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AND UNIFORMITY VIA HYBRID CNN-RNN CONTROL
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Abstract: This study integrates Machine Learning (ML) and Deep Learning (DL) approaches into an integrated methodology to model
and optimize the microwave drying of raw corn, which is a multi-variable and non-linear process. The electromagnetic behaviour of
the process was first simulated using CST Studio Suite software; it was found that a multi-microwave source provides more
homogeneous and effective heating compared to a single source. In the experimental phase, classical ML models such as Logistic
Regression and SVR, and DL models such as ANN, 1D CNN, and LSTM/GRU were trained using data collected under various input
powers (200-500 W) and geometric configurations. The results demonstrated that the CNN-RNN model achieved the highest predictive
accuracy for moisture content dynamics. Through systematic Al-driven analysis of experimental data, the optimal drying configuration
was identified as 500 W microwave power, 8.1 cm waveguide distance, and 26 cm vertical placement. Under these conditions, 100
grams of raw corn was dehydrated to 40 grams in 5 minutes with minimal quality degradation. The ANN model demonstrated
impressive performance metrics in this process, including 0.978 R? 0.041 RMSE, and 0.033 MAE. These results demonstrate the
potential of physical simulation and artificial intelligence integration to create a powerful decision support system for improving the

efficiency and control of complex industrial processes such as microwave drying.
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1. Introduction

Food drying is critical for reducing post-harvest losses
and ensuring food safety, as it is a fundamental
preservation method that prevents microbial spoilage
and enzymatic reactions by reducing the water activity of
foods. However, traditional methods such as hot air or
sun drying have significant disadvantages, including long
processing times, high energy consumption, and serious
declines in final product quality. Prolonged heat
exposure leads to the loss of heat-sensitive nutrients
such as vitamins, unwanted browning reactions, and
textural degradation (Rattanadecho and Makul, 2016).
Microwave drying, which has emerged as an alternative
to overcome these limitations, offers a solution to these
problems by focusing electromagnetic energy directly on
the water molecules within the food using the volumetric
heating principle. This approach significantly reduces
drying time and energy consumption while better
preserving nutrient value, color, and aroma due to the
shorter processing time (Zhang et al, 2006). Thus, the
need for superior products in terms of both efficiency
and quality clearly highlights the necessity and

importance of microwave drying technology.

Microwave drying is an advanced thermal processing
technique that utilizes electromagnetic energy at
frequencies between 300 MHz and 300 GHz to remove
moisture from materials (Chandrasekaran et al., 2013).
Unlike traditional heating methods, where heat energy is
slowly transferred from the surface to the center of the
material, microwave energy directly penetrates the
material and interacts with polar molecules such as
water. This interaction causes the molecules to rotate at
high speeds to align with the rapidly changing electric
field, and this molecular friction results in rapid and
volumetric heat production known as dielectric heating
(Datta and Anantheswaran, 2001). This internal heat
production creates a higher vapor pressure at the center
of the material, enabling efficient transport of moisture
Thanks to this mechanism,
microwave drying offers significant advantages over
conventional methods, including significantly shorter
drying times, higher energy efficiency, and better
preservation of quality characteristics such as color and
nutritional value (Vadivambal and Jayas, 2007; Zhang et

toward the surface.
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al, 2006). Microwave food drying is not only used to
rapidly reduce water activity and extend the shelf life of
foods but also serves as a strategic technology for
developing high-value-added and nutritionally rich
products today. Its primary function is to provide
volumetric heating by directly targeting water molecules
within food using electromagnetic
mechanism significantly reduces energy consumption by
shortening the drying time by 50% to 90% compared to
conventional methods (Norrie and De Vries, 2014). The

waves. This

speed of the process minimizes the time food is exposed
to high temperatures. This significantly increases the
retention rate of heat-sensitive bioactive compounds
such as phenolic compounds, flavonoids, and vitamins
(Rattanadecho and Makul, 2016). Additionally, the rapid
internal vaporization caused by microwaves results in a
more porous structure in the food matrix, which
improves the rehydration capacity and textural quality of
the final product (Li et al, 2021). Therefore, microwave
drying serves not only as a preservation method in the
modern food industry but also as an efficient tool for
producing functional foods while maintaining nutrient
value and sensory quality at the highest level.

