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Graphical/Tabular Abstract (Grafik Özet) 

This study represent the literture reviews and comparison of non-gradient based optimization 

metholodigies in terms of structural optimization./ Bu çalışma, yapısal optimizasyon bakımından 

eğimsiz optimizasyon yöntemlerinin literatür incelemelerini ve karşılaştırılmasını  göstermektedir. 

 

Figure A: Non-Gradient methods in structural topology optimization: comparative application on 

cantilever beams / Şekil A: Yapısal topoloji optimizasyonunda gradyansız yöntemler: konsol 

kirişlerde karşılaştırmalı uygulama  

Highlights (Önemli noktalar)  

 İlk olarak, belirtilen optimizasyon yöntemlerin literatür taraması yapılmıştır. / Initially, 

the literatur reviews of the specifsied optimization methods have been done. 

 Daha sonra, bu metotlar yapısal optimizasyon (kiriş) bakımından kıyaslanmıştır. / Then, 

these methods have been compared in terms of structural optimization (cantilever beam).   

 Sonuçlara göre, metotlar ve kullanım alanları tablolaştırılmıştır ve araştırmacılara yol 

gösterici öneri sunmuştur. / Regarding results, methods and their applications were 

tabulated and they have been presented to resarchers guiding conclusions.  

Aim (Amaç): This study aims to compare the non- gradient based optimization methods to define 

the possible best methods for structural optimization of cantilevear beams. / Bu çalışma, kirişin 

yapısal optimizasyou için mümkün olan en iyi yöntemleri tanımlamak amacıyla eğimsiz 

optimization yöntemleri karşılaştırmayı amaçlamaktadır.  

Originality (Özgünlük): This study compounds the informative tabulated contents for the 

optimization review studies. / Bu çalışma optimizasyon derleme makaleleri için bilgilendirici 

tablolaştırılmış içerikleri bir araya getirmiştir. 

Results (Bulgular): The possible best non-gradient optimization methods can be determined for the 

cantilevear beam. / Kiriş için mümkün olan en iyi eğimsiz optimizsayon yöntemleri belirlenebilir.  

Conclusion (Sonuç): The important points to be taken into consideration by researchers have 

beenindicated for future works. / Gelecekteki çalışmalar için araştırmacıların dikkat etmesi 

gerekenönemli noktalar belirtilmiştir. 
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Abstract 

Gradient-based methods are utilized in traditional topology optimization studies. This approach 

is based on a point-by-point technique, which depends on the gradient information of the 

objective functions regarded as independent variables. Despite the fast response, this approach 

can lead them to find local optimal solutions, but it faces problems in defining the global optimal 

solutions in large-scale problems or high-degree functions. For this reason, non-gradient methods 

that give better solutions have been developed to solve these struggles. This study examines the 

nature-inspired methods developed over the last 25 years, which are called Genetic Algorithms, 

Ant Colony Optimization, Particle Swarm Optimization, and Artificial Neural Networks, and 

presents flowcharts to illustrate their principles. These methods are clarified via a cantilever 

beam. According to the results, methods are compared, and Particle Swarm Optimization can 

provide a reasonable solution to determine the optimal solution. These comparisons are tabulated 

and may be a guide for researchers. 
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Öz 

Geleneksel topoloji optimizasyon çalışmalarında eğimli yöntemler olarak belirtilen metotlar 

kullanılmaktadır. Bu yaklaşım, bir dizi bağımsız değişkene bağlı olarak amaç fonksiyonun 

türevine dayanan hesaplamalı nokta tekniğine bağlıdır. Bu metotlar, hızlı çözümler vermesine 

rağmen, kapsamlı işlemler, yüksek mertebeli fonksiyon gibi durumlarda yerel optimum 

çözümleri bulmakta; küresel sonuçlarda problemlerle karşılaşılmaktadır. Karşılaşılan sorunları 

çözmek amaçlı daha iyi sonuçlar elde edilen eğimsiz yöntemler geliştirilmiştir. Bu çalışmada, son 

25 yılda yapılan eğimsiz yöntemler olarak belirtilen ve doğadan ilham alan Genetik Algoritmalar, 

Karınca Kolonisi Optimizasyonu, Parçacık Sürüsü Optimizasyonu ve Yapay Sinir Ağları adlı 

yöntemler hakkında araştırmalar yapılmış ve çalışma prensipleri akış şeması ile belirtilmiştir. Bu 

yöntemler, özellikle kiriş örneği ile detaylandırılmıştır. Sonuçlara bağlı olarak, yöntemler 

karşılaştırılmakta ve Parçacık Sürü Optimizasyonu optimum çözümü belirlemek için uygun bir 

sonuç sunulabilmektedir. Bu karşılaştırmalara dayanarak, araştırmacılara rehber olabilecek 

kıyaslama tablosu oluşturulmuştur. 

