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Highlights (Onemli noktalar)

> Ik olarak, belirtilen optimizasyon yontemlerin literatiir taramas: yapumustir. / Initially,
the literatur reviews of the specifsied optimization methods have been done.

»  Daha sonra, bu metotlar yapisal optimizasyon (kirig) bakimindan kiyaslanmugtir. / Then,
these methods have been compared in terms of structural optimization (cantilever beam).

»  Sonuglara gore, metotlar ve kullanim alanlari tablolastirilmistir ve arastirmacilara yol
gosterici oneri sunmustur. / Regarding results, methods and their applications were
tabulated and they have been presented to resarchers guiding conclusions.

Aim (Amag): This study aims to compare the non- gradient based optimization methods to define
the possible best methods for structural optimization of cantilevear beams. / Bu ¢alisma, kirisin
yapisal optimizasyou igin miimkiin olan en iyi yontemleri tamimlamak amaciyla egimsiz
optimization yontemleri karsilastirmayr amaglamaktadur.

Originality (Ozgiinliik): This study compounds the informative tabulated contents for the
optimization review studies. / Bu ¢alisma optimizasyon derleme makaleleri i¢in bilgilendirici
tablolastirllmig icerikleri bir araya getirmigtir.

Results (Bulgular): The possible best non-gradient optimization methods can be determined for the
cantilevear beam. / Kiris i¢in miimkiin olan en iyi egimsiz optimizsayon yontemleri belirlenebilir.

Conclusion (Senucg): The important points to be taken into consideration by researchers have
beenindicated for future works. / Gelecekteki ¢alismalar i¢in arastrmacilarin dikkat etmesi
gerekenonemli noktalar belirtilmistir.
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Gradient-based methods are utilized in traditional topology optimization studies. This approach
is based on a point-by-point technique, which depends on the gradient information of the
objective functions regarded as independent variables. Despite the fast response, this approach
can lead them to find local optimal solutions, but it faces problems in defining the global optimal
solutions in large-scale problems or high-degree functions. For this reason, non-gradient methods
that give better solutions have been developed to solve these struggles. This study examines the
nature-inspired methods developed over the last 25 years, which are called Genetic Algorithms,
Ant Colony Optimization, Particle Swarm Optimization, and Artificial Neural Networks, and
presents flowcharts to illustrate their principles. These methods are clarified via a cantilever
beam. According to the results, methods are compared, and Particle Swarm Optimization can
provide a reasonable solution to determine the optimal solution. These comparisons are tabulated
and may be a guide for researchers.
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Geleneksel topoloji optimizasyon ¢aligmalarinda egimli yontemler olarak belirtilen metotlar
kullanilmaktadir. Bu yaklasim, bir dizi bagimsiz degiskene bagli olarak amag¢ fonksiyonun
tiirevine dayanan hesaplamali nokta teknigine baglidir. Bu metotlar, hizli ¢6ziimler vermesine
ragmen, kapsamli iglemler, yiiksek mertebeli fonksiyon gibi durumlarda yerel optimum
¢ozlimleri bulmakta; kiiresel sonuglarda problemlerle karsilagilmaktadir. Karsilagilan sorunlari
¢ozmek amagli daha iyi sonuglar elde edilen egimsiz yontemler gelistirilmistir. Bu ¢alismada, son
25 yilda yapilan egimsiz yontemler olarak belirtilen ve dogadan ilham alan Genetik Algoritmalar,
Karinca Kolonisi Optimizasyonu, Pargacik Siiriisii Optimizasyonu ve Yapay Sinir Aglart adli
yontemler hakkinda aragtirmalar yapilmis ve ¢aligma prensipleri akis semast ile belirtilmistir. Bu
yontemler, ozellikle kiris 6rnegi ile detaylandirilmistir. Sonuglara bagli olarak, yontemler
karsilastirilmakta ve Pargacik Siirii Optimizasyonu optimum ¢oziimil belirlemek i¢in uygun bir
sonu¢ sunulabilmektedir. Bu karsilagtirmalara dayanarak, arastirmacilara rehber olabilecek
kiyaslama tablosu olusturulmustur.

1. INTRODUCTION (GIRiS)

Topology optimization addresses a key engineering
challenge: determining the optimal distribution of
material within a given space to maximize structural
performance. Initially developed for mechanical
design, this technique has found applications in
diverse fields such as fluid dynamics, acoustics,
electromagnetism, optics, and multi-physics
problems. The process typically involves iterative
analysis and design modifications.