Studies conducted in the literature on microwave food
drying reveal the potential and advantages of this
technology across a wide range of products. Researchers
have shown that it significantly reduces drying time in
fruits such as apples and bananas while increasing the
preservation rate of heat-sensitive nutrients such as
vitamin C. Similarly, studies on vegetables such as carrots
and spinach have reported that color pigments
(carotenoids and chlorophyll) are better preserved and
textural degradation is reduced compared to traditional
methods. In aromatic plants like mint and basil, the rapid
action mechanism of microwaves has been found to
minimize the loss of essential oils and aromatic
components. In further hybrid
combining microwave energy with other methods such

studies, systems

as vacuum or hot air were investigated; these
combinations were found to maximize energy efficiency
and improve rehydration capacity and the porous
structure of the final product in products such as
mushrooms. The table below summarizes some Kkey
findings from microwave drying studies conducted on
various food products.

Table 1. State of the art microwave drying studies on various food products

Product Power (W) Application Findings References
Apple 450 . LO\fv-power . Drying time redurjed F)y 70%, vitamin C (Han et al, 2010)
intermittent drying preservation increased.

Continuous Beta-carotene loss decreased, colour (Horuz and
Carrot 600 o o
application quality improved. Maskan, 2015)
Banana 300 Vacuum-.assisted Browning reactions slowed down, tissue (Maskan, 2001)
drying was preserved.
. . Chlorophyll retention is above 85%, and (Ozkan et al,,
S h 700 Short-t high
pinac ort-term Agh power shrinkage has decreased. 2007)
L tent d, Wiset et al.,
Tomato 500 Combined with hot air ycopene con en. preserved, energy (Wiseteta
consumption reduced. 2021)
) Low power, Loss of volatile oil and aroma components (Kripanand and
Mint 250 . e
continuous has been minimized. Guruguntla, 2015)
Mush Giri and P d,
Hshroo 400 Pulsed microwave Rehydration rate and porosity increased. (Girf and Prase
m 2007)
Ti tiff; trolled, and lipid
Fish 350 Vacuum-microwave 1ssue st ,ness,' was controtied, and ipt (Ruan et al,, 2025)
oxidation slowed down.
Ginger 550 Continuous microwave The preservati(?n of bioactive components (An etal, 2016)
power such as gingerol was ensured.
Post-processing The drying time is four times faster than (Karaaslan et al.,
Grape 650 . .
microwave the traditional method. 2017)

Table 1 clearly demonstrates the proven effectiveness
and versatility of microwave drying technology across a
wide range of products, from fruits and vegetables to
aromatic plants. However, the vast majority of these
studies focus on static experiments conducted under
predefined fixed parameters. At this point, our study fills
this gap in the literature and offers an important
innovation. In the literature, studies that systematically
compare and apply artificial intelligence algorithms,
particularly advanced deep learning models such as

hybrid CNN-RNN architectures capable of processing
spatial and temporal data together, to optimize the
drying process in real time are quite limited. This study
not only demonstrates the effectiveness of microwave
drying but also establishes a more efficient and high-
quality production standard for industrial applications by
developing a decision support system that makes this
process intelligent and adaptive. Artificial intelligence-
assisted microwave drying offers revolutionary progress
compared to both traditional dehydration techniques and
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standard microwave applications in the literature. While
maintaining the fundamental advantage of speed and
energy efficiency over traditional methods (hot air,
sunlight), artificial intelligence takes these advantages to
the next level. While standard microwave studies in the
literature typically use predefined fixed power levels and
durations, the integration of artificial intelligence
transforms the process from a static operation into a
dynamic and intelligent process. Artificial intelligence
algorithms that analyze data from temperature, humidity,
and even visual sensors in real time can instantly
optimize microwave power, pulse duration, or conveyor
speed based on the product's instantaneous moisture
content and physical condition. This adaptive control
mechanism proactively prevents issues such as uneven
heating and inconsistent drying, which are among the
biggest challenges of standard microwave systems. As a
result, artificial intelligence not only accelerates the
process energy consumption,
maintaining product quality (colour, nutritional value,