 

 

1. INTRODUCTION (GİRİŞ) 

Topology optimization addresses a key engineering 

challenge: determining the optimal distribution of 

material within a given space to maximize structural 

performance. Initially developed for mechanical 

design, this technique has found applications in 

diverse fields such as fluid dynamics, acoustics, 

electromagnetism, optics, and multi-physics 

problems. The process typically involves iterative 

analysis and design modifications. 

Different categories of optimization techniques are 

sorted as gradient-based methods and non-gradient-

based methods. The gradient-based method depends 

on the direction of the objective function’s gradient. 

This method generally converges quickly and 

requires fewer function evaluations, particularly 

when considering the number of independent 

variables. Despite the advantages, the main 

drawback of this method is that the gradient-based 

methods converge to a local optimum and a global 
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optimum depending on the initial conditions of the 

system.  

In contrast to the gradient-based methods, the non-

gradient-based methods do not depend on the 

gradient of the function and work based on the 

function evaluation. This method tries to mimic 

nature algorithms, and one of the main differences 

in this method is that the non-gradient-based 

methods search multiple points in space rather than 

a single point [1]. 

Naturally, topology optimization techniques have 

advanced and evolved due to complex problems and 

limitations of gradient-based methods.  Although 

non-gradient, nature-inspired methods have 

struggles and limitations, these methods can be 

suitable to handle the non-differentiable, discrete or 

multi-objective problems. Indeed, these methods 

have strengths in terms of flexibility, global 

capability, and effectiveness in complex model 

space. 

Topology optimization is a primary approach in 

structural optimization, aiming to find the optimal 

structure that meets specific requirements, such as 

functionality. Furthermore, structural topology can 

be determined through optimal modifications of 

connections and holes in the design, as well as the 

size and shape of the structures, achieved by 

redistributing material in an iterative method. 

Therefore, structural topology optimization can be a 

compelling approach to select the applicable initial 

structural topologies [2-3]. 

Topology optimization for structures, as defined as 

a shape optimization problem, has gained attention 

in the last decades. Hence, several studies have built 

upon and improved earlier advancements in 

homogenization theory and numerical optimization, 

laying the groundwork for Bendsøe and Kikuchi's 

influential 1988 work on numerical topology 

optimization. Since this initial "homogenization 

approach," the field has evolved in various 

directions, including: (a) density-based methods; 

(b) level set methods; (c) methods using topological 

derivatives; (d) phase-field methods; and (e) 

evolutionary methods, among others. Density and 

evolutionary approaches in topology optimization 

use straightforward design variables linked to 

elements or nodes. In comparison, the level set 

method, often paired with topological derivatives, 

utilizes shape derivatives to determine the optimal 

topology. Recently, hybrid approaches have 

emerged, where filtered density fields in advanced 

projection techniques increasingly mirror the level 

set function used in level set methods [4-10]. 

In light of this information, Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), Particle 

Swarm Optimization (PSO), and Neural Network 

(NN) methods can be addressed in terms of 

structural engineering and explained in Section 2. 

The comparison of these methods is clarified and 

concluded briefly in Section 3. 

2. LITERATURE REVIEW (LİTERATÜR 

İNCELEMESİ) 

2.1. Genetic Algorithms on Topology 

Optimization (Topoloji Optimizasyonunda Genetik 

Algoritmalar) 

Inspired by natural selection, the Genetic Algorithm 

(GA) is a search algorithm based on a population 

that employs the "survival of the fittest" principle. 

Each new generation is created by using the 

operators created for this algorithm and iteratively 

applying these operators to individuals within the 

population. The core components of a Genetic 

Algorithm (GA) are chromosome representation, 

selection, crossover, mutation, and the computation 

of the fitness function. The GA process follows 

these steps: Firstly, the Genetic Algorithm (GA) 

process begins by randomly generating an initial set 

of chromosomes. Then, the fitness of each 

chromosome is assessed. Two chromosomes are 

selected for reproduction based on their fitness 

scores in the third step. Indeed, these selected 

chromosomes undergo a single-point crossover 

process with a certain probability to create an 

offspring. Finally, one operator of the genetic 

algorithm, named mutation, is applied evenly to this 

offspring with a specific mutation chance, resulting 

in a mutated offspring. This mutated offspring is 

added to the new population. These steps of 

selection, crossover, and mutation are repeated until 

the new population is fully formed. Given that GA 

can provide a diverse set of solutions, it can be used 

in many engineering areas such as structural 

operations, control engineering, computer games, 

artificial intelligence, deep learning, and image 

processing [11-14]. The flow chart for the Genetic 

Algorithm can be seen in Figure 1. 
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Figure 1. Flow chart of Genetic Algorithm [17] (Genetik Algoritmanın Akış Şeması [17])