Different categories of optimization techniques are
sorted as gradient-based methods and non-gradient-
based methods. The gradient-based method depends
on the direction of the objective function’s gradient.
This method generally converges quickly and
requires fewer function evaluations, particularly
when considering the number of independent
variables. Despite the advantages, the main
drawback of this method is that the gradient-based
methods converge to a local optimum and a global
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optimum depending on the initial conditions of the
system.

In contrast to the gradient-based methods, the non-
gradient-based methods do not depend on the
gradient of the function and work based on the
function evaluation. This method tries to mimic
nature algorithms, and one of the main differences
in this method is that the non-gradient-based
methods search multiple points in space rather than
a single point [1].

Naturally, topology optimization techniques have
advanced and evolved due to complex problems and
limitations of gradient-based methods. Although
non-gradient, nature-inspired methods have
struggles and limitations, these methods can be
suitable to handle the non-differentiable, discrete or
multi-objective problems. Indeed, these methods
have strengths in terms of flexibility, global
capability, and effectiveness in complex model
space.

Topology optimization is a primary approach in
structural optimization, aiming to find the optimal
structure that meets specific requirements, such as
functionality. Furthermore, structural topology can
be determined through optimal modifications of
connections and holes in the design, as well as the
size and shape of the structures, achieved by
redistributing material in an iterative method.
Therefore, structural topology optimization can be a
compelling approach to select the applicable initial
structural topologies [2-3].

Topology optimization for structures, as defined as
a shape optimization problem, has gained attention
in the last decades. Hence, several studies have built
upon and improved earlier advancements in
homogenization theory and numerical optimization,
laying the groundwork for Bendsee and Kikuchi's
influential 1988 work on numerical topology
optimization. Since this initial "homogenization
approach," the field has evolved in various
directions, including: (a) density-based methods;
(b) level set methods; (¢) methods using topological
derivatives; (d) phase-field methods; and (e)
evolutionary methods, among others. Density and
evolutionary approaches in topology optimization
use straightforward design variables linked to
elements or nodes. In comparison, the level set
method, often paired with topological derivatives,

utilizes shape derivatives to determine the optimal
topology. Recently, hybrid approaches have
emerged, where filtered density fields in advanced
projection techniques increasingly mirror the level
set function used in level set methods [4-10].

In light of this information, Genetic Algorithm
(GA), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), and Neural Network
(NN) methods can be addressed in terms of
structural engineering and explained in Section 2.
The comparison of these methods is clarified and
concluded briefly in Section 3.

2. LITERATURE
INCELEMESI)

REVIEW  (LITERATUR

2.1. Genetic Algorithms on Topology
Optimization (Topoloji Optimizasyonunda Genetik
Algoritmalar)

Inspired by natural selection, the Genetic Algorithm
(GA) is a search algorithm based on a population
that employs the "survival of the fittest" principle.
Each new generation is created by using the
operators created for this algorithm and iteratively
applying these operators to individuals within the
population. The core components of a Genetic
Algorithm (GA) are chromosome representation,
selection, crossover, mutation, and the computation
of the fitness function. The GA process follows
these steps: Firstly, the Genetic Algorithm (GA)
process begins by randomly generating an initial set
of chromosomes. Then, the fitness of each
chromosome is assessed. Two chromosomes are
selected for reproduction based on their fitness
scores in the third step. Indeed, these selected
chromosomes undergo a single-point crossover
process with a certain probability to create an
offspring. Finally, one operator of the genetic
algorithm, named mutation, is applied evenly to this
offspring with a specific mutation chance, resulting
in a mutated offspring. This mutated offspring is
added to the new population. These steps of
selection, crossover, and mutation are repeated until
the new population is fully formed. Given that GA
can provide a diverse set of solutions, it can be used
in many engineering areas such as structural
operations, control engineering, computer games,
artificial intelligence, deep learning, and image
processing [11-14]. The flow chart for the Genetic
Algorithm can be seen in Figure 1.
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Figure 1. Flow chart of Genetic Algorithm [17] (Genetik Algoritmanin Akis Semast [17])

