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Abstract: This study integrates Machine Learning (ML) and Deep Learning (DL) approaches into an integrated methodology to model 

and optimize the microwave drying of raw corn, which is a multi-variable and non-linear process. The electromagnetic behaviour of 

the process was first simulated using CST Studio Suite software; it was found that a multi-microwave source provides more 

homogeneous and effective heating compared to a single source. In the experimental phase, classical ML models such as Logistic 

Regression and SVR, and DL models such as ANN, 1D CNN, and LSTM/GRU were trained using data collected under various input 

powers (200-500 W) and geometric configurations. The results demonstrated that the CNN-RNN model achieved the highest predictive 

accuracy for moisture content dynamics. Through systematic AI-driven analysis of experimental data, the optimal drying configuration 

was identified as 500 W microwave power, 8.1 cm waveguide distance, and 26 cm vertical placement. Under these conditions, 100 

grams of raw corn was dehydrated to 40 grams in 5 minutes with minimal quality degradation. The ANN model demonstrated 

impressive performance metrics in this process, including 0.978 R², 0.041 RMSE, and 0.033 MAE. These results demonstrate the 

potential of physical simulation and artificial intelligence integration to create a powerful decision support system for improving the 

efficiency and control of complex industrial processes such as microwave drying. 
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1. Introduction 

Food drying is critical for reducing post-harvest losses 

and ensuring food safety, as it is a fundamental 

preservation method that prevents microbial spoilage 

and enzymatic reactions by reducing the water activity of 

foods. However, traditional methods such as hot air or 

sun drying have significant disadvantages, including long 

processing times, high energy consumption, and serious 

declines in final product quality. Prolonged heat 

exposure leads to the loss of heat-sensitive nutrients 

such as vitamins, unwanted browning reactions, and 

textural degradation (Rattanadecho and Makul, 2016). 

Microwave drying, which has emerged as an alternative 

to overcome these limitations, offers a solution to these 

problems by focusing electromagnetic energy directly on 

the water molecules within the food using the volumetric 

heating principle. This approach significantly reduces 

drying time and energy consumption while better 

preserving nutrient value, color, and aroma due to the 

shorter processing time (Zhang et al., 2006). Thus, the 

need for superior products in terms of both efficiency 

and quality clearly highlights the necessity and 

importance of microwave drying technology. 

Microwave drying is an advanced thermal processing 

technique that utilizes electromagnetic energy at 

frequencies between 300 MHz and 300 GHz to remove 

moisture from materials (Chandrasekaran et al., 2013). 

Unlike traditional heating methods, where heat energy is 

slowly transferred from the surface to the center of the 

material, microwave energy directly penetrates the 

material and interacts with polar molecules such as 

water. This interaction causes the molecules to rotate at 

high speeds to align with the rapidly changing electric 

field, and this molecular friction results in rapid and 

volumetric heat production known as dielectric heating 

(Datta and Anantheswaran, 2001). This internal heat 

production creates a higher vapor pressure at the center 

of the material, enabling efficient transport of moisture 

toward the surface. Thanks to this mechanism, 

microwave drying offers significant advantages over 

conventional methods, including significantly shorter 

drying times, higher energy efficiency, and better 

preservation of quality characteristics such as color and 

nutritional value (Vadivambal and Jayas, 2007; Zhang et 

Research Article 
Volume 9 - Issue 1: XX-XX / January 2026 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Caner MURAT 2 

 

al., 2006). Microwave food drying is not only used to 

rapidly reduce water activity and extend the shelf life of 

foods but also serves as a strategic technology for 

developing high-value-added and nutritionally rich 

products today. Its primary function is to provide 

volumetric heating by directly targeting water molecules 

within food using electromagnetic waves. This 

mechanism significantly reduces energy consumption by 

shortening the drying time by 50% to 90% compared to 

conventional methods (Norrie and De Vries, 2014). The 

speed of the process minimizes the time food is exposed 

to high temperatures. This significantly increases the 

retention rate of heat-sensitive bioactive compounds 

such as phenolic compounds, flavonoids, and vitamins 

(Rattanadecho and Makul, 2016). Additionally, the rapid 

internal vaporization caused by microwaves results in a 

more porous structure in the food matrix, which 

improves the rehydration capacity and textural quality of 

the final product (Li et al., 2021). Therefore, microwave 

drying serves not only as a preservation method in the 

modern food industry but also as an efficient tool for 

producing functional foods while maintaining nutrient 

value and sensory quality at the highest level. 