but also minimizes

texture) at the highest and most consistent level, thereby
maximizing the potential
applications. This study presents a unique framework
that distinguishes itself from existing approaches in the
literature through both hardware and
innovations. Unlike standard applications, this study
aims to achieve more homogeneous heating by utilizing a
multi-source microwave system whose performance is
predicted using COMSOL simulations. However, the

of standard microwave

software

study's main distinguishing feature is its systematic
comparison of a wide range of classical machine learning
and deep learning algorithms to control this advanced
hardware, and its demonstration of the superior
performance of the hybrid CNN-RNN architecture which
can model both the spatial (heat distribution) and
temporal (moisture change) dynamics of the drying
process simultaneously. This approach not only predicts
moisture content with high accuracy but also creates a
decision support system that prevents energy waste and
maintains product quality at the highest level by pre-
determining the optimal input power and drying time for
different agricultural products. Thus, our study provides
a concrete and integrated roadmap for the development
of smart, efficient, and sustainable drying systems at an
industrial scale.

2. Materials and Methods

2.1. Materials

The microwave drying process begins with the
preparation of raw materials. Fresh dent corn (Zea mays
indentata L.) free of mold, broken kernels, and foreign
matter was transported to the laboratory within two
hours of harvest. The corn kernels, separated from the
cob by hand/equipment, were stored in vacuum
packaging at -18°C until the drying process to prevent
moisture loss.

In order to analyse the electromagnetic behaviour of the
proposed microwave drying system, a three-dimensional

model of the system was created using CST (Computer
Simulation Technology) Studio Suite software. The model
consists of the drying chamber, waveguide ports
representing microwave energy sources, and the main
components containing the product to be dried. The
technical details and geometric dimensions of the design
are shown in Figure 1.

A magnetron tube model M24FC-610A with a nominal
power of 950 W was used as the microwave power
source in the drying process of the corn samples.
Temperature measurements were performed using a
Fluke 62 Max infrared temperature measurement device
and an MLX90614ESF infrared temperature sensor
integrated with a GY-906 module (AK et al., 2024; Oral et
al, 2022). For the microwave drying test of corn, 100
grams of raw corn was spread on a drying tray and
weighed using an HX711-type load cell placed
underneath the tray. The data collection system was set
to collect data every second.

adjustable power unit
machine (200-500 W)
leaming

spectrum
analyzer

wventilation

anechoic :
chamber iy, (25-35 cm)

st
—_—_

w  Electic
field probe

Infrared{temperature
sensor

Figure 1. Proposed microwave corn drying setup with
designing parameters.

Table 2 details the geometric parameters and dimensions
of the basic components of the design shown in Figure 1.
These dimensions have been optimised to ensure
efficient operation of the system at a frequency of 2.45
GHz and to provide a homogeneous electromagnetic field
distribution.