In terms of structural optimization, several studies
have been conducted over the last decades [2, 15-
21]. Based on these studies, structural optimization
started with the truss optimization. Ohsaki’s study
[15] indicates the optimal topologies of truss
systems under static loading conditions. Indeed,
singularity problems due to the zero cross-sectional
area are overcome with GA methods. The cross-
section of every member was designed as a string of
binary data. Firstly, initial values were determined
randomly, and the fitness value was defined via a
function. Then, the other processes, mutation and
crossover, are applied to find an optimal solution.
Finally, parents were selected, and children were
produced until the optimal solution was achieved.
However, this algorithm can be affordable for large
truss systems. Another study [17] addressed that the
traditional ground  structure method was
compensated for by GA methods optimization. In
this study, the selection of penalty functions was
essential to avoid different local optimums in each
new population. Numerical examples were
simulated with varying numbers of nodes. As an
improvement, this method can be integrated into
rigid jointed structures. According to [2], topology
optimization for beam and plate examples involves
a combination of graph representation of

geometrical structures and ranking the results using
fitness assignment and stochastic sampling. The
procedure begins by creating a graph representation
for the genetic algorithm to work on. For their first
example in [2], a cantilever plate with the left side
of the plate fixed on the wall and a force applied
vertically at the right side of the plate at the
midpoint is used. Figure 2 shows the mesh and
graphical representations of the cantilever plate as
shown in Figure 3.

Using these graph representations and genetic
algorithms, the constrained optimization for an
artificial unconstrained objective function will be
calculated, and at the end, the optimized topology
result will be found. To achieve this result, a penalty
function approach is necessary to generate feasible
individuals within the population. The optimized
topology for the cantilever plate, as shown in
Figures 4 and 5, corresponds to the two different
graph representations in Figure 3.

As a conclusion, in all studies [15-21], the Genetic
Algorithm method was applied as a novel method,
especially in contrast to the ground structure
topology method, and they reached advantages in
the GA method. Furthermore, the selection of the
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penalty and fitness function becomes crucial to take
these advantages.

24 x12 Mesh

'¢P=l

Figure 2. Cantilever plate mesh used for the optimization [2] (Optimizasyon i¢in kullanilan konsol plaka ag1 [2])

-

(a) Graph with 3 vertices and 2 edges (b) Graph with 5 vertices and 6 edges

Figure 3. Examples of two graph representations used for minimum compliance design [2] (Minimum
uyumluluk tasarimu igin kullanilan iki grafik gdsteriminin 6rnekleri [2])

aaSESEESEERRNNR

Figure 4. Three-vertex two-edge graphical representation based optimization solution [2] (Ug késeli iki
kenarli grafiksel gosterime dayali optimizasyon ¢oztimii [2])
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Figure 5. Five-vertex and six-edge graphical representation based optimization solution [2] (Bes késeli ve
alt1 kenarl1 grafiksel gosterime dayali optimizasyon ¢6ziimii [2])

2.2.Ant Colony Optimization on Topology

Optimization (Topoloji Optimizasyonunda Karinca
Kolonisi Optimizasyonu)

Ant Colony Optimization (ACO) uses a group of
computer-created ants to find the optimum point for
a given optimization problem. These virtual ants
then share information about the quality of their
solutions through a communication mechanism
analogous to how real ants communicate [22]. The
proposed solution follows a structured sequence
comprising Initialization, Initial Design Generation,
Solution Component Selection, Analysis and
Evaluation, Cycle Completion Verification, and
Pheromone Update. Initializations start with a
certain number of sections, and a certain number of
paths are selected. A pheromone level characterizes
each path. This level indicates the suitability of the
path. These level of phenomena depends on the
number of design variables. The next step is
constructing the colony of ants. Each of these ants
create a solution of its own. Each time an ant
follows a path, the pheromone level is decreased.
When all the ants select a path and follow, the
probabilities of the paths are recalculated. Indeed,
using an objective function, the results of all ants are
calculated and compared. An optimal local search
can also be applied to the solutions. After these
pheromone levels around the path s will be updated.
These updates can be evaporation or reinforcement.
These can be selected if we have any specific rules;
more high-quality solutions depend on the objective
function result, and to reduce uniformly to avoid
unlimited accumulation and to encourage
exploration [23-24]. The flow chart for the ant
colony optimization is shown in Figure 6. These
processes are repeated until a stagnation point is
reached or predefined criteria are met. This
optimization can be used in civil engineering,

timetabling, data mining, cell placement in circuit
designs, the vehicle routing problem, and even in
music [25-30]. Regarding the scope of this study,
there are several studies in structural topology [31-
34].