In terms of structural optimization, several studies 

have been conducted over the last decades [2, 15-

21]. Based on these studies, structural optimization 

started with the truss optimization. Ohsaki’s study 

[15] indicates the optimal topologies of truss 

systems under static loading conditions. Indeed, 

singularity problems due to the zero cross-sectional 

area are overcome with GA methods. The cross-

section of every member was designed as a string of 

binary data.  Firstly, initial values were determined 

randomly, and the fitness value was defined via a 

function. Then, the other processes, mutation and 

crossover, are applied to find an optimal solution. 

Finally, parents were selected, and children were 

produced until the optimal solution was achieved. 

However, this algorithm can be affordable for large 

truss systems. Another study [17] addressed that the 

traditional ground structure method was 

compensated for by GA methods optimization. In 

this study, the selection of penalty functions was 

essential to avoid different local optimums in each 

new population. Numerical examples were 

simulated with varying numbers of nodes. As an 

improvement, this method can be integrated into 

rigid jointed structures.  According to [2], topology 

optimization for beam and plate examples involves 

a combination of graph representation of 

geometrical structures and ranking the results using 

fitness assignment and stochastic sampling. The 

procedure begins by creating a graph representation 

for the genetic algorithm to work on. For their first 

example in [2], a cantilever plate with the left side 

of the plate fixed on the wall and a force applied 

vertically at the right side of the plate at the 

midpoint is used. Figure 2 shows the mesh and 

graphical representations of the cantilever plate as 

shown in Figure 3.  

Using these graph representations and genetic 

algorithms, the constrained optimization for an 

artificial unconstrained objective function will be 

calculated, and at the end, the optimized topology 

result will be found. To achieve this result, a penalty 

function approach is necessary to generate feasible 

individuals within the population. The optimized 

topology for the cantilever plate, as shown in 

Figures 4 and 5, corresponds to the two different 

graph representations in Figure 3. 

As a conclusion, in all studies [15-21], the Genetic 

Algorithm method was applied as a novel method, 

especially in contrast to the ground structure 

topology method, and they reached advantages in 

the GA method. Furthermore, the selection of the 
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penalty and fitness function becomes crucial to take 

these advantages. 

 
Figure 2. Cantilever plate mesh used for the optimization [2] (Optimizasyon için kullanılan konsol plaka ağı [2]) 

 

Figure 3. Examples of two graph representations used for minimum compliance design [2] (Minimum 

uyumluluk tasarımı için kullanılan iki grafik gösteriminin örnekleri [2]) 

 

Figure 4. Three-vertex two-edge graphical representation based optimization solution [2] (Üç köşeli iki 

kenarlı grafiksel gösterime dayalı optimizasyon çözümü [2]) 
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Figure 5.  Five-vertex and six-edge graphical representation based optimization solution [2] (Beş köşeli ve 

altı kenarlı grafiksel gösterime dayalı optimizasyon çözümü [2]) 

 

2.2. Ant Colony Optimization on Topology 

Optimization (Topoloji Optimizasyonunda Karınca 

Kolonisi Optimizasyonu) 

Ant Colony Optimization (ACO) uses a group of 

computer-created ants to find the optimum point for 

a given optimization problem. These virtual ants 

then share information about the quality of their 

solutions through a communication mechanism 

analogous to how real ants communicate [22]. The 

proposed solution follows a structured sequence 

comprising Initialization, Initial Design Generation, 

Solution Component Selection, Analysis and 

Evaluation, Cycle Completion Verification, and 

Pheromone Update. Initializations start with a 

certain number of sections, and a certain number of 

paths are selected. A pheromone level characterizes 

each path. This level indicates the suitability of the 

path. These level of phenomena depends on the 

number of design variables. The next step is 

constructing the colony of ants. Each of these ants 

create a solution of its own. Each time an ant 

follows a path, the pheromone level is decreased. 

When all the ants select a path and follow, the 

probabilities of the paths are recalculated. Indeed, 

using an objective function, the results of all ants are 

calculated and compared. An optimal local search 

can also be applied to the solutions. After these 

pheromone levels around the path s will be updated. 

These updates can be evaporation or reinforcement. 

