

Carbon Footprint Calculations of Processing in Aquaculture: A case study of Turkish Salmon from Sinop Province in Türkiye[M1]

Hünkar Avni Duyar¹, Ünal Öz^{2*}

¹Sinop University, Faculty of Fisheries, Department of Fishing and Seafood Processing Technology, Sinop-TÜRKİYE

²Sinop University, Faculty of Fisheries, Department of Hydrobiology, Sinop-TÜRKİYE

*Corresponding Author: unaloz@sinop.edu.tr

Received: 07.08.2025

Accepted: 19.12.2025

Published: 01.03.2026

How to Cite: Duyar, H. A., & Öz, Ü. (2026) Carbon cootprint calculations of processing in aquaculture: A case study of Turkish Salmon from Sinop province in Türkiye[M1]. *Acta Aquatica Turcica*, 22(1), 220108. <https://doi.org/10.22392/actaquatr.1759663>

Abstract: The rapid increase in the world population and human needs lead into the gradual depletion of existing resources and increased food production. Today, intensive farming systems, which allow for greater production per unit area, have become widespread. As a result, many environmental problems such as climate change and global warming have arisen. The effects of climate change are increasingly noticeable, and as a result, the environmental sustainability of food systems has become a critical priority. Aquaculture is an important food source worldwide. However, aquaculture production processes can cause various environmental impacts. This study was conducted to determine the carbon footprint of Turkish salmon processed at the aquaculture processing facility located in the Sinop Organized Industrial Zone during its journey from sea to table. The study calculated the CO₂ emissions from fossil fuels consumed during the transportation of the fish from farms located in the Black Sea to land and the processing facility. Furthermore, the fish arriving at the facility: CO₂ emissions from electricity were calculated as a result of tank tilting, buffer tank, laser head cutting, conveyor belt, hand slaughter line, grading, fish gutting, air compressor, waste disposal, treatment, ventilation, glazing, forklift charging, hydrophore, ice machine, refrigeration machine, and combi boiler use. In addition to greenhouse gas emissions from transportation (fossil fuel/diesel) and processing (electricity), CO₂ emissions from ice and water used in fish transportation and in the facility were also included in the calculations. As a result of the study, a total of 0.761 kg CO₂ emissions were found for one kg of salmon.

Keywords

- Black Sea
- Carbon Footprint
- Salmon
- Processing
- Sustainability

1. INTRODUCTION

Carbon footprint is a measure of the total greenhouse gas emissions directly and indirectly caused by a product, service, or activity. In the context of aquaculture, a carbon footprint refers to the amount of carbon dioxide equivalent (CO₂) released into the atmosphere at all stages, from fishing activities to aquaculture operations and other processes in the supply chain. These calculations allow us to identify concentrated emission sources, compare the environmental impacts of different production methods, and develop mitigation strategies (Kılıç & Amet, 2017; Li et al., 2025).

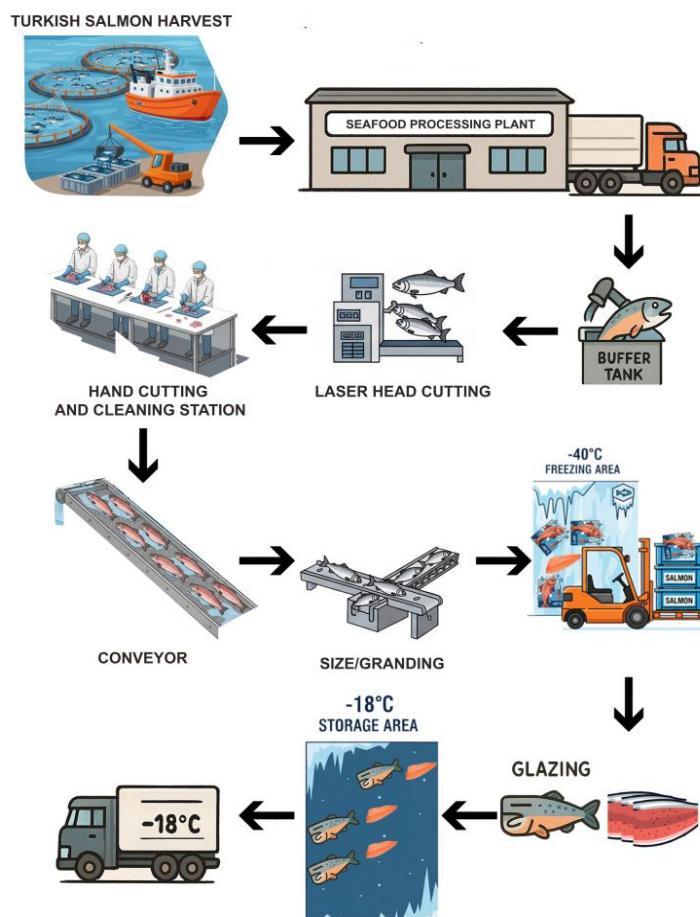
With the global population growing and dietary habits changing, the demand for aquaculture products is constantly increasing (FAO, 2022). However, ensuring environmental sustainability is crucial when meeting this demand. Greenhouse gas emissions from aquaculture production, particularly during energy consumption, feed production, and waste management, can contribute to climate change (Guan et al., 2022; Rifqi et al., 2022). Aquaculture is the fastest-growing food production industry, while preventing overexploitation of marine fish populations, it is emerging as a viable option for reducing the high amounts of greenhouse gas emissions caused by