Hassani et. al [31] used an ant colony optimization
algorithm for topology optimization. Real ants can
locate the shortest path between the nutrient source
and their nest by relying on a chemical substance
called pheromones, rather than visual cues. This
behavior has inspired the creation of Ant Colony
Optimization (ACO), a method in which a group of
computers creates ants that work together to address
a combinatorial problem by transmitting indirect
information through an artificial pheromone trail.
This trail builds up over time through a learning
process that rewards effective solutions to the
problem. For example, one of the cases uses a
cantilever beam with boundary conditions shown in
Figure 7. Lastly, the findings of optimal topology
are shown in Figure 8.

Luh et. al [32] explored the classic cantilever beam
problem using a modified Ant Colony Optimization
(ACO) algorithm. The goal was to find the most
efficient structures by minimizing weight while
maintaining sufficient stiffness. The design space
was broken down into finite elements, and the
algorithm, much like a colony of ants, built up
various designs, element by element. When
subjected to four distinct loading scenarios, the
method did not yield a single perfect answer.
Instead, it produced a wide array of functional
topologies, each representing a unique balance of
stiffness and weight. The resulting designs were not
just different in shape but also in their internal
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makeup, showing both truss-like and more
composite-like structures. This demonstrates the
algorithm's power in generating diverse solutions,
providing designers with a valuable set of
lightweight alternatives tailored to specific
performance or manufacturing needs.

In their respective studies on using Ant Colony
Optimization (ACO) for structural design, Kaveh et
al. [31] and Luh and Lin [32] approached the
problem with different goals. Kaveh focused on a
practical, clear-cut method to achieve the stiffest
possible structure for a given amount of material.
Their approach treated the design problem as a
straightforward on-or-off decision for each element,
which avoids the ambiguous "grey areas” seen in
other methods. They even added a technique to
remove non-functional parts, resulting in designs
that are both realistic and easy to build. In contrast,
Luh and Lin took a more conceptual and exploratory
path. Instead of seeking a single optimal design,
they aimed to discover a whole variety of high-
quality solutions. They improved the basic ACO
algorithm with features like "elitist ants" and
"multiple-colony memories" to encourage the
creation of diverse and innovative designs. Their
work highlights that many reasonable solutions can
exist for a single design problem, offering engineers
a range of viable and creative options. Essentially,
while Kaveh et al. delivered a direct and efficient
way to create a manufacturable design, Luh and Lin
demonstrated how to evolve the ACO method itself
to foster diversity and robustness in generating
structural topologies.

2.3.Particle Swarm Optimization on Topology
Optimization (Topoloji Optimizasyonunda Pargacik
Siirtistt Optimizasyonu)

Particle Swarm Optimization is a stochastic
optimization method that utilizes the collective
behavior of animal groups, such as insects, herds,
birds, and fish. In other words, PSO simulates how
these swarms cooperate to find resources, with each
member adjusting its search pattern based on its
own experiences and those of its peers. The main
design principles of this method draw from two
main areas: evolutionary algorithms, which share
the use of a swarm to explore a wide area of the
objective function's solution space concurrently,
and artificial life, focusing on the study of artificial
systems exhibiting life-like characteristics [35,36].
The algorithm structure is sorted into eight parts.

These parts are mainly related to adopting
populations, developing selection strategies,
modifying position or velocity strategies, and
maintaining population diversity. These steps are
shown in Figure 9 as a flow chart. Furthermore,
parameters such as inertia weight, learning factors,
position and speed limits, and initial and size of
swarm are crucial in this algorithm. Although the
PSO is a recent method, it garnered significant
attention in  many areas. Particle swarm
optimization can be used in engineering, healthcare,
environmental, industrial, and commercial
applications [37-44].

In terms of structural optimization [45,46], based on
the study [45], particles refer to a set of arbitrary
vectors generated as a solution to the problem. The
swarm flies or goes over the domain of the problem,
and particles detect a new location or paths in each
step. In this way, the quality of locations can be
related to the defining fitness function properly.
However, in traditional methods, the swarm can be
located for the new location, close to the best
particle location, and kept in memory. This situation
can affect the essential points in the tracking path in
the current particle, and local minimums can be
trapped. Therefore, the weighted particle can be
determined for the new particles and adapt the
velocity  formulation. Regarding  numerical
examples, results indicated that the integrated PSO
eliminates the drawbacks and can be a sufficient
method for discrete and continuous systems.