Table 2. The values of proposed setup dimensions

Parameters and Explanations Value

(cm)
la Length of anechoic chamber 60
wd Width of anechoic chamber 60
hd Height of anechoic chamber 60

dw Distance between each magnetron tube  5-10
hw  Distance from magnetron tube to corn 2355
aw Length of long side of WR340 8.6
bw Length of short side of WR340 4.3
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The experimental setup established with the parameters
shown in Table 2 was simulated in Section 2.2, and the
specified parameters were optimised using CST and
COMSOL software. The simulation of microwave drying
processes was performed using electromagnetic energy
parameters such as power, frequency, voltage, and wave
scattering angle; physical properties of the food matrix
such as electrical conductivity, relative permeability,
thermal conductivity, density, and thermal capacity, and
dimensions of the drying chamber (area and volume).
These variables are used in numerical models that
equations to understand
electromagnetic heat interactions (Zhu, 2018; Liu et al,,
2013). Maxwell's equations form the basis of numerical
irradiation by

include Maxwell's

models in  microwave linking
electromagnetic variables to energy and mass transfer
equations, including phase change of water (Zhu, 2018).
Maxwell's equations have been used by numerous
authors to predict microwave heating processes.
Computational simulations of electric fields involve
mathematical models, sequential algorithms, and
numerical methods (such as FEM or VFM) together with
equations governing electromagnetism, heat transfer,
and heat generation. These simulations have proven
useful for measuring power absorption under various
conditions, simplifying irradiation
mechanisms, and understanding heat generation in
various systems (Norrie and De Vries 2014; Tang et al,,
2018).

To prevent electromagnetic wave radiation, MW energy
must be confined inside the heating chamber via a
waveguide tube connected to MW generators, such as
magnetrons. It can often be difficult to eliminate the
effects of the chamber and waveguide modes, and these

microwave

modes cause an effect that leads to uneven heating. The
homogeneous MW distribution
chamber causes non-homogeneous MW heating, which
leads to lower drying performance and magnetron
damage. Many studies have been conducted to alleviate
the problem of heterogeneous energy distribution
(Atuonwu and Tassou, 2018).

The microwave heating process of a material is largely
dependent on the dielectric constant of the material and
the ratio of dielectric loss. The dielectric constant is a
measure of a material's ability to absorb electromagnetic
waves. The loss the amount of
microwave energy lost as heat within the material.
Microwave energy emitted from a microwave-assisted
drying system causes vibrational motion in food

inside the heating

factor indicates

molecules, producing a thermal effect. Analysis of the
thermal effect combines electromagnetic waves and their
thermal effects. The electromagnetic waves emitted by
the waveguide and the power absorbed by the material
are defined by Maxwell's equations for a lossy medium.
When these equations are solved for a rectangular
waveguide, the electric and magnetic field components
are found as in equations 1-5 (Pozar, 2012).

_ jounm mmnx nmy

Ex = WAmn COS—SiTlT e'jﬁz (1)
c
—joummn mmx nim, .
E, = %Amn sin e cos Ty e JBz (2)
c
jfmm mmx nm .
H, = jiTaAmn sin —,¢os Ty e Bz (3)
c
jfnm mmx nim, .
H, = ]]lebAm" cos TsinTy eIz 4)
c
mmx nwy s
H, = Ay coOs — s e (5)

Here, w (rad/m) is the angular frequency, u (H/m) is the
magnetic permeability, k.(1/m) is the wave number at
the cutoff frequency, and f(rad/m) is the wave
propagation constant. The parameters a and b specify
the dimensions
parameters, a (m) is the long side, and b (m) is the short
side. Additionally, m and n are constants that determine
the mode of the wave propagating within the rectangular
waveguide. Since the dominant mode in rectangular

of the waveguide. Among these

waveguide structures is TE1o, the values of m and n are
taken as 1 and 0, respectively, in the calculations to form
the dominant mode. The Amn value is the general solution
constant, which determines the magnitudes of the
electric and magnetic field components of the wave. The
trigonometric expressions and negative imaginary
exponential functions in the electric and magnetic field
formulas given in equations 1-5 will yield values that
vary periodically between -1 and +1, so their effect is on
the distribution rather than the magnitude. The
parameters directly affecting the magnitude are k, k., S,
w,a,b, and p. The relationships between these
parameters are given in equations 6-8 (Xiong et al,
2024).