cattle production. Consuming approximately 200 g of beef results in 12 kg of CO₂ emissions, and 200 g of lamb results in 8.12 kg of CO₂ emissions. These values have been calculated as 1.58 kg for consuming 200 g of fish (salmon/tuna) and 2.36 kg for 200 g of shrimp (Anonymous, 2025a). Therefore, carbon footprint calculations have become a critical tool for understanding and reducing the environmental impacts of aquaculture.

International trade has been shown to benefit global economic growth; however, it also results in increased greenhouse gas emissions (Wu et al., 2021). In particular, analysis of national carbon footprints and their link to global trade has highlighted the energy costs associated with living and consumption habits (Hertwich & Peters, 2009). This fundamental understanding, particularly with the increasing public awareness of climate change, has paved the way for subsequent developments in estimating individual and family carbon footprints.

Turkish salmon (*Oncorhynchus mykiss*), produced by transferring rainbow trout from freshwater to marine environments, has become one of the most important aquaculture products in Türkiye. According to 2024 production data, Türkiye produced 60,686 tons of rainbow trout, of which 20,540 tons were produced in Sinop Province alone. This corresponds to approximately 33.8% of the national Turkish salmon production, positioning Sinop as the leading production center in Türkiye. Turkish salmon typically reaches a market size of 3.5–4.0 kg and has gained increasing demand in European Union markets due to its nutritional quality and competitive production costs. The dominance of Sinop in Turkish salmon production makes the region a critical hub not only for aquaculture farming but also for

processing, employment and regional economic development (URL1).


Given the rapidly growing production volume and export-oriented structure of Turkish salmon, understanding the environmental impacts of processing activities in Sinop is essential for developing sustainable aquaculture strategies in Türkiye.

This research was conducted to determine the carbon footprint of Turkish salmon processed at the seafood processing facility in the Sinop Organized Industrial Zone during its journey from sea to table.

2. MATERIAL AND METHODS

2.1. Material

In this study, Turkish salmon raised in salmon farms in Sinop province of Türkiye on the Black Sea coast were selected as sample material. Because these fish are brought to the Black Sea from different provinces, the carbon footprint of the fish from hatching to transportation to the sea and growth was not included in the study. The study calculated CO₂ emissions from fossil fuels consumed during the transportation of fish from farms established in the Black Sea to land and processing facilities. Furthermore, CO₂ emission value were calculated from electricity used by as a result of tank tilting, buffer tanks, laser beheading, conveyor belts, hand-slaughtering lines, grading, gutting, freezing (-40°C), glazing, storage (-18°C), air compressors, waste disposal, treatment, ventilation, forklift charging, hydrophones, ice machines, refrigerators, and combi boilers. In addition to greenhouse gas emissions from transportation (fossil fuel-diesel) and processing (electricity), CO₂ emissions from the transportation of fish and the use of ice and water in the facility were also added to the calculations (Figure 1).

Figure 1. The Journey of Black Sea Salmon to Consumers.