Luh et al.'s study [46] introduces a modified binary
particle swarm optimization (BPSO) algorithm
specifically for continuous structural topology
optimization. The algorithm translates its binary
decisions into a physical design using a special
mapping scheme. It begins with a randomized set of
designs. It evaluates them based on a multi-
objective fitness function that considers stiffness,
weight, and stress, while also penalizing designs
that punish constraints. The method uses adaptive
rules to balance exploring the design space with
refining current solutions, and a multi-swarm
memory to save diverse good designs, preventing it
from converging on just one answer too early. When
tested on standard cantilever plate problems, the
proposed BPSO proved effective, generating a wide
variety of structurally sound and efficient designs,
including truss-like layouts. Its improved diversity
and solution quality, when compared to other
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optimization methods, confirm its effectiveness as a
robust tool for this type of structural design.

The particle's position and velocity correspond to
the genotype parameters, while the binary positions
correspond to the phenotype parameter. These
binary positions are utilized to map the structure of
the topology optimization problem. Figure 10
shows how the binary particle to topology mapping
is done.

Both studies apply swarm intelligence to structural
optimization, but they target different types of
problems and use different enhancements. Luh [46]
adapted Particle Swarm Optimization (PSO) to a
binary framework to handle continuous topology
optimization. Their main contribution is a robust
way to translate the algorithm's binary decisions

( Start )

into a physical design, allowing it to efficiently
explore different material layouts and produce a
wide range of feasible solutions. In contrast,
Mortazavi and Togan [45] extend PSO to a more
complex problem involving truss systems. Their
approach simultaneously optimizes the size, shape,
and topology of the truss. They introduce
specialized techniques, such as weighted particles
and rules, which help them deal with constraints,
thereby improving the algorithm's ability to find
feasible solutions and converge effectively. In short,
[46] work addresses the challenge of making PSO
work for binary design spaces in continuous
structures, while [45] work tackles the mixed
continuous and discrete variables found in truss
optimization. Together, they demonstrate the
versatility of PSO.

Create ants

4

Put ants on an entry state

)

Select next state

Is it a final
state?

0.8

1

Deposit pheromone
J

Daemon activities

)

Evaporate pheromone

Is exit
criterion
satisfied?

0.4

D

Figure 7. Cantilever beam problem defined in [31] (Tanimlanan konsol kiris problemi [31])
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b

Figure 8. Final results of the optimization including the nose and not respectively [31] (Burun ve burun
olmayan kisimlar1 igeren optimizasyonun nihai sonuglari [31])

Start

Swarm initialization

'+=

Particle fitness evaluating

v

Calculating the individual
historical optimal position

v

Calculating the swarm
historical optimal position

v

Updating particle velocity and
position according to the velocity
and position updating equation

Figure 9. Particle swarm optimization flowchart [35] (Parcacik siiriisii optimizasyon akis semasi [35])
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Figure 10. Binary particle domain method-based mapping for topology (Topoloji igin ikili parcactk alani
yontemi tabanl esleme)
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2.4.Neural Network on Topology Optimization
(Topoloji Optimizasyonu Sinir Ag1)

The human nervous system contains a vast network
of interconnected neurons, which are called nerve
cells. The term "neural™ is an adjective derived from
"neuron,” while "network™ refers to a graph-like
structure. Aurtificial Neural Networks (ANNSs) are
computing systems that draw inspiration from the
biological neural networks found in humans. These
systems are also known as "Neural Nets," "parallel
distributed processing systems,” or “connectionist
systems [47,48].

To be classified as an ANN, a computing system
must have a directed graph structure. In this
structure, the nodes (or vertices) perform simple
computations, and the connections  (or
edges/links/arcs) link pairs of these nodes. This
structure is a fundamental concept from elementary
graph theory, which defines a directed graph as a set
of nodes and the connections between them [47].
Neural networks can be used for speech recognition,
several engineering areas, computer vision, and
pattern recognition [47-53].

Banga et al. [54] work on using a deep learning
method based on a 3D encoder-decoder
Convolutional Neural Network to improve the
solutions of the Solid Isotropic Material with
Penalization process. The proposed method first
uses SIMP to perform iterations to obtain an
intermediate solution. Then, using the neural
network (NN) based on density distribution, the NN
creates the results. From the results, the NN
calculated the same result with % 40% less
computation. In Figure 11, the results are shown.
The left side shows the structure and the forces

acting on it. The right side shows the CNN
prediction and the results of the optimization
program.

