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ABSTRACT: The reliable detection of stripping in asphalt mixtures is a critical challenge for 

pavement performance evaluation, as conventional physical tests rely heavily on subjective 

observation and lack reproducibility. This study proposes an image-based quantitative method that 

integrates geometric standardization, superpixel segmentation, and feature extraction to enhance the 

objectivity of stripping assessment. Petri dish images were first standardized through square cropping 

and bicubic resampling to ensure comparability across samples. Superpixels were then generated, and 

multiple spatial, geometric, photometric, and texture-based features were extracted, including 

distance-to-center, compactness, local color similarity, and global color deviation. Automatic 

background labeling was achieved through a color-based masking approach validated by visual 

inspection. The extracted feature set was subsequently employed for supervised classification using 

artificial neural networks (ANNs), with model performance evaluated against reference 

segmentations. The results demonstrate that the proposed method achieves high classification 

accuracy, with robust generalization across multiple sample sets. In particular, ANN-based 

predictions exhibited superior discriminative capability in distinguishing stripped from coated 

aggregate regions, outperforming U-Net segmentation under identical input conditions. The findings 

highlight that incorporating contextual descriptors, such as black pixel ratio and blue-background 

masking, significantly improves classification robustness in low-contrast and noisy regions. Overall, 

the proposed framework provides a reproducible and efficient alternative to conventional stripping 

tests, enabling reliable quantitative evaluation of asphalt mixture performance. This study contributes 

to the advancement of automated image analysis methods in pavement engineering and establishes a 

foundation for broader integration of computer vision into asphalt durability assessment. 
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1. INTRODUCTION 

The durability and service life of asphalt pavements largely depend on the quality of adhesion 

between the aggregate and the bitumen binder. Weak bonding can lead to the initiation of stripping 

on the surface over time. This allows water to penetrate between layers and causes damage in the 

underlying courses. Ultimately, such damage jeopardizes the structural integrity of the pavement. 

Surface dressing systems are widely applied because of their low cost. However, the failure to detect 

such degradations at an early stage not only adversely affects structural performance, but also 

substantially increases maintenance and repair costs. Therefore, the reliable evaluation of the 

aggregate–bitumen interface interaction is of critical importance both for engineering applications 

and for academic studies. 

The evaluation of stripping resistance in asphalt mixtures is generally carried out through 

laboratory-based physical methods such as boiling tests, freeze-thaw cycles, and moisture sensitivity 

tests. These methods aim to assess adhesion resistance by simulating adverse environmental 

conditions to which the pavement material will be exposed during its service life. For example, in the 

study by Öner (2020), the stripping resistance of asphalt mixtures prepared with different proportions 

of granite ceramic waste was examined using the Nicholson Stripping Test, and it was determined 

that granite ceramic waste at a rate of 20% could replace traditional limestone. In such studies in the 

literature, visual-based quantitative analyses are not included, and evaluations are often carried out 

based on observation. Because stripping detection processes rely on expert judgment, differences in 

interpretation may arise from one user to another. Consequently, this situation hinders the 

standardization of the obtained results. Moreover, the fact that these physical methods are both time-

consuming and limited in terms of repeatability increasingly highlights the need for digital and 

automated methods. 

In this context, some recent studies have turned to computer-based image processing techniques 

in order to make stripping detection independent of expert opinion, objective, and repeatable. Xiao, 

Polaczyk, and Huang (2022) developed color-based segmentation methods to automatically 

determine the stripping ratio after the boiling test. Similarly, M. Li et al. (2023) performed feature 

extraction in different color spaces and applied classification algorithms to facilitate the distinction 

between bitumen-coated and stripped aggregate regions. Cui, Wu, Xiao, Wang, and Wang (2019) 

proposed a preprocessing step that normalized lighting conditions to minimize color variations in 

images and then performed segmentation based on the color components of pixels. In the study by 

Gürer and Karaşahin (2016), a color threshold-based algorithm was used to determine the stripping 

percentage from boiling test images. The applicability of image-processing-based approaches to 

stripping detection has been demonstrated by these studies. However, the methods employed were 

generally restricted to the color properties of pixels. In these studies, neither contour information nor 

a generalizable background-separation strategy robust to data diversity was developed. 