These can be selected if we have any specific rules; 

more high-quality solutions depend on the objective 

function result, and to reduce uniformly to avoid 

unlimited accumulation and to encourage 

exploration [23-24]. The flow chart for the ant 

colony optimization is shown in Figure 6. These 

processes are repeated until a stagnation point is 

reached or predefined criteria are met. This 

optimization can be used in civil engineering, 

timetabling, data mining, cell placement in circuit 

designs, the vehicle routing problem, and even in 

music [25-30]. Regarding the scope of this study, 

there are several studies in structural topology [31-

34].  

Hassani et. al [31] used an ant colony optimization 

algorithm for topology optimization. Real ants can 

locate the shortest path between the nutrient source 

and their nest by relying on a chemical substance 

called pheromones, rather than visual cues. This 

behavior has inspired the creation of Ant Colony 

Optimization (ACO), a method in which a group of 

computers creates ants that work together to address 

a combinatorial problem by transmitting indirect 

information through an artificial pheromone trail. 

This trail builds up over time through a learning 

process that rewards effective solutions to the 

problem. For example, one of the cases uses a 

cantilever beam with boundary conditions shown in 

Figure 7. Lastly, the findings of optimal topology 

are shown in Figure 8. 

Luh et. al [32] explored the classic cantilever beam 

problem using a modified Ant Colony Optimization 

(ACO) algorithm. The goal was to find the most 

efficient structures by minimizing weight while 

maintaining sufficient stiffness. The design space 

was broken down into finite elements, and the 

algorithm, much like a colony of ants, built up 

various designs, element by element. When 

subjected to four distinct loading scenarios, the 

method did not yield a single perfect answer. 

Instead, it produced a wide array of functional 

topologies, each representing a unique balance of 

stiffness and weight. The resulting designs were not 

just different in shape but also in their internal 
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makeup, showing both truss-like and more 

composite-like structures. This demonstrates the 

algorithm's power in generating diverse solutions, 

providing designers with a valuable set of 

lightweight alternatives tailored to specific 

performance or manufacturing needs. 

In their respective studies on using Ant Colony 

Optimization (ACO) for structural design, Kaveh et 

al. [31] and Luh and Lin [32] approached the 

problem with different goals. Kaveh focused on a 

practical, clear-cut method to achieve the stiffest 

possible structure for a given amount of material. 

Their approach treated the design problem as a 

straightforward on-or-off decision for each element, 

which avoids the ambiguous "grey areas" seen in 

other methods. They even added a technique to 

remove non-functional parts, resulting in designs 

that are both realistic and easy to build. In contrast, 

Luh and Lin took a more conceptual and exploratory 

path. Instead of seeking a single optimal design, 

they aimed to discover a whole variety of high-

quality solutions. They improved the basic ACO 

algorithm with features like "elitist ants" and 

"multiple-colony memories" to encourage the 

creation of diverse and innovative designs. Their 

work highlights that many reasonable solutions can 

exist for a single design problem, offering engineers 

a range of viable and creative options. Essentially, 

while Kaveh et al. delivered a direct and efficient 

way to create a manufacturable design, Luh and Lin 

demonstrated how to evolve the ACO method itself 

to foster diversity and robustness in generating 

structural topologies. 

2.3. Particle Swarm Optimization on Topology 

Optimization (Topoloji Optimizasyonunda Parçacık 

Sürüsü Optimizasyonu) 

Particle Swarm Optimization is a stochastic 

optimization method that utilizes the collective 

behavior of animal groups, such as insects, herds, 

birds, and fish. In other words, PSO simulates how 

these swarms cooperate to find resources, with each 

member adjusting its search pattern based on its 

own experiences and those of its peers. The main 

design principles of this method draw from two 

main areas: evolutionary algorithms, which share 

the use of a swarm to explore a wide area of the 

objective function's solution space concurrently, 

and artificial life, focusing on the study of artificial 

systems exhibiting life-like characteristics [35,36]. 

The algorithm structure is sorted into eight parts. 

These parts are mainly related to adopting 

populations, developing selection strategies, 

modifying position or velocity strategies, and 

maintaining population diversity. These steps are 

shown in Figure 9 as a flow chart. Furthermore, 

parameters such as inertia weight, learning factors, 

position and speed limits, and initial and size of 

swarm are crucial in this algorithm.  Although the 

PSO is a recent method, it garnered significant 

attention in many areas. Particle swarm 

optimization can be used in engineering, healthcare, 

environmental, industrial, and commercial 

applications [37-44]. 