Meng et al. [55] use a neural network based on
finite element analysis, which focuses on solving
reliability-based topology optimization. Again, this
article focuses on decreasing computational time.
The method uses numerical basic functions to
calculate the elements on the mesh. The neural
network-based deep learning algorithm does each

numerical calculation. Then the results were
analyzed with displacement solutions and
sensitivity analyses. With these results and

numerical solutions, the optimal density distribution
is created. Since this is a reliability-based topology
optimization, the displacement function contains a
reliability index parameter; by changing this
parameter, different results can be achieved, and the
results are shown in Figure 12.

Chandrasekhar and Suresh [56] work on a method
for topology optimization (TO) via neural networks
(NN). The key idea is to utilize the NN's activation
functions to represent the material density field,
which is typically managed by a method called
Solid Isotropic Material with Penalization (SIMP).
Regarding this approach, the density function is
defined via the weights and biases of the NN,
making it independent of the finite element mesh.
The optimization process relies on the NN's
backpropagation algorithm, along with a standard
finite element solver, to adjust the density field and
find the optimal design. Their results, compared
with the regular optimization programs’ results, are
shown in Figure 13.

STRUCTURE BOUNDARY CONDITIONS ACCURACY INPUT CNN PREDICTION GROUND TRUTH
WITHOUT THRESHOLDING
RMS =
84.35

WITH THRESHOLDING AT 0.5

T T T
BINARY =
98.84
| 1 1

Figure 11. Convolutional Neural Network vs TopOpt Results Comparison with Boundary conditions [54]
(Smir kosullartyla Evrigimli Sinir Ag1 ve TopOpt Sonuglarinin Karsilastirilmasi [54])
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(€I RBTO( f=2) (d) RBTO { §#=3)

Figure 12. RBTO results versus normal Topology Optimization results [55] (RBTO sonuglari ve normal
Topoloji Optimizasyonu sonuglar [55])
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Figure 13. Different boundary conditions optimized comparison between the proposed method and the

general optimization program results (Onerilen yéntem ile genel optimizasyon programi sonuglari arasinda farkli smir
kosullar1 optimize edilerek kargilastirma yapilmusgtir)
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Xing's [57] article introduces a new method called
stochastic gradient online learning and prediction
(SGoLap) to speed wup structural topology
optimization. Moreover, this method uses a one-
hidden-layer recurrent neural network (RNN) to
learn and predict derivative information, including
the second-order derivative of the objective
function, as optimization progresses. By doing this,
it can selectively skip some of the more
computationally expensive steps, such as finite
element analysis (FEA) and sensitivity analysis,
which saves total computational time. Two different
prediction methods based on neural networks are
used. The results are shown in Figure 14. The figure
compares a standard compliance solving algorithm
with the prediction methods from the article,
presenting final objective values and their relative
differences.

Each of these four works uses neural networks for
topology optimization, but their approaches and
goals are different. [56] proposes a fundamental
change by using neural network activation functions
to directly define the density of the material, which
creates a design that is not dependent on the finite
element mesh and is also fully differentiable. Meng
[55] applies this to the field of reliability-based
optimization, incorporating uncertainty into their
method by combining DNNs with a specialized
finite element method to ensure the resulting
designs are robust even for enormous and complex
problems. In a more practical vein, Banga [54]
focuses on speeding up the design process. They use
convolutional neural networks (CNNs) that have
been pre-trained on intermediate design steps from
a standard SIMP optimization, allowing them to
quickly generate final designs with a good balance
of speed and accuracy. Finally, Xing and Tong [57]
introduce an online, recurrent neural network
(RNN)-based method. This approach learns as it
goes, predicting the necessary gradient and Hessian
information in real-time. This dramatically reduces
the computational cost of the optimization process
itself, eliminating the need for extensive pre-
training. Taken together, these studies represent a
broad range of applications for neural networks in
topology optimization: from creating a new direct
formulation [56], to handling uncertainty [55], to
speeding up the process using pre-trained data [54],
and to accelerating the optimization process in real-
time [57].