Image-based techniques have also been widely used to characterize aggregate particles in terms 

of shape, angularity, surface texture, and related morphology. Several studies extracted size and shape 

descriptors from high-resolution images to investigate the influence of crushing and production 

processes on aggregate morphology and mixture performance (Kamani & Ajalloeian, 2022; Reddy, 

Abdallah, & Nazarian, 2025; Théodon, Coufort-Saudejaud, Hamieh, & Debayle, 2023; H. N. Wang 

et al., 2020; L. B. Wang, Lane, Lu, & Druta, 2009). Other works developed image-processing 

algorithms for the automatic extraction of aggregate geometry and shape factors (Sinecen & 

Makinaci, 2010; Sinecen, Makinaci, & Topal, 2011). More recently, image-based approaches have 

also been employed to analyze aggregate distribution, packing density, and gradation in asphalt 
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mixtures by locating particles, deriving gradation curves, and estimating void ratios or packing 

density from segmented images (Cao, Zhao, Gao, Huang, & Zhang, 2019; H. H. Huang, Luo, 

Tutumluer, Hart, & Stolba, 2020; T. Huang & Liu, 2024; Reyes-Ortiz, Mejia, & Useche-Castelblanco, 

2021; Salemi & Wang, 2018; Xing, Xu, Tan, Liu, & Ye, 2019). In all of these studies, segmentation 

constitutes a crucial preliminary step and shares common technical components with the present 

work; however, their primary focus is on geometric characterization (morphology, gradation, 

packing) rather than on explicitly quantifying moisture-induced stripping or performing multi-class 

segmentation tasks such as background separation and stripping ratio determination. 

In more recent times, deep learning–based methods and advanced segmentation algorithms 

have begun to be used to separate complex and overlapping particles. Zong, Zhou, Li, and Wang 

(2023), using the Mask R-CNN architecture, successfully detected aggregate particles of different 

shapes and sizes with high accuracy; the model was able to separate even overlapping grains at the 

contour level. H. J. Li, Asbjörnsson, and Lindqvist (2021) and Yan, Liao, Wu, Xie, and Xia (2021) 

performed automatic segmentation of concrete and mineral particles using convolutional neural 

networks (CNN), thereby reducing classification errors particularly in edge regions. Peng, Ying, 

Kamel, and Wang (2020), on the other hand, combined multi-stage segmentation and edge 

enhancement steps in complex mineral grains, extracting the geometric properties of the particles 

more reliably. In the study by H. H. Huang et al. (2020), the measurement accuracy was also improved 

through a deep learning–assisted separation process. The common point of these studies is that they 

provide high-accuracy object segmentation; however, the fact that the labeling process requires 

intensive labor and that their focus is directed toward general particle separation rather than 

background–object distinction in the context of stripping limits the direct applicability of the methods. 

Although numerous studies in the literature have employed image processing or learning-based 

methods for stripping detection in asphalt specimens, a substantial portion of these studies has either 

not addressed the reliable separation of the background at all or has been limited to rudimentary 

techniques. Most of the existing approaches have either focused on holistic shape criteria without 

achieving pixel-level discrimination or have lacked noise-resistant steps such as superpixel-supported 

segmentation. However, in Petri dish images, the background is not merely a passive region 

occupying a large portion of the image but also a critical reference point for the accurate classification 

of bitumen-coated and stripped aggregate areas. Reflections from the transparent surface of the dish, 

variable lighting, color variations, and bitumen splashes complicate this process and restrict the 

generalizability of existing segmentation algorithms. In traditional physical methods, since the 

specimen is directly examined, the results may vary depending on the observer, preventing 

standardization. 

In this context, the primary problem addressed in this study is the development of a 

segmentation approach that is resistant to visual noise, robust against sample variability, and 

specifically oriented toward background detection. The aim of the study is to design a learning-based 

yet highly interpretable solution architecture that enables accurate and generalizable identification of 

the background in Petri dish images. To this end, the images were standardized in terms of size and 

framing, expert annotations were generated through a blue-referenced labeling method, and the 

performance of two distinct learning-based models (a feature-based artificial neural network and U-

Net) was compared. Feature importance analyses were conducted to examine the decision-making 

mechanism of the model, and the proposed method was demonstrated to be strong in terms of both 

accuracy and interpretability. 
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2. MATERIALS AND METHODS 

The method developed in this study consists of two main stages. In the first stage, the images 

were transformed into a standardized format in terms of size, framing, and color characteristics to 

ensure consistency and reproducibility of the analyses. In the second stage, both a feature-based 

artificial neural network and a U-Net-based deep learning architecture were trained using these 

standardized data, and their performances were compared. In this way, the generalizability of the 

method was tested under different conditions of data diversity and image quality. The following 

section provides a detailed explanation of the first step of this process, namely image standardization. 