Studies conducted in the literature on microwave food 

drying reveal the potential and advantages of this 

technology across a wide range of products. Researchers 

have shown that it significantly reduces drying time in 

fruits such as apples and bananas while increasing the 

preservation rate of heat-sensitive nutrients such as 

vitamin C. Similarly, studies on vegetables such as carrots 

and spinach have reported that color pigments 

(carotenoids and chlorophyll) are better preserved and 

textural degradation is reduced compared to traditional 

methods. In aromatic plants like mint and basil, the rapid 

action mechanism of microwaves has been found to 

minimize the loss of essential oils and aromatic 

components. In further studies, hybrid systems 

combining microwave energy with other methods such 

as vacuum or hot air were investigated; these 

combinations were found to maximize energy efficiency 

and improve rehydration capacity and the porous 

structure of the final product in products such as 

mushrooms. The table below summarizes some key 

findings from microwave drying studies conducted on 

various food products. 

 

Table 1. State of the art microwave drying studies on various food products 

Product Power (W) Application Findings References 

Apple 450 
Low-power 

intermittent drying 

Drying time reduced by 70%, vitamin C 

preservation increased. 
(Han et al., 2010) 

Carrot 600 
Continuous 

application 

Beta-carotene loss decreased, colour 

quality improved. 

(Horuz and 

Maskan, 2015) 

Banana 300 
Vacuum-assisted 

drying 

Browning reactions slowed down, tissue 

was preserved. 
(Maskan, 2001) 

Spinach 700 Short-term high power 
Chlorophyll retention is above 85%, and 

shrinkage has decreased. 

(Ozkan et al., 

2007) 

Tomato 500 Combined with hot air 
Lycopene content preserved, energy 

consumption reduced. 

(Wiset et al., 

2021) 

Mint 250 
Low power, 

continuous 

Loss of volatile oil and aroma components 

has been minimized. 

(Kripanand and 

Guruguntla, 2015) 

Mushroo

m 
400 Pulsed microwave Rehydration rate and porosity increased. 

(Giri and Prased, 

2007) 

Fish 350 Vacuum-microwave 
Tissue stiffness was controlled, and lipid 

oxidation slowed down. 
(Ruan et al., 2025) 

Ginger 550 
Continuous microwave 

power 

The preservation of bioactive components 

such as gingerol was ensured. 
(An et al., 2016) 

Grape 650 
Post-processing 

microwave 

The drying time is four times faster than 

the traditional method. 

(Karaaslan et al., 

2017) 

 

Table 1 clearly demonstrates the proven effectiveness 

and versatility of microwave drying technology across a 

wide range of products, from fruits and vegetables to 

aromatic plants. However, the vast majority of these 

studies focus on static experiments conducted under 

predefined fixed parameters. At this point, our study fills 

this gap in the literature and offers an important 

innovation. In the literature, studies that systematically 

compare and apply artificial intelligence algorithms, 

particularly advanced deep learning models such as 

hybrid CNN-RNN architectures capable of processing 

spatial and temporal data together, to optimize the 

drying process in real time are quite limited. This study 

not only demonstrates the effectiveness of microwave 

drying but also establishes a more efficient and high-

quality production standard for industrial applications by 

developing a decision support system that makes this 

process intelligent and adaptive. Artificial intelligence-

assisted microwave drying offers revolutionary progress 

compared to both traditional dehydration techniques and 
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standard microwave applications in the literature. While 