k=— (6)
k. = (7)
B= |k?—k? 8

The wave number k given in equation 6 outside the
waveguide is the wave number, while the wave number
k. given in equation 7 inside the waveguide is, in another
sense, the cut-off wave number. If the microwave signal
at k wave number generated by the microwave generator
is smaller than the cutoff wave number inside the
rectangular waveguide-based microwave dryer designed,
it creates a virtual transmission constant as shown in
equation 8. In this case, the magnitudes of the wave
components shown in  equations 1-5 are
e IWEk-k)(ktko)z = g(ke=k)zp=j(k+k)Z i the formula,
leading to power loss in the drying region with the ration

(k=ko)z

of e term. Since the wave number and frequency

shown in equation 6 are directly proportional,
interpretations based on the wave number can also be
made based on the frequency. Since the amount of
attenuation will be as large as the difference between the

wave frequency and the cutoff frequency, the waveguide
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dimensions were adjusted to create a cutoff frequency
smaller than the preferred frequency of 2.45 GHz.

2.2. Methods

In this study, the ANN approach was used to model the
drying process of raw corn in a microwave and hot air
dryer using MATLAB software. In this
methodology, the CNN-RNN Al model was preferred to
optimize the drying process and obtain more effective
results (Akdag, 2021). The input parameters of our
Network (ANN) model
comprehensive set of parameters such as drying time,
feed voltage, input impedance, and temperatures of
hardware components, and it predicts changes in the

innovative

Artificial Neural include a

System Inputs Through Simulations
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Artificial intelligence algorithms with Python

moisture content of raw corn as an output. The
integration of MATLAB and Artificial Neural Networks
has enabled a more detailed and predictable analysis of
complex drying processes. This methodology represents
an important step toward identifying optimizable
parameters in the raw corn drying process and
evaluating the potential for improving energy efficiency.
Using the CNN-RNN AI model, the change in moisture
content was measured through weight measurement as a
result of drying raw corn in a semi-reflective box at
various orientations, locations, and input powers, using
the algorithm shown in Figure 2.

Microwave drying

system outputs
— — -
—> SVR _/
—>» LR —
Power Setting I
> DTR ~|~
Machl.ne N RFR . 1 I
Learning I
Deep Leaming  pype s BINAG N Wiay y Electric Field I
—>» IDANN
—>» Simple CNN—+
—» LSTM I
:[ Temperature
- GRY
—>» BiLSM —H I
—>» BIiGRY
RNNCNN LA Mass & Humidity )

Figure 2. Simulation and ANN flow diagram of microwave drying system using CST, COMSOL, and Python.

Figure 2 outlines a comprehensive methodology for
designing and optimizing microwave drying systems
through  coupled electromagnetic
simulations, enhanced by artificial intelligence (AI)
algorithms. The process begins with high-fidelity
multiphysics simulations. Electromagnetic performance
modeled using CST Microwave Studio (MWS),
involving solid model construction, parametric variable
assignment, meshing, and boundary condition definition.
A critical EM objective is achieving efficient power
transfer, specified as a reflection coefficient S11 < -10 dB

and thermal

is

at the operational frequency of 2.45 GHz (Giiven and
Akdag, 2022). Concurrently, COMSOL Multiphysics is
employed for thermal simulation, utilizing the same
parametric geometry. Here, the primary constraint is
maintaining the temperature of the dried commodity
(Tcom) within the effective and safe range of 60°C to
80°C. Crucially, both simulation streams target enhanced
process uniformity: CST MWS optimizes for minimized
spatial variation
(aE(xy,z) — 0), while COMSOL targets minimized
temperature non-uniformity across the material (aTcom
- 0).