2.1 Image Standardization 

The sample images obtained from stripping tests do not provide a directly comparable dataset 

due to variations in camera specifications, shooting angles, and similar factors. To transform these 

images into a reliable dataset, several preprocessing steps were applied. For the dataset to be 

constructed consistently, all images needed to be geometrically and photometrically aligned to a 

common reference frame. In this study, each raw image I ∈ 𝑅𝐻×𝑊×3 (with height 𝐻, width 𝑊, and 

three color channels, respectively) was aligned with the circular boundary of the Petri dish. The region 

outside the dish was converted into a distinctive reference background color. The image was then 

resampled into a square patch. In this way, all images were standardized into a uniform format, 

ensuring comparability across the dataset (Figure 1.a and Figure 1.b). 

 

 
Figure 1. a) Determination of the Petri dish boundary using three selected points (red circles) and visualization of the 

fitted circle (green circle) on the image, b) generation of the standardized image (I𝑠𝑡𝑑) with a resolution of 512×512 by 

masking the outer region of the Petri dish (uniform blue background), c) creation of the reference image (I𝑟𝑒𝑓) by coloring 

the background inside the Petri dish (blue mask) 

 

Let 𝐼 denote the original RGB image with height 𝐻 and width 𝑊 (in pixels). The boundary of 

the Petri dish is defined by three user-selected points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, 3. From these points, the circle 

parameters, namely the center (𝑥𝑐, 𝑦𝑐) and radius 𝑅, are obtained in closed form. The solution is based 

on solving the following linear system: 

 

𝐴 [
𝑥𝑐

𝑦𝑐
] = 𝐵, 𝐴 = 2 [

𝑥2 − 𝑥1 𝑦2 − 𝑦1

𝑥3 − 𝑥1 𝑦3 − 𝑦1
] , 𝐵 [

𝑥2
2 − 𝑥1

2 + 𝑦2
2 − 𝑦1

2

𝑥3
2 − 𝑥1

2 + 𝑦3
2 − 𝑦1

2] (1) 

 

Here, 𝐴 represents the coefficient matrix constructed from the coordinate differences, while 𝐵 

contains quadratic terms of the point coordinates. Solving this system yields the circle center (𝑥𝑐, 𝑦𝑐). 
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Once the center is determined, the radius is calculated the radius 𝑅 is computed as the Euclidean 

distance between (𝑥𝑐, 𝑦𝑐) and any of the three user-defined points (e.g., (𝑥1, 𝑦1)) (Equation 2). 

 

𝑅 = √(𝑥𝑐 − 𝑥1)2 + (𝑦𝑐 − 𝑦1)2 (2) 

 

The three-point interaction transfers the Petri dish to the same geometric reference in images 

captured at different framing and scales, while keeping the user effort low and providing practical 

robustness against misalignments (Figure 1.a). With the center and radius, the circular region 

occupied by the dish is defined as the set Ω of pixel coordinates inside the circle: 

 

Ω = {(𝑥, 𝑦) ∈ {1, … , 𝐻} × {1, … , 𝐻}|(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2 ≤ 𝑅2} (3) 

 

where 𝑥 and 𝑦 denote integer pixel coordinates and 𝐻 denotes the image height (and, assuming a 

square image after cropping, also the width). Over this discrete domain, the binary mask 𝑀(𝑥,𝑦) is 

obtained as 

 

𝑀(𝑥, 𝑦) = 1Ω(𝑥, 𝑦) = {
1, (𝑥, 𝑦) ∈ Ω,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

Here, 1Ω(𝑥, 𝑦) denotes the indicator function, taking the value 1 if the pixel (𝑥, 𝑦) belongs to 

the set Ω, and 0 otherwise. Pixels outside the circle (i.e., 𝑀 = 0) are replaced with a uniform blue 

vector 𝑏 = (0,0,255), thereby converting the exterior of the dish into a distinct reference background 

(Figure 1.b). This choice facilitates the subsequent automatic and consistent labeling of the 

background, since the blue chrominance is distinguishable from the aggregate/bitumen color 

statistics, enabling the “background” class to be statistically separated from scene-related background 

candidates (reflections, droplets, transparent edges, etc.) with greater reliability. In the second step of 

geometric standardization, a square cropping window 

 