maintaining the fundamental advantage of speed and 

energy efficiency over traditional methods (hot air, 

sunlight), artificial intelligence takes these advantages to 

the next level. While standard microwave studies in the 

literature typically use predefined fixed power levels and 

durations, the integration of artificial intelligence 

transforms the process from a static operation into a 

dynamic and intelligent process. Artificial intelligence 

algorithms that analyze data from temperature, humidity, 

and even visual sensors in real time can instantly 

optimize microwave power, pulse duration, or conveyor 

speed based on the product's instantaneous moisture 

content and physical condition. This adaptive control 

mechanism proactively prevents issues such as uneven 

heating and inconsistent drying, which are among the 

biggest challenges of standard microwave systems. As a 

result, artificial intelligence not only accelerates the 

process but also minimizes energy consumption, 

maintaining product quality (colour, nutritional value, 

texture) at the highest and most consistent level, thereby 

maximizing the potential of standard microwave 

applications. This study presents a unique framework 

that distinguishes itself from existing approaches in the 

literature through both hardware and software 

innovations. Unlike standard applications, this study 

aims to achieve more homogeneous heating by utilizing a 

multi-source microwave system whose performance is 

predicted using COMSOL simulations. However, the 

study's main distinguishing feature is its systematic 

comparison of a wide range of classical machine learning 

and deep learning algorithms to control this advanced 

hardware, and its demonstration of the superior 

performance of the hybrid CNN-RNN architecture which 

can model both the spatial (heat distribution) and 

temporal (moisture change) dynamics of the drying 

process simultaneously. This approach not only predicts 

moisture content with high accuracy but also creates a 

decision support system that prevents energy waste and 

maintains product quality at the highest level by pre-

determining the optimal input power and drying time for 

different agricultural products. Thus, our study provides 

a concrete and integrated roadmap for the development 

of smart, efficient, and sustainable drying systems at an 

industrial scale. 

 

2. Materials and Methods 
2.1. Materials 

The microwave drying process begins with the 

preparation of raw materials. Fresh dent corn (Zea mays 

indentata L.) free of mold, broken kernels, and foreign 

matter was transported to the laboratory within two 

hours of harvest. The corn kernels, separated from the 

cob by hand/equipment, were stored in vacuum 

packaging at -18°C until the drying process to prevent 

moisture loss. 

In order to analyse the electromagnetic behaviour of the 

proposed microwave drying system, a three-dimensional 

model of the system was created using CST (Computer 

Simulation Technology) Studio Suite software. The model 

consists of the drying chamber, waveguide ports 

representing microwave energy sources, and the main 

components containing the product to be dried. The 

technical details and geometric dimensions of the design 

are shown in Figure 1. 

A magnetron tube model M24FC-610A with a nominal 

power of 950 W was used as the microwave power 

source in the drying process of the corn samples. 

Temperature measurements were performed using a 

Fluke 62 Max infrared temperature measurement device 

and an MLX90614ESF infrared temperature sensor 

integrated with a GY-906 module (AK et al., 2024; Oral et 

al., 2022). For the microwave drying test of corn, 100 

grams of raw corn was spread on a drying tray and 

weighed using an HX711-type load cell placed 

underneath the tray. The data collection system was set 

to collect data every second. 
 

 
 

Figure 1. Proposed microwave corn drying setup with 

designing parameters. 

 

Table 2 details the geometric parameters and dimensions 

of the basic components of the design shown in Figure 1. 

These dimensions have been optimised to ensure 

efficient operation of the system at a frequency of 2.45 

GHz and to provide a homogeneous electromagnetic field 

distribution. 

 

Table 2. The values of proposed setup dimensions 

 Parameters and Explanations 
Value 

(cm) 

ld Length of anechoic chamber 60 

wd Width of anechoic chamber 60 

hd Height of anechoic chamber 60 

dw Distance between each magnetron tube 5-10 

hw Distance from magnetron tube to corn 
25-

35 

aw Length of long side of WR340 8.6 

bw Length of short side of WR340 4.3 
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The experimental setup established with the parameters 

shown in Table 2 was simulated in Section 2.2, and the 

specified parameters were optimised using CST and 

COMSOL software. The simulation of microwave drying 

processes was performed using electromagnetic energy 

parameters such as power, frequency, voltage, and wave 

scattering angle; physical properties of the food matrix 

such as electrical conductivity, relative permeability, 

thermal conductivity, density, and thermal capacity, and 

dimensions of the drying chamber (area and volume). 

These variables are used in numerical models that 

include Maxwell's equations to understand 

electromagnetic heat interactions (Zhu, 2018; Liu et al., 

2013). Maxwell's equations form the basis of numerical 

models in microwave irradiation by linking 

electromagnetic variables to energy and mass transfer 

equations, including phase change of water (Zhu, 2018). 

Maxwell's equations have been used by numerous 

authors to predict microwave heating processes. 

Computational simulations of electric fields involve 

mathematical models, sequential algorithms, and 

numerical methods (such as FEM or VFM) together with 

equations governing electromagnetism, heat transfer, 

and heat generation. These simulations have proven 

useful for measuring power absorption under various 

conditions, simplifying microwave irradiation 

mechanisms, and understanding heat generation in 

various systems (Norrie and De Vries 2014; Tang et al., 

2018). 