In terms of structural optimization [45,46], based on 

the study [45], particles refer to a set of arbitrary 

vectors generated as a solution to the problem. The 

swarm flies or goes over the domain of the problem, 

and particles detect a new location or paths in each 

step. In this way, the quality of locations can be 

related to the defining fitness function properly. 

However, in traditional methods, the swarm can be 

located for the new location, close to the best 

particle location, and kept in memory. This situation 

can affect the essential points in the tracking path in 

the current particle, and local minimums can be 

trapped. Therefore, the weighted particle can be 

determined for the new particles and adapt the 

velocity formulation. Regarding numerical 

examples, results indicated that the integrated PSO 

eliminates the drawbacks and can be a sufficient 

method for discrete and continuous systems.  

Luh et al.'s study [46] introduces a modified binary 

particle swarm optimization (BPSO) algorithm 

specifically for continuous structural topology 

optimization. The algorithm translates its binary 

decisions into a physical design using a special 

mapping scheme. It begins with a randomized set of 

designs. It evaluates them based on a multi-

objective fitness function that considers stiffness, 

weight, and stress, while also penalizing designs 

that punish constraints. The method uses adaptive 

rules to balance exploring the design space with 

refining current solutions, and a multi-swarm 

memory to save diverse good designs, preventing it 

from converging on just one answer too early. When 

tested on standard cantilever plate problems, the 

proposed BPSO proved effective, generating a wide 

variety of structurally sound and efficient designs, 

including truss-like layouts. Its improved diversity 

and solution quality, when compared to other 
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optimization methods, confirm its effectiveness as a 

robust tool for this type of structural design. 

The particle's position and velocity correspond to 

the genotype parameters, while the binary positions 

correspond to the phenotype parameter. These 

binary positions are utilized to map the structure of 

the topology optimization problem. Figure 10 

shows how the binary particle to topology mapping 

is done. 

Both studies apply swarm intelligence to structural 

optimization, but they target different types of 

problems and use different enhancements. Luh [46] 

adapted Particle Swarm Optimization (PSO) to a 

binary framework to handle continuous topology 

optimization. Their main contribution is a robust 

way to translate the algorithm's binary decisions 

into a physical design, allowing it to efficiently 

explore different material layouts and produce a 

wide range of feasible solutions. In contrast, 

Mortazavi and Toğan [45] extend PSO to a more 

complex problem involving truss systems. Their 

approach simultaneously optimizes the size, shape, 

and topology of the truss. They introduce 

specialized techniques, such as weighted particles 

and rules, which help them deal with constraints, 

thereby improving the algorithm's ability to find 

feasible solutions and converge effectively. In short, 

[46] work addresses the challenge of making PSO 

work for binary design spaces in continuous 

structures, while [45] work tackles the mixed 

continuous and discrete variables found in truss 

optimization. Together, they demonstrate the 

versatility of PSO. 

 
Figure 6. Ant colony optimization flowchart [31] (Karınca kolonisi optimizasyon akış şeması [31]) 

 

 

Figure 7. Cantilever beam problem defined in [31] (Tanımlanan konsol kiriş problemi [31]) 
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Figure 8. Final results of the optimization including the nose and not respectively [31] (Burun ve burun 

olmayan kısımları içeren optimizasyonun nihai sonuçları [31]) 

 

 

Figure 9. Particle swarm optimization flowchart [35] (Parçacık sürüsü optimizasyon akış şeması [35]) 

 

Figure 10. Binary particle domain method-based mapping for topology (Topoloji için ikili parçacık alanı 

yöntemi tabanlı eşleme) 
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2.4. Neural Network on Topology Optimization 
(Topoloji Optimizasyonu Sinir Ağı) 

The human nervous system contains a vast network 

of interconnected neurons, which are called nerve 

cells. The term "neural" is an adjective derived from 

"neuron," while "network" refers to a graph-like 

structure. Artificial Neural Networks (ANNs) are 

computing systems that draw inspiration from the 

biological neural networks found in humans. These 

systems are also known as "Neural Nets," "parallel 

distributed processing systems," or "connectionist 

systems [47,48]. 

To be classified as an ANN, a computing system 

must have a directed graph structure. In this 

structure, the nodes (or vertices) perform simple 

computations, and the connections (or 

edges/links/arcs) link pairs of these nodes. This 

structure is a fundamental concept from elementary 

graph theory, which defines a directed graph as a set 

of nodes and the connections between them [47]. 

Neural networks can be used for speech recognition, 

several engineering areas, computer vision, and 

pattern recognition [47-53]. 