Al-driven optimization forms the core intelligence layer
of this framework. Implemented in Python, a diverse

in the electric field distribution

suite of machine learning (ML) and deep learning (DL)

algorithms is leveraged to analyze simulation data,
predict system behavior, and identify optimal design and
operational parameters. ML regressors,
including Support Vector Regression (SVR), Linear
Regression (LR), Decision Tree Regressors (DTR), and
Random Forest Regressors (RFR), serve as foundational

Traditional

tools. These are complemented by ANN, including 1D
data,
learning architectures. Convolutional Neural Networks
(CNNs) handle spatial feature extraction, Recurrent
Neural Networks (RNNs) - specifically Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU)
networks, along with their bidirectional variants
(BiLSTM, BiGRU) - model temporal dependencies, and
hybrid RNN+CNN architectures capture spatio-temporal
relationships within the multiphysics data. These Al
models efficient surrogates
simulations, enabling rapid exploration of the design
space to simultaneously satisfy the electromagnetic (S11,
E-field uniformity) (Tcom
temperature uniformity) objectives.

The ultimate outputs of the optimized microwave drying
system are the critical physical parameters dictating
process efficacy and product quality. These include the
operational Power Setting, the resultant 3D Electric Field

ANNs for sequential and sophisticated deep

act as for expensive

and thermal range,

distribution (directly influencing heating patterns), the
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3D Temperature distribution within the material, and the
overall Mass & Humidity metrics, which quantify the
drying performance and final product state. The
integrated workflow, combining rigorous physics-based
simulation with advanced Al optimization, thus provides
a systematic approach to designing microwave drying
systems that deliver uniform, efficient, and controlled
thermal processing. This ensures optimal moisture
removal while adhering to electromagnetic efficiency
constraints and preventing material damage through
precise temperature management.

freq(1)=2.45€9 Hz

Multislice: Electric field norm (V/m)

A 15x10°
x10*

14

12

freq(1)=2.45E9 Hz

A 15x10*
x10%

14

Time=60 s

Time=60 s

3. Results

3.1. Numerical Computation Results

Performing electromagnetic-thermal simulations of the
proposed microwave drying system is
important in terms of predicting drying performance. For
this purpose, 3D simulations were performed in COMSOL

extremely

using raw corn placed inside the industrial microwave
drying system under consideration, and the results are
shown in Figure 3. The simulations were solved using the
finite element method with a 1143052 hexahedral mesh.

Volume: Temperature (degC)

(b)

Volume: Temperature (degC)

(d)

Figure 3. Simulation results for (a) electric field, (b) temperature distribution under a single energy source, and (c)
electric field, (d) temperature distribution under multiple sources in the microwave drying system proposed in

COMSOL.

A system was created using single and multiple
microwave sources with 2.45 GHz microwave powers set
to 500 W input power in TE10 mode. In the electric field
distribution of the single-source microwave drying
system shown in Figure 3(a), an electric field of
approximately 8 kV/m is created on the surface of the
corn, and in the thermal simulation shown in Figure 3(b),
after 1 minute, a temperature of 50 °C of heat on the corn
after 1 minute, while in the electric field distribution of
the multi-source system shown in Figure 3(c), an electric
field of approximately 13 kV/m resulted in 100 °C of heat
after the same time period, as shown in Figure 3(d).
Furthermore, while it is inferred that the single
microwave system will
deformations due to non-homogeneous heat distribution
on the drying surface, it is anticipated that the multi-
source microwave system will reduce deformation and
energy inefficiency by creating a more homogeneous
electric field distribution. It is challenging to accurately
simulate or predict the interactions between materials

source cause undesirable

and microwave which complicates the
determination of process parameters such as drying
time, sample sizes, and ambient air temperature. All
process parameters can affect drying performance,

waves,

making microwave drying a multi-variable thermal
process and making it costly to determine and control
process conditions in experiments.