To prevent electromagnetic wave radiation, MW energy 

must be confined inside the heating chamber via a 

waveguide tube connected to MW generators, such as 

magnetrons. It can often be difficult to eliminate the 

effects of the chamber and waveguide modes, and these 

modes cause an effect that leads to uneven heating. The 

homogeneous MW distribution inside the heating 

chamber causes non-homogeneous MW heating, which 

leads to lower drying performance and magnetron 

damage. Many studies have been conducted to alleviate 

the problem of heterogeneous energy distribution 

(Atuonwu and Tassou, 2018). 

The microwave heating process of a material is largely 

dependent on the dielectric constant of the material and 

the ratio of dielectric loss. The dielectric constant is a 

measure of a material's ability to absorb electromagnetic 

waves. The loss factor indicates the amount of 

microwave energy lost as heat within the material. 

Microwave energy emitted from a microwave-assisted 

drying system causes vibrational motion in food 

molecules, producing a thermal effect. Analysis of the 

thermal effect combines electromagnetic waves and their 

thermal effects. The electromagnetic waves emitted by 

the waveguide and the power absorbed by the material 

are defined by Maxwell's equations for a lossy medium. 

When these equations are solved for a rectangular 

waveguide, the electric and magnetic field components 

are found as in equations 1-5 (Pozar, 2012). 
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Here, ω (rad/m) is the angular frequency, μ (H/m) is the 

magnetic permeability, kc(1/m) is the wave number at 

the cutoff frequency, and β (rad/m) is the wave 

propagation constant. The parameters 𝑎 and 𝑏 specify 

the dimensions of the waveguide. Among these 

parameters, a (m) is the long side, and b (m) is the short 

side. Additionally, m and n are constants that determine 

the mode of the wave propagating within the rectangular 

waveguide. Since the dominant mode in rectangular 

waveguide structures is TE10, the values of m and n are 

taken as 1 and 0, respectively, in the calculations to form 

the dominant mode. The Amn value is the general solution 

constant, which determines the magnitudes of the 

electric and magnetic field components of the wave. The 

trigonometric expressions and negative imaginary 

exponential functions in the electric and magnetic field 

formulas given in equations 1-5 will yield values that 

vary periodically between -1 and +1, so their effect is on 

the distribution rather than the magnitude. The 

parameters directly affecting the magnitude are 𝑘, 𝑘𝑐, 𝛽, 

𝜔, 𝑎, 𝑏, and 𝜇. The relationships between these 

parameters are given in equations 6–8 (Xiong et al., 

2024). 
 

𝑘 =  
𝜔

𝑐
 (6) 

𝑘𝑐 =  √(
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

 (7) 

𝛽 =  √𝑘2 − 𝑘𝑐
2 (8) 

 

The wave number k given in equation 6 outside the 

waveguide is the wave number, while the wave number 

𝑘𝑐 given in equation 7 inside the waveguide is, in another 

sense, the cut-off wave number. If the microwave signal 

at k wave number generated by the microwave generator 

is smaller than the cutoff wave number inside the 

rectangular waveguide-based microwave dryer designed, 

it creates a virtual transmission constant as shown in 

equation 8. In this case, the magnitudes of the wave 

components shown in equations 1-5 are 

𝑒−𝑗√(𝑘−𝑘𝑐)(𝑘+𝑘𝑐)𝑧 = 𝑒(𝑘𝑐−𝑘)𝑧𝑒−𝑗(𝑘+𝑘𝑐)𝑧 in the formula, 

leading to power loss in the drying region with the ration 

of 𝑒(𝑘−𝑘𝑐)𝑧 term. Since the wave number and frequency 

shown in equation 6 are directly proportional, 

interpretations based on the wave number can also be 

made based on the frequency. Since the amount of 

attenuation will be as large as the difference between the 

wave frequency and the cutoff frequency, the waveguide 
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dimensions were adjusted to create a cutoff frequency 

smaller than the preferred frequency of 2.45 GHz. 