In this article, Genetic algorithms (GA), Neural
Networks (NN), Ant Colony Optimization (ACO),
and Particle Swarm Optimization (PSO) are focused
on optimizing the topology of materials used in any
design based on the force and support types and

placements. A comparison table between the
algorithms is given in Table 1. Nature-inspired
optimization algorithms provide flexible and
powerful approaches for addressing complex
challenges across critical domains such as
healthcare, engineering, and information
technology. Techniques like Artificial Neural
Networks (ANNSs) demonstrate strong capabilities
in pattern recognition, enabling applications in areas
such as medical diagnosis, while Ant Colony
Optimization (ACO) offers efficient solutions to
routing and logistics-related problems. At the same
time, methods such as Genetic Algorithms (GAs)
and Particle Swarm Optimization (PSO) are
extensively utilized for design and scheduling tasks,
with  particular  effectiveness in  advanced
engineering applications, including structural
topology optimization. Indeed, the comparison of
applications of algorithms can be shown in Table 2
[58- 60].

3. DISCUSSION & CONCLUSIONS (¢
TARTISMA & SONUCLAR )

In this This study reviews non-gradient methods
inspired by nature, including Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), and Artificial Neural
Network Optimization (ANN). Although these
methods were examined only for structural
optimization with a cantilever beam, they can be
applied in many engineering areas.

Firstly, non-gradient-based methods show a better
optimal solution than gradient-based methods
because the objective is nondifferentiable, and their
objective functions can be multiple, such as fitness
and weight.

Among the four methods, GA can handle the
discrete or multi-objective problems and is suitable
for finding global optima. However, it can converge
more slowly than PSO and ACO. PSO methods can
be ideal for structural problems involving
continuous structures. Nevertheless, the traditional
PSO may be trapped in a local minima problem, and
position and velocity constants may be modified.
For the ACO, this method can be effective for
discrete problems or truss systems and is better for
determining short load paths. The drawback of the
method is that its performance heavily depends on
the update rules of the pheromone, and ACO is
slower than PSO. In a Neural Network, this method
can be used to guide the optimization and help run
many optimization cases. Indeed, training is one of
the critical issues. After training, an ANN can
predict quickly, but a wide data repository is a
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significant concern for training, which may lead to
cost concerns. Another drawback of ANN is that it
can be less interpretable due to the complex internal
structure and distributed representations. Finally,
Neural Networks can be used in cases where real-
time design assistance is necessary. In light of this
comparison, Particle Swarm Optimization can be
selected as the most effective non-gradient method
in terms of performance and computation in the
beam example.

Although gradient-based methods are typically
favored for their efficiency in problems where
gradients are easily calculated, non-gradient
algorithms offer valuable flexibility and robustness
when gradients are complicated or unreliable to
compute, such as in overly complex or discrete
design spaces. Gradient and non-gradient-based
methods can be used simultaneously to overcome
difficulties. This hybrid approach could improve the

robustness of the solution process and yield more
detailed, accurate, and versatile results in topology
optimization, especially in applications with
complex design constraints or uncertain material
properties.

As future work, these methods will be integrated
into each other for design and optimization
purposes. Another possible area of work is to
improve the efficiency and adaptability of methods
in complex engineering and real-world problems, as
these methods, especially GA and ACO, can face
slow convergence rate and computational cost
concerns. Therefore, both methods will be
integrated with machine learning techniques as they
can provide more balance between global and local
exploitation. ~ Moreover,  adaptive  control
mechanisms and self-tuning approaches will be
crucial to enhance the flexibility and performance in
diverse problems.

SGoLap
Problem top99neo CDLP ALP
Np=10 g§=3.5%
Ao Topolowy RPN AN AWAN
(Tep =1X107°) £ (&%) 271.95 271.90 (-0.02%)  271.92 (-0.01%)
Booog _ Topolory XD 22X 22>
(T =1X107°) £ (%) 227.06 227.06 (0.00%) 227.06 (0.00%)
Bimcwa Ty XD XX> XX
(Tepp =1X107°) £ (g%) 228.29 228.20 (0.00%) 228.20 (0.00%)
B1500x500(b) Topology
(Tep =1X107%) £ (g%) 170.29 170.29 (0.00%) 170.29 (0.00%)
Casosiies ) Topology m m m
(Tep =1%X107°) £ (,%) 31.73 31.71 (-0.06%) 31.71 (-0.06%)

Figure 14. Comparison results in different cases between common algorithm the new algorithm [57] (Ortak
algoritma ile yeni algoritma arasindaki farkli durumlarda karsilastirma sonuglari [57])
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Table 1. The comparison of non-gradient-based methods (Gradyan tabanli olmayan yontemlerin karsilastiriimast)

Method Genetic Algorithm (GA) Neural Networks (NN) Ant Colony Optimization Particle Swarm
(ACO) Optimization (PSO)
Inspiration Natural evolution Learning Methods of the Ant search, explore, and Behaviour patterns of

Human Brain

exploit methods

bird/fish swarms

Search Strategy

Exploration (mutation) and
exploitation (crossover and
selection) of a population of
solutions.

