 DC motor
with a 48 CPR encoder, which is connected to the
TB9051FTG motor driver, as depicted in Figure 4. The
motor's mathematical model is derived through Matlab
[11] and employed in our simulation. Within the
diagram, the Arduino assumes the role of controller.
Motor speed is determined by reading signals from
Encoder outputs via Pin 2 and 3, and it is converted in
radians per second (rad/sec). Subsequently, we apply the
controller techniques outlined in our paper to generate
the control signal. Following this, the calculated control
signal is converted to a duty cycle using the equation
255(u\applied voltage ), where the applied voltage is
12V in this instance.

The approximated state-space model for the first-order
speed control of the DC motor is depicted in Figure 4 is
obtained using the MATLAB System Identification
Toolbox. The parameters used are ] = 0.009 kgxm? , b =
0.01 Nmxs, K=0.57 V/rad/s, L =0.006 H, and R = 4.45 Q.
Here K, L, and R values are measured, while the values of
] and b are optimized using the MATLAB System
Identification Toolbox. The resulting dynamic system of
the DC motor is as follows:

x(t) = —9.2097x(t) + 14.2109u(t)

Y(©) = x(t) (>4)

f of DC Motor
Output of Simulated Approximate DC motor Model | |
- = = -Ref Input

20

o
T

o
T

Speed(rad/sec)

Time(sec.)

Figure 5. Modeling DC motor (system identification).
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Figure 5 shows the real-time speed measurement of the
DC motor and response of the estimated state space
model given in Equation (54), given stepwise input. The
figure indicates that the DC motor model has significant
transient and steady-state error.

To enable real-time implementation of speed control for
a DC motor using a microcontroller, we adhere to a
common practice of selecting the sampling time. The
open-loop system's bandwidth is 9.2 rad/s (refer to
Figure 6), which translates to a 1.46 Hz sampling
frequency. To ensure compatibility with both real-time
implementation and simulation, where a model with
error is employed, we opt for a sampling frequency that
is 10 times faster. Consequently, the maximum selectable
sampling time is reduced to 0.0685 seconds (1/14.6). We
ultimately choose a sampling time (T) of 0.05 seconds.
This choice of sampling time allows for the
transformation of the continuous-time controller design
into a discrete-time format. Importantly, this selected
sampling period is consistently used for simulation
purposes to maintain result consistency.

10

T
Bode Diagram

0 | X 0.377964 T
Y 3.76017 xi8ci722e)
ol Y 0.773553

Magritude (dB)

Phase (deg)

-90

10 10° 102 109

10
Frequency (rad/s)

Figure 6. Bode plot of the open-loop system.

6.2. MRAC and Robust MRAC Implementation

Each equation should be written in a separate row and
A conventional full-state feedback controller is designed for
the uncertain system in Equation (54) to obtain a reference
model for the MRAC design. Designed state and input gains
are given below.

k, = 0.8444,k, = 0.1964

Therefore, the closed-loop system dynamic is obtained
as,

Xx,.(t) = A, x(t) + Bk, r(t) (55)
Where A, = (A + Bk,)
X, (t) = —12x(¢t) + 11.9997r(¢) (56)

Where r(t) is the reference input.

Equation (56) is the reference model for the proposed
MRAC design. The step response of the reference model
is shown in Figure 7. The response has a 0.15 settling
time and 0% overshoot with zero steady-state error.
Note that Equation (56) is used for simulation, but it
cannot be used for real-time implementation. Instead, a
state transition matrix is derived and utilized.

@(t) = e~??t is the state transition matrix for Equation
(56),
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X [T(k + D] = @[Tk]x[Tk] + A7 (@[Tk] = I1x1)B, k =

0,1,2,...n,x[0] =0, generates a response of the
reference model shown in Figure 7 for a real-time
application.

Response of the Designed Refefence Model for MRAC
- - - -Step Input

Speed(rad/sec)

0 1 2 3 4 5

Time(sec.)

Figure 7. Step response of the reference model.