The functional unit of this study was defined as 1 kg of processed Turkish salmon. All calculations were based on a reference production batch of 50 tons processed in a single shift at the seafood processing facility. Energy, fuel, water consumption and related greenhouse gas emissions were first calculated for the total batch (50 tons) and then normalized to one kilogram of product. The system boundary of the study covers the stages from fish harvesting at sea cages, transportation to land, transport to the processing facility, and processing operations including freezing, glazing and cold storage. Earlier life-cycle stages such as hatchery operations, grow-out phase and feed production were excluded from the system boundary.

The growth phase of salmon production was excluded from this study because the primary objective was to quantify greenhouse gas emissions associated with processing and post-harvest logistics. Turkish salmon is produced in different regions of Türkiye under varying

farming conditions, feed formulations and management practices. Including the grow-out phase would introduce significant variability and uncertainty, reducing the comparability and clarity of the processing-stage assessment. Therefore, this study intentionally focuses on emissions generated from harvesting, transportation and processing stages, which are directly controlled by the processing facility.

In Türkiye, the establishment of marine aquaculture farms is regulated by environmental legislation aimed at protecting sensitive marine ecosystems. According to the national regulation, fish farms are prohibited in enclosed bays and gulf, and offshore farms must be located at least 1,250 m from the coastline and in areas with a minimum water depth of 40 m. (URL2).

These legal requirements directly influence the distance between offshore cages and landing points, thereby affecting fuel consumption and greenhouse gas emissions associated with fish harvesting and transportation.

Table 1. Electricity use at a Turkish salmon processing plant (50 tons/shift).

Purpose	Power used (kW)	Operating time (hours)	Total electricity consumed (kWh)
Tank Tilting	4	8	32
Buffer Tank	2	8	16
Laser Head Cutting	0.75	8	6
Konveyor Belt	1.5	8	12
Hand Cutting Line	3	8	24
Sizing	10	8	80
Spoon Vacuum	24	8	192
Air Compressor	14	8	112
Waste Removal	30	8	240
Treatment Total	40	8	320
Ventilation	10	8	80
Freezing	6250	8	50000
Glazing	5	8	40
Frozen Storage	1000	8	8000
Forklift Charging (620 Amp, 48 Volt)	30	4	120
Hydrophore	20	4	80
Ice Machine	100	36	3600
Cold Water Machine	80	8	640
Combi Boiler	4000	2	8000
Total	10624.25		71594

As shown in Table 1, the electricity consumption for processing one kg of Turkish salmon was found to be $71594/50000 = 1.432$ kWh. This calculation resulted in the greenhouse gas emissions resulting from processing one kg of Turkish salmon (Table 2).

Table 2. Carbon emissions from electricity use (kg CO₂/one kg salmon).

Electricity consumption (kWh)	Emission factor (kg/kWh)	Loss-leakage (%)	Total CO ₂ emission (kg)
1.432	0.442	0.13	0.715

As shown in Table 2, the greenhouse gas emission value from electricity consumption for processing one kg of Turkish salmon is calculated as 0.715 kg CO₂.

3.2. Transportation Emission Value

The distance from the cages to the Demirci village fishing harbor is 4 miles (7.41 km) (Figure 2).

Figure 2. Study area.

The boat travels this distance empty and returns loaded. The salmon transport distance from the harbor to the aquaculture processing facility in the Sinop Organized Industrial Zone is 2 km. The transport trucks travel this distance empty and return loaded. In the fossil fuel

calculations, data from both the boat and the trucks, including empty and loaded returns, are taken into account. Data on the transportation journey of Turkish salmon from the sea to the processing facility is given in Table 3.

Table 3. Fossil fuel consumption (diesel) of 25 tons of salmon from the sea to the processing facility.

Purpose	Transportation Distance (km)	Engine power (hp)	Fuel consumed (L)
Demirci-sea roundtrip + fish harvest	14.82	500	400
Demirci-processing facility round trip	4	470	3,30
Total			403.30

As shown in Table 3, transporting 1 kg of salmon from sea to shore consumes $400/25000 = 0.016$ liters of diesel, while the diesel consumption of the fish by road to the processing plant is calculated as $3.30/25000 = 0.000132$ liters.

The carbon footprint of the fossil fuel burned by the boat traveling from the Demirci village fishing harbor to the net cages and by the trucks

used for land transport to the facility was calculated, and the results are presented in Table 4. Calculations were made assuming that there are 50 tanks with a volume of 1 m^3 on a boat, and half of the tanks contain ice water and the other half contain fish. The fossil fuel consumed by the boat's auxiliary engine for fish harvesting was also included in the calculations.