Gradient-based or other
optimization methods (like
GA or PSO) to adjust
weights and biases.

Positive feedback based on
pheromone trails, leading to
a focus on promising paths.

Particles move through the
search space, influenced by
their own best-found
position and the best position
found by the entire swarm.

Problem Types

Combinatorial, discrete, and
continuous optimization;
practical for complex, non-
linear problems.

Supervised, unsupervised,
and reinforcement learning;
classification, regression,
and pattern recognition.

Combinatorial optimization
is well-suited explicitly for
shortest path problems on
graphs.

Continuous optimization;
also used for discrete and
combinatorial problems.

Strengths Robust for complex, high- Exceptional at pattern Good at finding near-optimal | Fast convergence and
dimensional problems. recognition and function solutions for path-finding computationally efficient.
Avoids getting stuck in local approximation. and routing problems. Simple to implement.
optima. Can learn and generalize Naturally parallelizable. Requires fewer parameters to
Can handle non-differentiable | from data. Robust to changes in the tune compared to GA.
and non-linear functions. Highly effective for problem environment. Can handle high-
Flexible and easy to hybridize. | complex, non-linear dimensional spaces.
relationships.
Weaknesses Can be computationally Requires large amounts of Slower convergence for Prone to premature

expensive and slow to
converge.

Requires careful tuning of
parameters (e.g., population
size, mutation rate).

No guarantee of finding the
global optimum.

data for training.

Prone to getting stuck in
local minima (without
additional optimization).
The black box nature makes
it hard to interpret the
internal logic.

some problems compared to
PSO.

Can suffer from stagnation if
pheromone values are not
managed correctly.

convergence, where the
entire swarm moves toward
a sub-optimal solution.
Less effective for problems
with many local optima.
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Table 2. The comparison between optimization methods and application areas (Optimizasyon yontemleri ve uygulama alanlari arasindaki karsilastirma)

Algorithm Type

Healthcare & Medicine

Engineering & Manufacturing

Information Technology

Transportation & Logistics

Artificial Neural
Networks
(ANN)

Analyzing medical scans,
diagnosing diseases,
discovering new drugs and
creating personalized treatment
plans based on
genomic data.

Improving product quality,
predicting equipment
failure (predictive
maintenance), controlling
industrial processes, and
operating robotics.

Recognizing patterns in data,
understanding
human language (NLP),
computer image analysis, and
strengthening
cybersecurity defenses.

Forecasting traffic
conditions, enabling
autonomous vehicle
navigation, optimizing travel
routes, and predicting
demand for services.

Particle Swarm

Pinpointing regions in medical

Enhancing structural and system

Selecting the most relevant

Planning the most efficient

Optimization images, designs, tuning features in a routes for vehicles,
(PSO) developing optimal treatment control systems for better dataset, clustering data, optimizing traffic light
plans, and fine-tuning drug performance, and optimizing the training other neural timing to reduce congestion,
dosages for maximum efficiency of networks, and conducting and managing entire
effectiveness. power systems. software testing. fleets of vehicles.
Genetic Aiding in the design of new Designing electronic circuits and | Automating software testing, Solving complex vehicle

Algorithms (GA)

pharmaceuticals,
creating optimal schedules for
treatments and equipment use, and
analyzing
genetic sequences.

mechanical
parts, optimizing
manufacturing schedules, and
improving overall system
architecture.

improving code
efficiency, selecting key
data features for analysis, and
configuring complex
systems.

routing challenges,
designing efficient logistics
networks from the ground up,
and scheduling
transportation tasks.

Ant Colony
Optimization
(ACO)

Efficiently allocating hospital
resources (like
staff and beds), managing
medical supply chains, and finding
the best
treatment pathways for patients.

Scheduling tasks in a
manufacturing environment,
making assembly lines more

efficient, and planning

preventative maintenance
for machinery.

Optimizing data routing in
computer networks,
discovering insights from
large datasets (data mining),
and managing tasks in
distributed computing.

Finding the best routes for
delivery vehicles,
designing transportation
and logistics networks, and
managing real-time
traffic flow.
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