For the controller gain estimator in Equations (22), (23)
Q = 0.2 is selected, P is calculated by the solution of
PA, + ATP = —Q given A, and Q, therefore,

P = 0.0083 and, I" is selected as 0.1 .

Thus, the controller gain estimators become,

k. (t) = —1.42109e(t)x" (t)

k. (t) = —1.42109e(t)r" (t)
For the Robust controller gain estimator in Equations
(26) and (27), o, = 0, = 0.1 are selected and, I is

selected as 0.4
Thus, the robust controller gain estimators become,

k. (t) = —5.6844e(6)x" () — 0.1]le| ey (t)
k.(t) = —5.6844e(t)r" (t) — 0.1||e||k,.(t)

6.3. ARBFNN and ASRBFNN Implementation
ARBFNN and ASRBFNN controllers are designed by
following the design procedures described in sec.4 and
sec.5, respectively, for the DC motor approximate system
dynamic given in Equation (54)

f(x) =—-9.2097x and g = 14.2109

1-5-1 RBNN structure is used to predict f(x) for the
RBFNN controller, and the selected parameters are as
follows,

k, =30,c;; =[6856 8]

bj =30,Q =100,P = 1.6667 ,0 = 3
wherej=12,...5andi =1

Based on the selected parameters above, the adaptive
law is calculated as

W = —5.0001eh(x) (59)
and the control signal can be obtained by using the
Equations (31) and (32).

Considering the system dynamics with input disturbance
given Equations (42) and (43) for the ASRBFNN design,
the parameters are selected as follows,

f(x) =—-9.2097x, g = 14.2109 and d(t) is shown in
Figures 11,12

k, =30,¢;; =[68568],z=3,7=0.022,n=8

bj = 200,4 = 0.05

wherej=1,2,..,5andi=1

(57)

(58)
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to eliminate chattering in the response, sat function is
utilized instead of sgn [18].

1 s>4 1

ks |s| <4 , k= il
-1 s<-4
Based on the selected parameters above, the adaptive
law is calculated as

W = 0.022sh(x) (60)

The control signal can be obtained using Equation (47)
by replacing sat function instead of sgn function,
Note that the integral operation should be applied for
adaptive laws of the controllers (Equations (57), (58),
(59), and (60)) to calculate u(t). Trapezoid rule [20] is
employed for taking an integral in a real-time application.
Figure 8 shows the prediction of f(x) by RBFNN. The
figure indicates that RBFNN closely approximates the
system dynamics since g is known.

sat(s) =

0

f(x) of the Model of DC Motor
Predicted f(x)

)
(=}

f(x)(rad/sec)
A
o

&
S

-80 | I 1
0 10 20 30 40

Time(sec.)

Figure 8. Predicted f(x) by RBFNN (f(x)).

Figure 9 presents the responses of the ARBFNN, MRAC,
and PI controllers. The PI controller, tuned for the
approximated model in Equation (54). It achieves
superior simulation performance with zero overshoot
and the shortest settling time for the approximated
model. Notably, the ARBFNN controller outperforms the
MRAC, demonstrating significantly reduced overshoot
and a quicker settling time. Although the MRAC response
exhibits overshoot and initially reaches the steady state
with a delay, it quickly adapts at the start of the second
step input. However, its overall settling time remains
longer compared to the ARBFNN controller. While all
controllers show successful performance for the
approximated system, the real-time implementation
reveals different system dynamics, as shown in Figure 5.
In this context, adaptive controllers are expected to
perform better than the conventional PI controller.
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Figure 9. Controller responses under modeling error.

Figure 10 illustrates that the PI controller, designed for
an approximated model, proves ineffective during real-
time implementation due to modeling errors. In contrast,
both the ARBFNN controller and MRAC, which were
designed based on the approximated model in Eq. (54),
deliver satisfactory outcomes, closely aligning with the
simulation results. The figure demonstrates that the
ARBFNN exhibits superior performance compared to the
MRAC.
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Figure 10. Responses of controllers under modeling
error for real-time implementation.