Banga et al. [54] work on using a deep learning 

method based on a 3D encoder-decoder 

Convolutional Neural Network to improve the 

solutions of the Solid Isotropic Material with 

Penalization process. The proposed method first 

uses SIMP to perform iterations to obtain an 

intermediate solution. Then, using the neural 

network (NN) based on density distribution, the NN 

creates the results. From the results, the NN 

calculated the same result with % 40% less 

computation. In Figure 11, the results are shown. 

The left side shows the structure and the forces 

acting on it. The right side shows the CNN 

prediction and the results of the optimization 

program. 

Meng et al.  [55] use a neural network based on 

finite element analysis, which focuses on solving 

reliability-based topology optimization. Again, this 

article focuses on decreasing computational time. 

The method uses numerical basic functions to 

calculate the elements on the mesh. The neural 

network-based deep learning algorithm does each 

numerical calculation. Then the results were 

analyzed with displacement solutions and 

sensitivity analyses. With these results and 

numerical solutions, the optimal density distribution 

is created. Since this is a reliability-based topology 

optimization, the displacement function contains a 

reliability index parameter; by changing this 

parameter, different results can be achieved, and the 

results are shown in Figure 12. 

Chandrasekhar and Suresh [56] work on a method 

for topology optimization (TO) via neural networks 

(NN). The key idea is to utilize the NN's activation 

functions to represent the material density field, 

which is typically managed by a method called 

Solid Isotropic Material with Penalization (SIMP). 

Regarding this approach, the density function is 

defined via the weights and biases of the NN, 

making it independent of the finite element mesh. 

The optimization process relies on the NN's 

backpropagation algorithm, along with a standard 

finite element solver, to adjust the density field and 

find the optimal design. Their results, compared 

with the regular optimization programs’ results, are 

shown in Figure 13. 

 

 

 

Figure 11. Convolutional Neural Network vs TopOpt Results Comparison with Boundary conditions [54] 
(Sınır koşullarıyla Evrişimli Sinir Ağı ve TopOpt Sonuçlarının Karşılaştırılması [54]) 
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Figure 12. RBTO results versus normal Topology Optimization results [55] (RBTO sonuçları ve normal 

Topoloji Optimizasyonu sonuçları [55]) 

 

Figure 13. Different boundary conditions optimized comparison between the proposed method and the 

general optimization program results (Önerilen yöntem ile genel optimizasyon programı sonuçları arasında farklı sınır 

koşulları optimize edilerek karşılaştırma yapılmıştır)
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Xing's [57] article introduces a new method called 

stochastic gradient online learning and prediction 

(SGoLap) to speed up structural topology 

optimization. Moreover, this method uses a one-

hidden-layer recurrent neural network (RNN) to 

learn and predict derivative information, including 

the second-order derivative of the objective 

function, as optimization progresses. By doing this, 

it can selectively skip some of the more 

computationally expensive steps, such as finite 

element analysis (FEA) and sensitivity analysis, 

which saves total computational time. Two different 

prediction methods based on neural networks are 

used. The results are shown in Figure 14. The figure 

compares a standard compliance solving algorithm 

with the prediction methods from the article, 

presenting final objective values and their relative 

differences. 

Each of these four works uses neural networks for 

topology optimization, but their approaches and 

goals are different.  [56] proposes a fundamental 

change by using neural network activation functions 

to directly define the density of the material, which 

creates a design that is not dependent on the finite 

element mesh and is also fully differentiable. Meng 

[55] applies this to the field of reliability-based 

optimization, incorporating uncertainty into their 

method by combining DNNs with a specialized 

finite element method to ensure the resulting 

designs are robust even for enormous and complex 

problems. In a more practical vein, Banga [54] 

focuses on speeding up the design process. They use 

convolutional neural networks (CNNs) that have 

been pre-trained on intermediate design steps from 

a standard SIMP optimization, allowing them to 

quickly generate final designs with a good balance 

of speed and accuracy. Finally, Xing and Tong [57] 

introduce an online, recurrent neural network 

(RNN)-based method. This approach learns as it 

goes, predicting the necessary gradient and Hessian 

information in real-time. This dramatically reduces 

the computational cost of the optimization process 

itself, eliminating the need for extensive pre-

training. Taken together, these studies represent a 

broad range of applications for neural networks in 

topology optimization: from creating a new direct 

formulation [56], to handling uncertainty [55], to 

speeding up the process using pre-trained data [54], 

and to accelerating the optimization process in real-

time [57]. 