𝐶 = [𝑥𝑐 − 𝑅, 𝑥𝑐 + 𝑅] × [𝑦𝑐 − 𝑅, 𝑦𝑐 + 𝑅] (5) 

 

is defined to fully encompass the Petri dish. In practice, 𝐶 is intersected with the image boundaries to 

avoid overflow and ensure that the cropping window remains within the valid image domain. The 

restriction of the original image 𝐼 to this window is denoted by I|𝐶. The resulting patch is then 

resampled to a resolution of 512×512 using bicubic interpolation, 

 

I𝑠𝑡𝑑 = 𝑅𝑒𝑠𝑖𝑧𝑒(I|𝐶 , 512 × 512) (6) 

 

where Resize(⋅) denotes the bicubic interpolation operator (Figure 1.b). This resampling procedure 

ensures the comparability of superpixel scales. It also satisfies the fixed-size input requirements of 

architectures such as U-Net. Finally, it guarantees fair comparability across samples. Furthermore, 

manual labeling was performed on copies of the standardized images by coloring the interiors of the 

Petri dishes in blue, thereby generating reference images I𝑟𝑒𝑓 (Figure 1.c). 

2.2 Feature Extraction and Background Labeling 

On the standardized I𝑠𝑡𝑑  images, a superpixel-based segmentation approach was employed to 

achieve highly accurate background separation by utilizing both geometric and photometric cues. The 
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primary objective of this step is to partition the pixels into homogeneous subregions, compute 

statistical features that characterize each region, and assign labels to these regions in a manner suitable 

for supervised learning. In this way, subsequent classification stages can operate on more meaningful 

and statistically stable “contour” (superpixel segment) units, rather than on individual pixels. 

For the segmentation process, MATLAB’s superpixels function was used to divide each image 

into 𝑁𝑠𝑝 = 1000 superpixels. This number was determined experimentally to ensure sufficient detail 

in capturing aggregate and bitumen regions while preventing excessive oversegmentation. The 

resulting superpixel label matrix 𝑆 ∈ {1, … , 𝑁𝑠𝑝}
512×512

 assigns each pixel to its corresponding 

superpixel identity (Figure 2.a). Subsequently, the boundaries of each superpixel were extracted using 

the bwboundaries function. These boundary points, denoted as 𝐵𝑘, were indexed and visually 

inspected on the image for accuracy verification (Figure 2.b). Small noisy regions were removed 

using a morphological area filter with a threshold of 𝐴𝑚𝑖𝑛 = 50 pixels, and the preprocessed binary 

mask of the 𝑘-th superpixel was represented as 𝑀𝑘. 

 

 
Figure 2. a) Representation of each superpixel with its boundary and unique identifier (ID), b) verification of the 

alignment of superpixel contours with aggregate edges and background by overlaying them on the original image and the 

blue background reference 

 

For each superpixel 𝑘, spatial, geometric, color, and texture-based features were extracted. The 

spatial feature was defined as the distance-to-center, computed as the Euclidean distance between the 

centroid of the superpixel (𝑐𝑥
(𝑘)

, 𝑐𝑦
(𝑘)

) and the image center (𝑥𝑐
𝑖𝑚𝑔

, 𝑦𝑐
𝑖𝑚𝑔

) = (𝑊/2, 𝐻/2): 

 

𝑑𝑐𝑒𝑛𝑡𝑒𝑟
(𝑘)

= √(𝑐𝑥
(𝑘)

− 𝑥𝑐
𝑖𝑚𝑔

)2 + (𝑐𝑦
(𝑘)

− 𝑦𝑐
𝑖𝑚𝑔

)2 (7) 

 

Geometric features included the superpixel area 𝐴𝑘 (number of pixels within the superpixel 

mask) and the perimeter 𝑃𝑘 (length of the mask boundary), along with the compactness measure: 

 

compactness(𝑘) =
𝐴𝑘  

𝑃𝑘
2  (8) 
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Photometric features consisted of the grayscale mean intensity (meanIntensity), the median 

values of each channel in RGB and HSV color spaces (𝑅̃𝑘, 𝐺̃𝑘, 𝐵̃𝑘, 𝐻̃𝑘, 𝑆𝑘, 𝑉̃𝑘), and the grayscale 

variance 𝜎𝑔𝑟𝑎𝑦,𝑘
2 .  The meanIntensity value represents the average brightness of the superpixel, 

whereas the median values reduce the effect of local outliers such as highlights or shadows, thereby 

improving statistical robustness.  