Figure 11 shows the responses of the ASRBFNN and
Robust MRAC controllers in the context of input
disturbance, despite the continued presence of an
inaccurate system model. This scenario is referred to as
the "input disturbance case" for simplicity. Notably, the
simulation excludes the PI controller to focus on the
effects of input disturbance, as the PI controller, designed
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for the approximated model, has already been shown to
be ineffective for real-time applications. Including the PI
controller would not provide meaningful insights into its
performance under input disturbance conditions.
As evidenced in the illustration, the ASRBFNN controller
excels over the Robust MRAC when facing input
disturbances. The figure indicates that the ASRBFNN
controller swiftly adapts to control variations and rapidly
attenuates disturbances. Conversely, the Robust MRAC
demonstrates a sluggish initial adaptation, eventually
accommodating control changes and delivering
acceptable disturbance rejection.

\

r T T T
10 ‘— - - -Ref Input

Response of ASRBFNN Under Input Disturbance
of Robust MRAC Under Input Disturbance

Speed(rad/sec)
&l
T

0 5 10 15 20 25 30 35 40
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©
g
: ﬂ J_ﬂ
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0 5 10 15 20 25 30 35 40
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Figure 11. Responses of the controllers under modeling
error and input disturbances.

Figure 12 illustrates the real-time application responses
of the ASRBFNN and Robust MRAC controllers, both
designed using the approximated model, demonstrating
their effectiveness in rejecting disturbances in real time.
The PI controller, finely tuned for the DC motor through
real-time trial and error, performs flawlessly in the
absence of input disturbances. This adjustment was
necessary because the PI controller designed for the
approximated model was ineffective in real-time
applications, requiring precise tuning for the exact
physical motor to assess its disturbance rejection
capability. However, when input disturbances are
introduced, the PI controller fails to reject them
effectively.

In this context, the figure clearly shows that the
ASRBFNN controller outperforms the Robust MRAC,
especially when dealing with input disturbances. The
ASRBFNN controller quickly adapts to control variations
and efficiently suppresses disturbances, exhibiting
minimal overshoot. In contrast, the Robust MRAC has a
slower initial adjustment, eventually accommodating
control fluctuations and providing an acceptable
outcome, though with a more pronounced overshoot, for
disturbance rejection. The figure underscores the
consistency between simulation results and real-time
implementation, highlighting the ASRBFNN controller's
superior performance in managing disturbances
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Figure 12. responses of the controllers under modeling
error and input disturbances for real-time

implementation.

6.4. Adaptive Step-Wise Performance Evaluation
This section presents a thorough, adaptive, step-wise
performance analysis for all the proposed controllers.
Both MRAC and ARBFNN were tested under model
uncertainty conditions, whereas Robust MRAC and
ASRBFNN were tested under conditions of model
uncertainty with input disturbance. Although all the
results have been summarized in unified tables, each pair
of controllers is interpreted within its respective
category for fair comparison.

All controllers were subjected to a multilevel reference
input(0 6 —>8—>5—>6—>8—>5—>6—>8—5),asin
Figures 10 and 12, to observe their dynamic behavior for
both rising (up-step) and falling (down-step) transitions.
Each transition was automatically detected, and the
following time-domain indicators were computed for
every step window:

e Overshoot (OS %): Maximum deviation above the
reference normalized by step amplitude.

e Settling Times (STa, STf): Time to enter and stay within
a + 5 % band of the reference; STa = adaptive, STf =
filtered.

e Mean Absolute Error (MAE): Average absolute
deviation between output and reference.

e Ripple: Steady-state oscillation amplitude (peak-to-
peak).
These metrics were separately calculated for up- and

down-steps to reveal controller asymmetries during
acceleration and deceleration.
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Table 1. Step-Wise Performance Metrics for Rising
Reference Transitions (up-step)

Mean Median Median Mean Mean
0S STa STf MAE Ripple
ARBF 19.69 0.305 0.28 0.14 0.282
NN
ASRBF 3044 — 0.175 0.127 0.168
NN
MRAC 18.19 0.385 0.485 0.33 0.160
Robust 72.39 — 0.615 0.253 0.183
MRAC

During rising transitions:

Model-uncertainty group: ARBFNN vs MRAC, ARBFNN
achieved a smaller MAE and faster settling,
demonstrating smoother adaptation. MRAC showed
comparable overshoot but higher steady-state error.
Disturbance group: ASRBFNN vs Robust MRAC,
ASRBFNN yielded the lowest error and ripple, while
Robust MRAC exhibited excessive overshoot due to
aggressive adaptation.