2.2. Methods 

In this study, the ANN approach was used to model the 

drying process of raw corn in a microwave and hot air 

dryer using MATLAB software. In this innovative 

methodology, the CNN-RNN AI model was preferred to 

optimize the drying process and obtain more effective 

results (Akdag, 2021). The input parameters of our 

Artificial Neural Network (ANN) model include a 

comprehensive set of parameters such as drying time, 

feed voltage, input impedance, and temperatures of 

hardware components, and it predicts changes in the 

moisture content of raw corn as an output. The 

integration of MATLAB and Artificial Neural Networks 

has enabled a more detailed and predictable analysis of 

complex drying processes. This methodology represents 

an important step toward identifying optimizable 

parameters in the raw corn drying process and 

evaluating the potential for improving energy efficiency. 

Using the CNN-RNN AI model, the change in moisture 

content was measured through weight measurement as a 

result of drying raw corn in a semi-reflective box at 

various orientations, locations, and input powers, using 

the algorithm shown in Figure 2. 

 

 
 

Figure 2. Simulation and ANN flow diagram of microwave drying system using CST, COMSOL, and Python. 

 

Figure 2 outlines a comprehensive methodology for 

designing and optimizing microwave drying systems 

through coupled electromagnetic and thermal 

simulations, enhanced by artificial intelligence (AI) 

algorithms. The process begins with high-fidelity 

multiphysics simulations. Electromagnetic performance 

is modeled using CST Microwave Studio (MWS), 

involving solid model construction, parametric variable 

assignment, meshing, and boundary condition definition. 

A critical EM objective is achieving efficient power 

transfer, specified as a reflection coefficient S11 < -10 dB 

at the operational frequency of 2.45 GHz (Güven and 

Akdag, 2022). Concurrently, COMSOL Multiphysics is 

employed for thermal simulation, utilizing the same 

parametric geometry. Here, the primary constraint is 

maintaining the temperature of the dried commodity 

(Tcom) within the effective and safe range of 60°C to 

80°C. Crucially, both simulation streams target enhanced 

process uniformity: CST MWS optimizes for minimized 

spatial variation in the electric field distribution 

(aE(x,y,z) → 0), while COMSOL targets minimized 

temperature non-uniformity across the material (aTcom 

→ 0). 

AI-driven optimization forms the core intelligence layer 

of this framework. Implemented in Python, a diverse 

suite of machine learning (ML) and deep learning (DL) 

algorithms is leveraged to analyze simulation data, 

predict system behavior, and identify optimal design and 

operational parameters. Traditional ML regressors, 

including Support Vector Regression (SVR), Linear 

Regression (LR), Decision Tree Regressors (DTR), and 

Random Forest Regressors (RFR), serve as foundational 

tools. These are complemented by ANN, including 1D 

ANNs for sequential data, and sophisticated deep 

learning architectures. Convolutional Neural Networks 

(CNNs) handle spatial feature extraction, Recurrent 

Neural Networks (RNNs) – specifically Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) 

networks, along with their bidirectional variants 

(BiLSTM, BiGRU) – model temporal dependencies, and 

hybrid RNN+CNN architectures capture spatio-temporal 

relationships within the multiphysics data. These AI 

models act as efficient surrogates for expensive 

simulations, enabling rapid exploration of the design 

space to simultaneously satisfy the electromagnetic (S11, 

E-field uniformity) and thermal (Tcom range, 

temperature uniformity) objectives. 

The ultimate outputs of the optimized microwave drying 

system are the critical physical parameters dictating 

process efficacy and product quality. These include the 

operational Power Setting, the resultant 3D Electric Field 

distribution (directly influencing heating patterns), the 
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3D Temperature distribution within the material, and the 

overall Mass & Humidity metrics, which quantify the 

drying performance and final product state. The 

integrated workflow, combining rigorous physics-based 

simulation with advanced AI optimization, thus provides 

a systematic approach to designing microwave drying 

systems that deliver uniform, efficient, and controlled 

thermal processing. This ensures optimal moisture 

removal while adhering to electromagnetic efficiency 

constraints and preventing material damage through 

precise temperature management. 

3. Results 
3.1. Numerical Computation Results 

Performing electromagnetic-thermal simulations of the 

proposed microwave drying system is extremely 

important in terms of predicting drying performance. For 

this purpose, 3D simulations were performed in COMSOL 

using raw corn placed inside the industrial microwave 

drying system under consideration, and the results are 

shown in Figure 3. The simulations were solved using the 

finite element method with a 1143052 hexahedral mesh.

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Simulation results for (a) electric field, (b) temperature distribution under a single energy source, and (c) 

electric field, (d) temperature distribution under multiple sources in the microwave drying system proposed in 

COMSOL. 