Table 4. Fossil fuel consumption (diesel) emission value of salmon from sea to processing plant (kg CO₂ per kg of Turkish salmon).

Transportation	F.C. (L)	d (kg/L)	Σ F.C. (tons)	C.F. (TJ/Gg)	E.C. (TJ)	E.F. (kg/TJ)	CO ₂ (kg)
Land transport	0.000132	0.833	1.10x10 ⁻⁷	43	4.73x10 ⁻⁹	74100	0.00035
Sea Transport	0.016	0.845	1.352x10 ⁻⁵	43	5.814x10 ⁻⁷	74100	0.0431

F.C. = Fuel consumption (L), d = Density (kg/L), Σ F.C.=Total Fuel consumption (tons), C.F.= Conversion factor. (TJ/Gg), E.C.=Energy consumption (TJ), E.F.=Emission factor (kg/TJ)

The total greenhouse gas emissions from fossil fuels used for the transportation of one kilogram of salmon from the sea to the aquaculture processing plant were found to be 0.0435 kg CO₂ (Table 4).

3.3. Emission Value from Water Consumption

The amount of water consumed to process 50 tons of salmon in the aquaculture processing

plant (including ice and water used in transport tanks for fish transportation, personnel and factory hygiene, fish cleaning, crate cleaning, personnel consumption, etc.) totaled 94 tons, and the water consumption of one kilogram of salmon was found to be 1.88 liters (94000/50000). The CO₂ emission (kg) from this consumption was determined to be 0.0026 (Table 5).

Table 5. CO₂ emission (kg) related to water consumption of one kilogram of salmon.

Amount of water consumed (L)	Emission factor (kgCO ₂ /L)	Total CO ₂ emission (kg)
1.88	0.0014	0.0026

To determine the total carbon footprint of one kilogram of Turkish salmon prepared for consumption at the facility, the CO₂ emissions

(kg) resulting from transportation, electricity, and water consumption are given in Table 6.

Table 6. CO₂ emissions (kg) of one kilogram of processed salmon.

Emission sources	CO ₂ emissions (kg)
Electricity	0.715
Fossil fuel (diesel)	0.0435
Water Use	0.0026
Total	0.761

As shown in Table 6, the CO₂ emissions from electricity (kg) for one kg of cleaned, frozen, and stored Turkish salmon were found to be 0.715, fossil fuel (diesel) CO₂ emissions (kg) = 0.0435, and water consumption CO₂ emissions (kg) = 0.0026. Total CO₂ emissions were determined to be 0.761 kg.

Due to the essential amino acids it contains, seafood is a food that should be consumed at every stage of life (such as childhood, adolescence, pregnancy, birth, and old age) for a healthy/balanced diet, growth, development, intelligence, judgment, healthy decision-making, and the development of intellectual thought. It is an undeniable fact that greenhouse gas emissions occur as a result of animal production, although not as much as is thought. However, it should not be forgotten that animal production, despite all its challenges, is a necessary activity for the continuation of the ever-increasing human existence (Sariözkan et al. 2024).

The study found that salmon's electricity-related greenhouse gas emissions were 0.715 kg CO₂. Studies on energy consumption during fish processing indicate that a significant amount of energy is required for various processes, including cooling and cooking. Energy audits in fish processing facilities have shown that advanced systems can optimize electricity use and efficiency, highlighting the need to integrate smart energy management technologies into fish processing operations (Alzahrani et al., 2019). Studies have shown that the carbon footprint associated with fish farming (including processing stages) contributes significantly to overall emissions (Sherry & Koester, 2020). Life cycle assessments, in particular, have shown that energy consumption and material use are significant factors affecting the greenhouse gas emissions of aquaculture systems, particularly for species such as salmon (Sherry & Koester, 2020; Ellis & Tiller, 2019). Furthermore, energy-

intensive processes such as heat treatment have been found to contribute to higher emissions, indicating that methods that consume significant amounts of electricity for salmon processing can lead to significant CO₂ outputs (Park & Yoon, 2018). The relationship between energy use and CO₂ emissions is highlighted by research showing that inefficient heat treatment methods are associated with increased energy consumption and environmental impact (Indzere & Blumberga, 2020; Dreimanis et al., 2020). Understanding the efficiency of processing methods is crucial for assessing associated carbon emissions. Figures for electricity consumption and CO₂ emissions in Turkish salmon processing are supported by a comprehensive understanding of energy consumption patterns in aquaculture and the assessment of emissions through life cycle assessments. Such analyses demonstrate the interconnectedness of energy efficiency and environmental sustainability in the fish processing sector.