Table 2. Step-Wise Performance Metrics for Falling
Reference Transitions (down-step)

Mean Median Median Mean Mean
0S STa STf MAE Ripple
ARBF 10.67 0.36 0.36 0.139 0.23
NN
ASRBF 10.56 3.13 0.21 0.127 0.153
NN
MRAC 12.33 0.72 1.13 0.168 0.08
Robust  42.33  3.28 3.38 0.171  0.157
MRAC

During falling transitions:

Model-uncertainty group:ARBFNN again outperformed
MRAC, showing lower overshootand faster recovery with
minimal ripple.

Disturbance group: ASRBFNN preserved the smallest
MAE and ripple, maintaining high stability during rapid
decelerations, whereas Robust MRAC had longer settling
due to over-adaptation.

All in all, ARBFNN and MRAC for model uncertainty
within each category, and ASRBFNN and Robust MRAC in
the case of input disturbance. Over both rising and falling
transitions, ASRBFNN yielded the most consistent and
robust tracking with the least oscillation. The experiment
results confirm that it has better damping, precision, and
disturbance-rejection capability under dynamically
varying conditions.

7. Conclusion

In conclusion, this study evaluated adaptive control
strategies for a DC motor facing modeling inaccuracies
and input disturbances. The research encompassed
various approaches, including MRAC and ARBFNN
Controllers, as well as Robust MRAC and ASRBFNN
Controllers to address combined challenges.

The results from extensive simulations and practical
implementations  highlighted the limitations of
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traditional controller designs in handling uncertain
system models. Both ARBFNN and MRAC methods
demonstrated impressive adaptability to dynamic
changes and modeling uncertainties. ASRBFNN and
Robust MRAC Controllers also showcased their
effectiveness in mitigating disturbances.

The findings indicated that traditional PI controllers
were inadequate, whereas adaptive controllers
performed better. This underscores the importance of

adaptive control techniques in managing the
complexities of DC motor control.

Going beyond conventional transient analysis, an
adaptive, stepwise performance evaluation was

conducted to assess each controller's behavior under
multiple rising and falling reference transitions. In
model-uncertainty conditions, the results showed that
the ARBFNN outperforms MRAC, demonstrating better
dynamic adaptability and disturbance-rejection
capability, with a smaller mean absolute error and faster
settling time. However, ASRBFNN achieved the best
balance between robustness, damping, and tracking
accuracy in model-uncertainty + disturbance. Aggressive
adaptation caused a larger overshoot in robust MRAC,
but the system stayed stable within reasonable bounds.
Overall, ASRBFNN was the most reliable for both up- and
down-step transitions.

From the viewpoint of computational burden, MRAC and
Robust MRAC controllers show the least complexity since
their adaptation laws consist of simple matrix
multiplications and parameter updates in each iteration.
The ARBFNN and ASRBFNN controllers, however,
include extra calculations with respect to Gaussian
activation functions and online weight adaptation, which
slightly increases the execution time. The ASRBFNN
controller has the highest computation cost among all
proposed methods because of the involvement of both
the sliding mode term and the adaptive weight update in
it. However, the total execution time for all controllers
remains inside the sampling period (0.05s) for an
Arduino Uno implementation and thus shows that the
proposed schemes are fit for real-time applications
without violating hardware computational burdens.
Future work could focus on applying these adaptive
control strategies to robotic systems, particularly
industrial robotic arms, where DC motors are commonly
used. Evaluating the performance of adaptive controllers
in such systems is crucial. In the future, the adaptive
controllers developed in this work will be combined with
artificial intelligence techniques such as machine
learning based optimization and reinforcement learning
frameworks, for autonomous tuning of adaptation gains
that reduce computational overhead and further
enhance robustness in real-time control environments.
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