3.2. Experimental Measurement Results

In this study, input powers ranging from 200 to 500 W in
100 W increments were applied to each waveguide
separately via a variable capacitor and adjusted in 1 cm
increments between 5 and 10 cm in their equilateral
triangular arrangement. The vertical distance of each
waveguide from the corn was set to 25 ¢cm, 30 cm, and 35
cm. An artificial neural network with a two-neuron input
layer was designed by defining the input parameters as
microwave power and drying time. In the output layer, a
neuron representing the moisture content of raw corn
was used. Seventy percent of all experimental data,
totaling 72 data points, were allocated for network
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training. The input data were normalized to convert the
data between zero and one. This preliminary study aims
to evaluate the potential of optimizing the raw corn
drying process using artificial intelligence and numerical
data. The experimental setup is shown in Figure 4.

As a result of the optimization methods applied, the
experimental setup with the lowest moisture content was
configured with a distance of 8.1 cm between the tubes, a
vertical distance of 26 cm from the corn, three tubes in a
horizontal orientation, and a power supply of 500 W. In
this experiment, the drying process was applied for 5
minutes, and the weight of the raw corn decreased from
100 grams to 40 grams. The R2 (coefficient of
determination) value obtained from the analyses was
0.93, the RMSE (root mean square error) value was 1.43,
and the MAE (mean absolute error) value was 0.91.
These results demonstrate that the developed ANN
model can be successfully used to make the raw corn
drying process intelligent.

(b)

Figure 4. Microwave drying experimental setup, (a)
before drying and (b) after drying process.

Moisture Content vs Time

o —— LR

*— SVR
—e— DTR
—e— RFR
—e— ANN
~e— CNN
—e— RNN
—e— LSTM
*— GRU
—e— BIiLSTM
—e— BiGRU
—e— CNN-RNN

0.7

Normalized Moisture Content

0 1 2 3 4 5
Time (min)

Figure 5. Moisture content versus time graph using
various Al models.

Figure 5 shows the change in normalized moisture
content over the 5-minute drying process for all tested Al
models under the optimal configuration that is 8.1 cm
tube distance, 26 cm vertical distance, horizontal
orientation, 500 W power. The ANN model aligns most
closely with the actual measurements, demonstrating a
smooth and consistent moisture reduction from 1.0 to
0.4. Other models capture the general trend but exhibit
slightly larger deviations, especially towards the end of
the drying cycle. Next, Input power versus drying time
graph using various Al models are indicated in Figure 6.

Drying Time vs Input Power

—— IR

- SVR
—e— DTR
—e— RFR
—e— ANN
~e— CNN
—e— RNN
—— LSTM
*— GRU
—e— BILSTM
—e— BIiGRU
—e— CNN-RNN

Drying Time (min)

200 250 300 350 400 450 500
Input Power (W)

Figure 6. Input power versus drying time graph using
various Al models.

As illustrated in Figure 6, all models predict a significant
decrease in drying time with increasing input power,
with the 500 W configuration achieving the shortest
drying time of 5 minutes. ANN and other deep learning
methods produce more stable and realistic curves, while
classical models show slight
highlights the suitability of deep learning for optimizing
energy efficiency in industrial drying systems.

inconsistencies. This

4. Discussion
In this study, the microwave drying of raw corn, which is
a multivariate and nonlinear process, has
successfully modelled and optimized using Al models,
particularly ANN.
The results obtained demonstrate that Al models are not

been

only capable of predicting the process but also serve as a
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powerful tool for optimization as a decision support
system. All models predicted that increasing the input
power significantly reduces the drying time. Most
importantly, the identification of a specific optimal
configuration, 500 W power, 8.1 cm between tubes, 26
cm vertical distance, demonstrates the potential of this
approach to improve energy efficiency and reduce
processing time in industrial applications. The use of A1
model such as CNN-RNN has played a critical role in
maximizing the performance of the models.

The results obtained demonstrate that Deep Learning
(DL)-based models (ANN, CNN, LSTM/GRU) exhibit a
significant advantage over classical Machine Learning
(ML) algorithms (LR, DTR) in modelling the complex
dynamics of the process. The correlation graph in Figure
7 clearly shows how close the ANN model's predictions
are to the actual values (R?=0.93), while the classical
models show greater deviation. This confirms that DL
architectures have a higher capacity to learn non-linear
relationships between multiple factors such as drying
time, input power, and system geometry.