In this article, Genetic algorithms (GA), Neural 

Networks (NN), Ant Colony Optimization (ACO), 

and Particle Swarm Optimization (PSO) are focused 

on optimizing the topology of materials used in any 

design based on the force and support types and 

placements. A comparison table between the 

algorithms is given in Table 1. Nature-inspired 

optimization algorithms provide flexible and 

powerful approaches for addressing complex 

challenges across critical domains such as 

healthcare, engineering, and information 

technology. Techniques like Artificial Neural 

Networks (ANNs) demonstrate strong capabilities 

in pattern recognition, enabling applications in areas 

such as medical diagnosis, while Ant Colony 

Optimization (ACO) offers efficient solutions to 

routing and logistics-related problems. At the same 

time, methods such as Genetic Algorithms (GAs) 

and Particle Swarm Optimization (PSO) are 

extensively utilized for design and scheduling tasks, 

with particular effectiveness in advanced 

engineering applications, including structural 

topology optimization. Indeed, the comparison of 

applications of algorithms can be shown in Table 2 

[58- 60]. 

3. DISCUSSION & CONCLUSIONS ( 

TARTIŞMA & SONUÇLAR ) 

In this This study reviews non-gradient methods 

inspired by nature, including Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), and Artificial Neural 

Network Optimization (ANN). Although these 

methods were examined only for structural 

optimization with a cantilever beam, they can be 

applied in many engineering areas. 

Firstly, non-gradient-based methods show a better 

optimal solution than gradient-based methods 

because the objective is nondifferentiable, and their 

objective functions can be multiple, such as fitness 

and weight.  

Among the four methods, GA can handle the 

discrete or multi-objective problems and is suitable 

for finding global optima. However, it can converge 

more slowly than PSO and ACO. PSO methods can 

be ideal for structural problems involving 

continuous structures. Nevertheless, the traditional 

PSO may be trapped in a local minima problem, and 

position and velocity constants may be modified. 

For the ACO, this method can be effective for 

discrete problems or truss systems and is better for 

determining short load paths. The drawback of the 

method is that its performance heavily depends on 

the update rules of the pheromone, and ACO is 

slower than PSO. In a Neural Network, this method 

can be used to guide the optimization and help run 

many optimization cases. Indeed, training is one of 

the critical issues. After training, an ANN can 

predict quickly, but a wide data repository is a 
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significant concern for training, which may lead to 

cost concerns. Another drawback of ANN is that it 

can be less interpretable due to the complex internal 

structure and distributed representations. Finally, 

Neural Networks can be used in cases where real-

time design assistance is necessary. In light of this 

comparison, Particle Swarm Optimization can be 

selected as the most effective non-gradient method 

in terms of performance and computation in the 

beam example.  

Although gradient-based methods are typically 

favored for their efficiency in problems where 

gradients are easily calculated, non-gradient 

algorithms offer valuable flexibility and robustness 

when gradients are complicated or unreliable to 

compute, such as in overly complex or discrete 

design spaces. Gradient and non-gradient-based 

methods can be used simultaneously to overcome 

difficulties. This hybrid approach could improve the 

robustness of the solution process and yield more 

detailed, accurate, and versatile results in topology 

optimization, especially in applications with 

complex design constraints or uncertain material 

properties.  

As future work, these methods will be integrated 

into each other for design and optimization 

purposes. Another possible area of work is to 

improve the efficiency and adaptability of methods 

in complex engineering and real-world problems, as 

these methods, especially GA and ACO, can face 

slow convergence rate and computational cost 

concerns. Therefore, both methods will be 

integrated with machine learning techniques as they 

can provide more balance between global and local 

exploitation. Moreover, adaptive control 

mechanisms and self-tuning approaches will be 

crucial to enhance the flexibility and performance in 

diverse problems.   

 

 

 

Figure 14. Comparison results in different cases between common algorithm the new algorithm [57] (Ortak 

algoritma ile yeni algoritma arasındaki farklı durumlarda karşılaştırma sonuçları [57])
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Table 1. The comparison of non-gradient-based methods (Gradyan tabanlı olmayan yöntemlerin karşılaştırılması) 

Method Genetic Algorithm (GA) Neural Networks (NN) Ant Colony Optimization 

(ACO) 

Particle Swarm 

Optimization (PSO) 

Inspiration Natural evolution Learning Methods of the 

Human Brain 

Ant search, explore, and 

exploit methods 

Behaviour patterns of 

bird/fish swarms 

Search Strategy Exploration (mutation) and 

exploitation (crossover and 

selection) of a population of 

solutions. 

Gradient-based or other 

optimization methods (like 

GA or PSO) to adjust 

weights and biases. 

Positive feedback based on 

pheromone trails, leading to 

a focus on promising paths. 