The study found that the greenhouse gas emissions from salmon transportation were 0.0435 kg CO₂. The Turkish salmon farm selected for the study is a 14.82 km round-trip distance from the port. The distance from the port to the seafood processing facility is only 4 km round-trip. Distance in maritime and land transport is crucial in greenhouse gas emissions. The research results are similar to those of other studies. The transportation of seafood, particularly from sea to land-based processing facilities, involves both maritime and land transport, each contributing individually to the carbon footprint. The use of fossil fuels for these transportation methods means that emissions are directly related to the distance traveled. Research shows that carbon emissions from transportation can vary significantly. Maritime transport generally has lower greenhouse gas emissions than land transport, despite significantly higher carbon dioxide levels per ton/km of goods transported (Mundaca et al., 2021). Furthermore, studies highlight that emissions from seafood transportation can be significant and can vary depending on logistics choices (MacLeod et al., 2020). To provide a comprehensive overview of the environmental impacts associated with seafood processing and distribution, it is crucial to analyze emissions from land and sea transportation collectively (Nguyen & Giao,

2024). The combination of these factors suggests that local processing units closer to aquaculture farms can increase sustainability by minimizing travel distances and thus reducing overall emissions. Carbon footprint assessments in aquaculture indicate that significant emissions arise not only from farming practices but also from the logistics used to distribute seafood from production to consumption points (Li et al., 2025). Furthermore, it is important to consider potential mitigation strategies in transportation logistics to further reduce emissions. Optimizing vehicle use, along with switching to alternative energy vehicles in land transportation, offers opportunities to reduce reliance on fossil fuels for transportation (Jayakumar et al., 2017). Furthermore, improving more efficient transportation methods and landing and processing practices can contribute to reducing emissions in the aquaculture sector (Rifqi et al., 2022; Wei et al., 2016).

Consequently, emissions associated with diesel consumption from salmon processing depend on geographical variables, effectively highlighting the importance of transportation methods and distances involved. Prioritizing efficient logistics and adopting cleaner technologies will be critical to reducing the carbon footprint of aquaculture operations.

In this study we found that a total of 94 tons of water is used to process 50 tons of fish at the facility. The greenhouse gas emissions from water used at each stage of salmon transportation and processing were found to be 0.0026 kg CO₂. Water use in seafood processing is essential for both operational efficiency and environmental sustainability. Excessive water use can lead to increased energy demand for heating and cooling, increasing greenhouse gas (GHG) emissions. A study on life-cycle assessments of seafood processing shows that inefficient water use during thermal processing contributes significantly to overall emissions (Nguyen & Giao, 2024). This correlation supports the claim that overuse of resources such as water can increase greenhouse gas emissions due to excessive energy consumption. Conversely, inadequate use of water can lead to inefficiencies that can indirectly increase emissions. When processing facilities use water inefficiently, for example, during cleaning or cooling, additional energy is often consumed to maintain operational efficiency. Research shows that optimizing water

flow and recycling practices can lead to reduced energy consumption and, consequently, lower emissions (Naing et al., 2024). These findings align with broader discussions around the water-energy nexus, which emphasize that minimizing water use in energy-intensive processes is vital for reducing greenhouse gas emissions (Naing et al., 2024).