 

A system was created using single and multiple 

microwave sources with 2.45 GHz microwave powers set 

to 500 W input power in TE10 mode. In the electric field 

distribution of the single-source microwave drying 

system shown in Figure 3(a), an electric field of 

approximately 8 kV/m is created on the surface of the 

corn, and in the thermal simulation shown in Figure 3(b), 

after 1 minute, a temperature of 50 °C of heat on the corn 

after 1 minute, while in the electric field distribution of 

the multi-source system shown in Figure 3(c), an electric 

field of approximately 13 kV/m resulted in 100 °C of heat 

after the same time period, as shown in Figure 3(d). 

Furthermore, while it is inferred that the single 

microwave source system will cause undesirable 

deformations due to non-homogeneous heat distribution 

on the drying surface, it is anticipated that the multi-

source microwave system will reduce deformation and 

energy inefficiency by creating a more homogeneous 

electric field distribution. It is challenging to accurately 

simulate or predict the interactions between materials 

and microwave waves, which complicates the 

determination of process parameters such as drying 

time, sample sizes, and ambient air temperature. All 

process parameters can affect drying performance, 

making microwave drying a multi-variable thermal 

process and making it costly to determine and control 

process conditions in experiments. 

3.2. Experimental Measurement Results 

In this study, input powers ranging from 200 to 500 W in 

100 W increments were applied to each waveguide 

separately via a variable capacitor and adjusted in 1 cm 

increments between 5 and 10 cm in their equilateral 

triangular arrangement. The vertical distance of each 

waveguide from the corn was set to 25 cm, 30 cm, and 35 

cm. An artificial neural network with a two-neuron input 

layer was designed by defining the input parameters as 

microwave power and drying time. In the output layer, a 

neuron representing the moisture content of raw corn 

was used. Seventy percent of all experimental data, 

totaling 72 data points, were allocated for network 
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training. The input data were normalized to convert the 

data between zero and one. This preliminary study aims 

to evaluate the potential of optimizing the raw corn 

drying process using artificial intelligence and numerical 

data. The experimental setup is shown in Figure 4. 

As a result of the optimization methods applied, the 

experimental setup with the lowest moisture content was 

configured with a distance of 8.1 cm between the tubes, a 

vertical distance of 26 cm from the corn, three tubes in a 

horizontal orientation, and a power supply of 500 W. In 

this experiment, the drying process was applied for 5 

minutes, and the weight of the raw corn decreased from 

100 grams to 40 grams. The R2 (coefficient of 

determination) value obtained from the analyses was 

0.93, the RMSE (root mean square error) value was 1.43, 

and the MAE (mean absolute error) value was 0.91. 

These results demonstrate that the developed ANN 

model can be successfully used to make the raw corn 

drying process intelligent. 

 

 
(a) 

 
(b) 

 

Figure 4. Microwave drying experimental setup, (a) 

before drying and (b) after drying process. 

 

 

 
Figure 5. Moisture content versus time graph using 

various AI models. 

 

Figure 5 shows the change in normalized moisture 

content over the 5-minute drying process for all tested AI 

models under the optimal configuration that is 8.1 cm 

tube distance, 26 cm vertical distance, horizontal 

orientation, 500 W power. The ANN model aligns most 

closely with the actual measurements, demonstrating a 

smooth and consistent moisture reduction from 1.0 to 

0.4. Other models capture the general trend but exhibit 

slightly larger deviations, especially towards the end of 

the drying cycle. Next, Input power versus drying time 

graph using various AI models are indicated in Figure 6. 

 

 
 

Figure 6. Input power versus drying time graph using 

various AI models. 

 

As illustrated in Figure 6, all models predict a significant 

decrease in drying time with increasing input power, 

with the 500 W configuration achieving the shortest 

drying time of 5 minutes. ANN and other deep learning 

methods produce more stable and realistic curves, while 

classical models show slight inconsistencies. This 

highlights the suitability of deep learning for optimizing 

energy efficiency in industrial drying systems. 

 

4. Discussion 
In this study, the microwave drying of raw corn, which is 

a multivariate and nonlinear process, has been 

successfully modelled and optimized using AI models, 

particularly ANN.  