Particles move through the 

search space, influenced by 

their own best-found 

position and the best position 

found by the entire swarm. 

Problem Types Combinatorial, discrete, and 

continuous optimization; 

practical for complex, non-

linear problems. 

Supervised, unsupervised, 

and reinforcement learning; 

classification, regression, 

and pattern recognition. 

Combinatorial optimization 

is well-suited explicitly for 

shortest path problems on 

graphs. 

Continuous optimization; 

also used for discrete and 

combinatorial problems. 

Strengths Robust for complex, high-

dimensional problems. 

Avoids getting stuck in local 

optima. 

Can handle non-differentiable 

and non-linear functions. 

Flexible and easy to hybridize. 

Exceptional at pattern 

recognition and function 

approximation. 

Can learn and generalize 

from data. 

Highly effective for 

complex, non-linear 

relationships. 

Good at finding near-optimal 

solutions for path-finding 

and routing problems. 

Naturally parallelizable. 

Robust to changes in the 

problem environment. 

Fast convergence and 

computationally efficient. 

Simple to implement. 

Requires fewer parameters to 

tune compared to GA. 

Can handle high-

dimensional spaces. 

Weaknesses Can be computationally 

expensive and slow to 

converge. 

Requires careful tuning of 

parameters (e.g., population 

size, mutation rate). 

No guarantee of finding the 

global optimum. 

Requires large amounts of 

data for training. 

Prone to getting stuck in 

local minima (without 

additional optimization). 

The black box nature makes 

it hard to interpret the 

internal logic. 

Slower convergence for 

some problems compared to 

PSO. 

Can suffer from stagnation if 

pheromone values are not 

managed correctly. 

Prone to premature 

convergence, where the 

entire swarm moves toward 

a sub-optimal solution. 

Less effective for problems 

with many local optima. 
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Table 2. The comparison between optimization methods and application areas (Optimizasyon yöntemleri ve uygulama alanları arasındaki karşılaştırma) 

Algorithm Type Healthcare & Medicine Engineering & Manufacturing Information Technology Transportation & Logistics 

Artificial Neural 

Networks 

  (ANN) 

Analyzing medical scans, 

diagnosing diseases, 

  discovering new drugs and 

creating personalized treatment 

plans based on 

  genomic data. 

Improving product quality, 

predicting equipment 

  failure (predictive 

maintenance), controlling 

industrial processes, and 

  operating robotics. 

Recognizing patterns in data, 

understanding 

  human language (NLP), 

computer image analysis, and 

strengthening 

  cybersecurity defenses. 

Forecasting traffic 

conditions, enabling 

  autonomous vehicle 

navigation, optimizing travel 

routes, and predicting 

  demand for services. 

Particle Swarm 

Optimization 

  (PSO) 

Pinpointing regions in medical 

images, 

  developing optimal treatment 

plans, and fine-tuning drug 

dosages for maximum 

  effectiveness. 

Enhancing structural and system 

designs, tuning 

  control systems for better 

performance, and optimizing the 

efficiency of 

  power systems. 

Selecting the most relevant 

features in a 

  dataset, clustering data, 

training other neural 

networks, and conducting 

  software testing. 

Planning the most efficient 

routes for vehicles, 

  optimizing traffic light 

timing to reduce congestion, 

and managing entire 

  fleets of vehicles. 

Genetic 

Algorithms (GA) 

Aiding in the design of new 

pharmaceuticals, 

  creating optimal schedules for 

treatments and equipment use, and 

analyzing 

  genetic sequences. 

Designing electronic circuits and 

mechanical 

  parts, optimizing 

manufacturing schedules, and 

improving overall system 

  architecture. 

Automating software testing, 

improving code 

  efficiency, selecting key 

data features for analysis, and 

configuring complex 

  systems. 

Solving complex vehicle 

routing challenges, 

  designing efficient logistics 

networks from the ground up, 

and scheduling 

  transportation tasks. 

Ant Colony 

Optimization 

(ACO) 

Efficiently allocating hospital 

resources (like 

  staff and beds), managing 

medical supply chains, and finding 

the best 

  treatment pathways for patients. 

Scheduling tasks in a 

manufacturing environment, 

  making assembly lines more 

efficient, and planning 

preventative maintenance 

  for machinery. 

Optimizing data routing in 

computer networks, 

  discovering insights from 

large datasets (data mining), 

and managing tasks in 

  distributed computing. 

Finding the best routes for 

delivery vehicles, 

  designing transportation 

and logistics networks, and 

managing real-time 

  traffic flow. 
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