Furthermore, studies on the environmental impacts of various seafood processing methods reveal that the types of systems used and their associated water requirements (whether for cooling or heating) are directly related to greenhouse gas emissions (Pelletier et al., 2009). Efficient water management is vital not only to address emissions but also for overall resource sustainability. The balance of water use must be carefully managed; excessive water can lead to waste and increased energy use, while insufficient water can necessitate reliance on energy-intensive systems. The relationship between water use and greenhouse gas emissions in seafood processing presents a significant challenge. Both excessive and insufficient water use can negatively impact emission profiles, necessitating that processing facilities focus on efficiency and sustainability in their water management practices. Implementing optimized systems and recycling mechanisms not only promotes resource conservation but also increases overall efficiency by reducing greenhouse gas emissions. A total of 0.761 kg of CO₂ was found to be the greenhouse gas emissions from fossil fuels, electricity, and water during the journey of one kg of salmon from sea to table, from the sea to land, and from the landing point to the aquaculture processing facility and storage. In other studies, greenhouse gas emission values per kg of products are 47-65 kg CO₂ for steak (MacLeod et al. 2020); 9-129 kg CO₂ (Nijdam et al. 2012); 6.7 kg CO₂ for pork (MacLeod et al. 2020); 12.31 kg CO₂ (Poore & Nemecek, 2018); 9.87 kg CO₂ for poultry (Poore & Nemecek, 2018); 10-150 kg CO₂ for lamb and mutton (Nijdam et al. 2012); and 5.6 kg CO₂ for aquaculture (MacLeod et al. 2020). It was found to be 3-15 kg CO₂ (Nijdam et al. 2012). The low probability of the research result (0.761 kg CO₂) may be because the hatching, transportation, growth, and feeding of the fish were not included. Furthermore, transportation distances may affect this situation. These studies show that the carbon footprint of aquaculture products can

vary significantly depending on the species, production method, geographical location, and technologies used.

Recent studies have highlighted the environmental impacts of various protein sources, particularly in aquaculture. For example, Li et al. (2025), calculating greenhouse gas emissions from livestock farming, stated that beef contributes significantly to these emissions and that methane emissions associated with enteric fermentation account for a significant portion of these emissions. In this context, emissions from salmon processing appear significantly lower, suggesting that salmon may be a more environmentally friendly protein option compared to conventional livestock farming. Similarly, comparing dietary greenhouse gas emissions from different protein sources in the UK, they highlighted that red meat has a significantly higher carbon footprint than fish and seafood (Scarborough et al., 2014). This suggests that carbon emissions from salmon processing are lower than those from livestock farming, while also positioning aquaculture as a more sustainable method of protein production.

Aquaculture, particularly salmon farming, has several advantages over terrestrial livestock farming. It typically has a significantly lower carbon footprint per kilogram of protein produced. The study highlights the need for efficiency in seafood processing facilities; improvements to these facilities could further reduce emissions associated with fossil fuel and electricity use (Nguyen & Giao, 2024). Furthermore, the 0.761 kg CO₂ figure cited does not account for the early life stages of fish, such as hatching, growth, and feeding. However, if these stages were included, the footprint would likely remain lower, even compared to emissions from other animal proteins. For example, while beef requires extensive resources for both grazing and feed production, aquaculture systems can utilize a variety of sustainable inputs, such as waste products from other industries (Bianchi et al., 2022).

Climate legislation increasingly holds industries accountable for their emissions. Initiatives such as the Paris Agreement aim to limit global warming by reducing greenhouse gas emissions (Retegi et al., 2023). Aquaculture also plays a critical role in food security and resilience, especially given the challenges posed

by climate change and a growing global population.

Labor-related emissions were not included in the carbon footprint calculations due to the lack of precise data on individual commuting distances, modes of transport, and work schedules of personnel. Labor-related emissions in seafood processing plants are generally considered to contribute marginally compared to energy-intensive processes such as freezing, cold storage, and transportation. However, labor-related emissions are considered a limitation of the current study and may be considered in future assessments where detailed labor data are available.

4. CONCLUSION

In conclusion, the determination that processing one kilogram of salmon results in 0.761 kg of CO₂ emissions reflects a positive perspective on the sustainability of aquaculture compared to land-based animal protein sources. The data highlights the potential of aquaculture as a lower-emission alternative, particularly with globally changing diets. Given the increasing demands for favorable climate policies and sustainable food systems, investing in aquaculture offers both an immediate solution to protein production challenges and a long-term strategy for reducing greenhouse gas emissions. As the world grapples with the complexities of climate change, transitioning to sustainable practices in aquaculture will be vital to ensuring food security and reducing environmental impacts.

Aquaculture is one of the fastest-growing agricultural sectors globally and is becoming increasingly important for producing sustainable and healthy diets with relatively low climate impacts. Compared to livestock farming, particularly beef production, seafood production has lower carbon emissions. Furthermore, some species can contribute to a long carbon cycle by extracting carbon from aquatic environments. While animal food production sectors vary widely in terms of environmental performance, aquaculture and capture fisheries produce fewer greenhouse gases than red meat farming and poultry.