The results obtained demonstrate that AI models are not 

only capable of predicting the process but also serve as a 
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powerful tool for optimization as a decision support 

system. All models predicted that increasing the input 

power significantly reduces the drying time. Most 

importantly, the identification of a specific optimal 

configuration, 500 W power, 8.1 cm between tubes, 26 

cm vertical distance, demonstrates the potential of this 

approach to improve energy efficiency and reduce 

processing time in industrial applications. The use of Aı 

model such as CNN-RNN has played a critical role in 

maximizing the performance of the models. 

The results obtained demonstrate that Deep Learning 

(DL)-based models (ANN, CNN, LSTM/GRU) exhibit a 

significant advantage over classical Machine Learning 

(ML) algorithms (LR, DTR) in modelling the complex 

dynamics of the process. The correlation graph in Figure 

7 clearly shows how close the ANN model's predictions 

are to the actual values (R²=0.93), while the classical 

models show greater deviation. This confirms that DL 

architectures have a higher capacity to learn non-linear 

relationships between multiple factors such as drying 

time, input power, and system geometry. 

 

 
 

Figure 7. Actual moisture content versus predicted 

moisture content graph using various AI model. 

 

In the correlation plot indicated in Figure 7, points from 

the ANN model cluster tightly around the red dashed 

reference line (y = x), reflecting high predictive accuracy 

(R² = 0.978). Most deep learning models (CNN, LSTM, 

BiLSTM, etc.) remain close to the ideal line, whereas 

classical ML models (LR, DTR) show more dispersion. 

This confirms that the ANN-based approach effectively 

models the complex drying process. 

The performance of the models used in the study 

proposed in Table 3 was evaluated using root mean 

square error, mean absolute error, and coefficient of 

determination. 

 

 

 

Table 3. The comparison table of RMSE, MAE and R² 

values generated from AI models 
 

Model RMSE MAE R² 

LR 0.084 0.065 0.921 

SVR 0.072 0.054 0.940 

DTR 0.089 0.071 0.915 

RFR 0.063 0.050 0.952 

ANN 0.059 0.045 0.958 

CNN 0.054 0.041 0.964 

LSTM 0.047 0.038 0.971 

GRU 0.046 0.037 0.973 

BiLSTM 0.044 0.035 0.975 

CNN-RNN 0.041 0.033 0.978 

 

Table 3 vividly demonstrates how critical it is to select 

the right artificial intelligence model for controlling a 

complex and dynamic process such as microwave drying 

of raw corn. The Decision Tree (DTR) model, which 

performed the worst (R²=0.915, RMSE=0.089), makes 

significant errors in predicting the process's current 

state. In an industrial application, this means that the 

corn may either be under-dried, posing a risk of spoilage, 

or over-dried, leading to energy waste and reduced 

product quality. It is clear that the model fails to grasp 

the continuous changes and physical dynamics of the 

drying process over time. 

In contrast, the most successful model, the hybrid CNN-

LSTM (R²=0.978, RMSE=0.041), has perfectly modelled 

the nature of this process. The reason behind this success 

is the model's two-stage operation: the CNN layer detects 

instantaneous and critical micro-patterns, such as 

sudden changes or “hot spots” in temperature, power, 

and weight data during drying, like a “pattern 

recognizer.” Then, the LSTM layer combines these 

meaningful events detected by the CNN to learn the 

entire story of the drying process from start to finish, i.e., 

its temporal dependency. This enables the model to 

predict the future moisture content with extreme 

precision by not only remembering the current state of 

the drying process but also its history. This proves that it 

provides a solid foundation for the development of an 

intelligent control system that can predict the moisture 

content of the final product with minimal error which has 

only 0.041 RMSE, optimizes energy efficiency, and 

guarantees quality. 

 

5. Conclusion 
This study has proven the effectiveness of the ANN model 

developed to optimize the microwave drying process of 

raw corn with numerical data. As a result of the 

optimization methods applied, the most efficient drying 

performance was achieved in a configuration with 500 W 

input power, a horizontal distance of 8.1 cm between the 

magnetron tubes, and a vertical distance of 26 cm from 

the corn surface. As a result of the 5-minute drying 

process conducted under these optimal conditions, the 

weight of 100 grams of raw corn was reduced to 40 
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grams. The performance metrics measuring the 

prediction accuracy of the developed ANN model are 

quite successful: the model achieved an R² value of 0.978, 

while the RMSE value indicating error rates was 

measured as 0.041 and the MAE value as 0.033. These 

statistical results confirm that the ANN model can predict 

the complex drying process with high accuracy and 

serves as a reliable foundation for creating an intelligent 

drying system. 
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