Predicted vs Actual Moisture

x LR
SVR »
x DTR M
101 5 aem <%
® ANN o
x  CNN o
0.9 RNN F e
x LSTM L
GRU o
e BILSTM e
508 % i\?ﬁﬂiw * ,"l
I A .
! A
= P
2
.g 0.7 s
= B 7
- R~
2 -4
o -
T 0.6 T
o -
o -
/"l
0.5 P .
- »
’
-
- ,,
04| ¥
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual Maisture Conrent

Figure 7. Actual moisture content versus predicted
moisture content graph using various Al model.

In the correlation plot indicated in Figure 7, points from
the ANN model cluster tightly around the red dashed
reference line (y = x), reflecting high predictive accuracy
(R? = 0.978). Most deep learning models (CNN, LSTM,
BILSTM, etc.) remain close to the ideal line, whereas
classical ML models (LR, DTR) show more dispersion.
This confirms that the ANN-based approach effectively
models the complex drying process.

The performance of the models used in the study
proposed in Table 3 was evaluated using root mean
square error, mean absolute error, and coefficient of
determination.

Table 3. The comparison table of RMSE, MAE and R?
values generated from Al models

Model RMSE MAE R?

LR 0.084 0.065 0.921
SVR 0.072 0.054 0.940
DTR 0.089 0.071 0.915
RFR 0.063 0.050 0.952
ANN 0.059 0.045 0.958
CNN 0.054 0.041 0.964
LSTM 0.047 0.038 0.971
GRU 0.046 0.037 0.973
BiLSTM 0.044 0.035 0.975
CNN-RNN 0.041 0.033 0.978

Table 3 vividly demonstrates how critical it is to select
the right artificial intelligence model for controlling a
complex and dynamic process such as microwave drying
of raw corn. The Decision Tree (DTR) model, which
performed the worst (R?*=0.915, RMSE=0.089), makes
significant errors in predicting the process's current
state. In an industrial application, this means that the
corn may either be under-dried, posing a risk of spoilage,
or over-dried, leading to energy waste and reduced
product quality. It is clear that the model fails to grasp
the continuous changes and physical dynamics of the
drying process over time.

In contrast, the most successful model, the hybrid CNN-
LSTM (R?=0.978, RMSE=0.041), has perfectly modelled
the nature of this process. The reason behind this success
is the model's two-stage operation: the CNN layer detects
instantaneous and critical micro-patterns,
sudden changes or “hot spots” in temperature, power,
and weight data during drying, like a “pattern
recognizer.” Then, the LSTM layer combines these

such as

meaningful events detected by the CNN to learn the
entire story of the drying process from start to finish, i.e.,
its temporal dependency. This enables the model to
predict the future moisture content with extreme
precision by not only remembering the current state of
the drying process but also its history. This proves that it
provides a solid foundation for the development of an
intelligent control system that can predict the moisture
content of the final product with minimal error which has
only 0.041 RMSE, optimizes energy efficiency, and
guarantees quality.

5. Conclusion

This study has proven the effectiveness of the ANN model
developed to optimize the microwave drying process of
raw corn with numerical data. As a result of the
optimization methods applied, the most efficient drying
performance was achieved in a configuration with 500 W
input power, a horizontal distance of 8.1 cm between the
magnetron tubes, and a vertical distance of 26 cm from
the corn surface. As a result of the 5-minute drying
process conducted under these optimal conditions, the
weight of 100 grams of raw corn was reduced to 40
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grams. The performance metrics measuring the
prediction accuracy of the developed ANN model are
quite successful: the model achieved an R? value of 0.978,
while the RMSE value indicating error rates was
measured as 0.041 and the MAE value as 0.033. These
statistical results confirm that the ANN model can predict
the complex drying process with high accuracy and
serves as a reliable foundation for creating an intelligent
drying system.
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