CONFLICT OF INTEREST

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

AUTHOR CONTRIBUTIONS

Fiction: HAD; Literature: HAD, ÜÖ; Methodology: HAD, ÜÖ; Performing the experiment: HAD, ÜÖ; Data analysis: HAD, ÜÖ; Writing: HAD, ÜÖ, Supervision: HAD, ÜÖ. All authors approved the final draft.

ETHICAL STATEMENTS

Local Ethics Committee Approval was not obtained because experimental animals were not used in this study.

DATA AVAILABILITY STATEMENT

Data supporting the findings of the present study are available from the corresponding author upon reasonable request.

REFERENCES

Alagöz, İ., Coşkun, E., Babaoğlu, S., Kaykaç, R., & Cidaci, A. (2022). EÜAŞ merkez kampüs 2021 yılı karbon ayak izinin hesaplanması. *Çevre İklim ve Sürdürülebilirlik*, 23(2), 161-166.

Alzahrani, A., Petri, I., & Rezgui, Y. (2019). Modelling and implementing smart microgrids for fish-processing industry., IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1-8. <https://doi.org/10.1109/ice.2019.8792575>

Anonymous, (2025a). <https://mobile-review.com/all/wp-content/uploads/2021/11/treepoint-report-2021.pdf> (Date of access: 27.07.2025)

Anonymous, (2025b). <https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-uretim-tuketim-emisyon-faktorleri> (Date of access: 27.07.2025)

Anonymous, (2025c). [\(III-Türkiye Elektrik Enerjisi İletim ve Dağıtım Kayıtları\)](http://teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri) (Date of access: 27.07.2025)

Anonymous, (2025d). <https://epdk.gov.tr-detay-downloaddocuments> (Date of access: 27.07.2025)

Bianchi, M., Hallström, E., Parker, R., Mifflin, K., Tyedmers, P., & Ziegler, F. (2022). Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice.

Communications Earth & Environment, 3(1). <https://doi.org/10.1038/s43247-022-00516-4>

Civelekoglu, G., & Biyik, Y. (2020). Isparta ilinde karayolu kaynaklı karbon ayak izinin hesaplanması. *Bilge International Journal of Science and Technology Research*, 4(2), 78-87.

Dreimanis, K., Indzere, Z., Blumberga, D., & Šerevičienė, V. (2020). Multi-criteria evaluation of efficiency in fish processing. *Environmental and Climate Technologies*, 24(2), 300-308. <https://doi.org/10.2478/rtuect-2020-0074>

Ellis, J., & Tiller, R. (2019). Conceptualizing future scenarios of integrated multi-trophic aquaculture (imta) in the norwegian salmon industry. *Marine Policy*, 104, 198-209. <https://doi.org/10.1016/j.marpol.2019.02.049>

FAO. (2022). *The State of World Fisheries and Aquaculture 2022*. Rome.

Guan, H., Sun, Z., & Wang, J. (2022). Decoupling analysis of net carbon emissions and economic growth of marine aquaculture. *Sustainability*, 14(10), 5886. <https://doi.org/10.3390/su14105886>

Hertwich, E. G., & Peters, G. P. (2009). Carbon footprint of nations: a global, trade-linked analysis. *Environmental science & technology*, 43(16), 6414-6420.

Indzere, Z., & Blumberga, D. (2020). Fish processing efficiency ranking. *Environmental and Climate Technologies*, 24(3), 135-144. <https://doi.org/10.2478/rtuect-2020-0092>

IPCC. (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 3. Intergovernmental Panel on Climate Change, Paris).

Jayakumar, A., Chalmers, A., & Lie, T. (2017). Review of prospects for adoption of fuel cell electric vehicles in new zealand. *Iet Electrical Systems in Transportation*, 7(4), 259-266. <https://doi.org/10.1049/iet-est.2016.0078>

Kılıç, İ., & Amet, B. (2017). Bir süt sığırı işletmesinin karbon ayak izinin tahminlenmesi: Bursa örneği. *Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG)*, 34(Ek Sayı), 132-140.

Li, H., Zhou, X., Li, G., Liang, J., Liu, H., Li, Y., & Liang, S. (2025). Carbon footprint assessment and reduction strategies for aquaculture: a review. *Journal of the World Aquaculture Society*, 56(1). <https://doi.org/10.1111/jwas.13117>

MacLeod, M., Hasan, M., Robb, D., & Mamun-Ur-Rashid, M. (2020). Quantifying greenhouse gas emissions from global aquaculture. *Scientific Reports*, 10(1). <https://doi.org/10.1038/s41598-020-68231-8>

Mundaca, G., Strand, J., & Young, I. (2021). Carbon pricing of international transport fuels: impacts on carbon emissions and trade activity. *Journal of Environmental Economics and Management*, 110, 102517. <https://doi.org/10.1016/j.jeem.2021.102517>

Naing, P., Babel, M., Karthe, D., & Stamm, J. (2024). Analysis of the water-energy-carbon nexus for sustainable development of the selected industries. *Sustainable Development*, 32(5), 5836-5860. <https://doi.org/10.1002/sd.2994>

Nguyen, N., & Giao, N. (2024). Estimating greenhouse gas emissions from a seafood processing facility. *Journal of Ecological Engineering*, 25(2), 93-102. <https://doi.org/10.12911/22998993/176250>

Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. *Food policy*, 37(6), 760-770.

Park, H., & Yoon, W. (2018). Computational fluid dynamics (cfd) modelling and application for sterilization of foods: a review. *Processes*, 6(6), 62. <https://doi.org/10.3390/pr6060062>

Pelletier, N., Tyedmers, P., Sonesson, U., Scholz, A., Ziegler, F., Flysjö, A., & Silverman, H. (2009). Not all salmon are created equal: life cycle assessment (lca) of global salmon farming systems. *Environmental Science & Technology*, 43(23), 8730-8736. <https://doi.org/10.1021/es9010114>

Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. *Science*, 360(6392), 987-992.

Retegi, J., Igartua, J., & Kamp, B. (2023). Classification of industrial sectors based on their profiles of greenhouse gas emissions and policy implications. *Journal of Industrial Engineering and Management*, 16(2), 425. <https://doi.org/10.3926/jiem.5375>

Rifqi, M., Rofiq, R., Rahman, A., Wardhana, R., & Nazar, F. (2022). Low carbon emission shrimp farming development model. *The Journal of Indonesia Sustainable Development Planning*, 3(2), 192-203. <https://doi.org/10.46456/jisdep.v3i2.307>

Sarıözkan, S., Küçükoflaz, M., & Demir, S. (2024). İklim Değişikliğinin Asıl Sorumlusu Hayvancılık Sektörü Mü? *Dicle Üniversitesi Veterinerlik Fakültesi Dergisi*, 17(2):194-197. <https://doi.org/10.47027/duvetfd.1556027>

Scarborough, P., Appleby, P., Mizdrak, A., Briggs, A., Travis, R., Bradbury, K., & Key, T. (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the uk. *Climatic Change*, 125(2), 179-192. <https://doi.org/10.1007/s10584-014-1169-1>

Sherry, J., & Koester, J. (2020). Life cycle assessment of aquaculture stewardship council certified atlantic salmon (salmo salar). *Sustainability*, 12(15), 6079. <https://doi.org/10.3390/su12156079>

URL1.https://www.avrupahaber.net/haber/sinop-turk-somonu-uretiminde-turkiye-de-liderligini-surduruyor_9026/

URL2. <https://www.resmigazete.gov.tr/eskiler/2020/10/20201028-1.htm>

Üreden, A., & Özden, S. (2018). Kurumsal karbon ayak izi nasıl hesaplanır: teorik bir çalışma. *Anadolu Orman Araştırmaları Dergisi*, 4(2), 98-108.

Wei, J., Zhao, C., Zhang, L., Yang, L., Zuo, R., Hou, S., & Chang, Y. (2016). Effects of short-term continuous and intermittent feeding regimes on food consumption, growth, gonad production and quality of sea urchin *strongylocentrotus intermedius* fed a formulated feed. *Journal of the Marine Biological Association of the United Kingdom*, 97(2), 359-367. <https://doi.org/10.1017/s0025315416000448>

Wu, Z., Yang, L., Chen, Q., & Ye, Q. (2021). The impacts of international trade on global greenhouse gas emissions: A thought experiment based on a novel no-trade analysis. *Journal of environmental management*, 300, <https://doi.org/10.1016/j.jenvman.2021.113836>