To capture local color similarities, each superpixel was assigned its 𝐾 = 3 nearest neighbors in 

terms of radial position (𝑑𝑐𝑒𝑛𝑡𝑒𝑟). The average ℓ2-norm distance between the RGB median vectors 

of the superpixel and its neighbors, 

 

neighbor_color_diff (𝑘) =
1 

𝐾
∑ ‖(𝑅̃𝑘, 𝐺̃𝑘 , 𝐵̃𝑘) − (𝑅̃𝑗, 𝐺̃𝑗 , 𝐵̃𝑗)‖

2
𝑗∈𝑁𝑘

 (9) 

 

was used as a discriminative descriptor, where 𝑁𝑘 detones the set of 𝐾 nearest neighbors of superpixel 

𝑘 and ‖∙‖2 denotes the Euclidean norm. For the global color context, blue background pixels (𝑅 <

80 ∧ 𝐺 < 80 ∧ 𝐵 > 150) and black pixels (𝑅 < 30 ∧ 𝐺 < 30 ∧ 𝐵 < 30) were excluded, and the 

mean foreground color was computed as 𝑓̅ = ( 𝑅̅, 𝐺̅, 𝐵̅). The distance between the superpixel median 

RGB vector and this global mean was then calculated as: 

 

foreground_color_diff (𝑘) = ‖(𝑅̃𝑘 , 𝐺̃𝑘 , 𝐵̃𝑘) − 𝑓̅‖
2
 (10) 

 

and incorporated as an additional feature. The black_ratio, defined as the ratio of black pixels over 

the entire image, was computed once per image and assigned to all superpixels as a constant 

contextual descriptor. For automatic background labeling, the manually painted reference image 

I𝑟𝑒𝑓 (Figure 1.c) was used. Within each superpixel mask 𝑀𝑘, the ratio of blue pixels was computed 

as 

 

𝑟𝑏𝑙𝑢𝑒
(𝑘)

=
∑ 1𝑏𝑙𝑢𝑒(𝑥, 𝑦)(𝑥,𝑦)∈𝑀𝑘

∑ 1(𝑥,𝑦)∈𝑀𝑘

 (11) 

 

where 1𝑏𝑙𝑢𝑒(𝑥, 𝑦) is a binary indicator function that equals 1 if pixel (𝑥, 𝑦) belongs to the “blue” 

mask, and 0 otherwise. The denominator ∑ 1(𝑥,𝑦)∈𝑀𝑘
 corresponds to the total number of pixels in 𝑀𝑘. 

Superpixels with 𝑟𝑏𝑙𝑢𝑒
(𝑘)

> 𝜏𝑏𝑔 = 0.5 were labeled as background, generating the binary label vector 

𝑦𝑏𝑔 ∈ {0,1}𝑁𝑠𝑝. In addition to visual inspection of superpixel contours (Figure 2), we quantitatively 

evaluated the agreement between these superpixel-level labels and the manual background 

annotations. Across all specimens, the automatic labeling achieved a pixel-wise accuracy of 96.3%, 

a background precision of 0.975, a recall of 0.950, an F1-score of 0.962, and a background IoU of 

0.927, indicating a very high consistency between the superpixel-based labels and the manual 

reference masks and confirming that the automatic labeling procedure provides a reliable basis for 

subsequent supervised learning. 

As a result, a data table T was constructed, where each row corresponds to a superpixel and the 

columns consist of 15 features (geometric: distance to center, area, perimeter, compactness; 

photometric: meanIntensity, medianR, medianG, medianB, medianH, medianS, medianV, gray 

variance; contextual/neighborhood: neighbor color diff, foreground color diff, black ratio) along with 
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the ‘background’ label (Table 1). A subset of these features was defined by Equations (7)–(10), while 

the remaining ones were computed according to standard definitions. 

 

Table 1. Selected features of the contours obtained from the image processing procedure 

 
 

2.3 Modeling and Training Process 

In this study, the customized artificial neural network (ANN) developed using the defined 

superpixel-based features (T table) and automatically generated background labels (𝑦𝑏𝑔) was 

compared with MATLAB’s built-in U-Net model, and the method that ensured the highest accuracy 

and generalizability in predicting the background class was identified. 

2.3.1 Data preparation and common protocol 

For all models, the input data consisted of 15 defined feature vectors (𝑑𝑐𝑒𝑛𝑡𝑒𝑟, 𝐴, 𝑃, 

compactness, meanIntensity, neighbor_color_diff, foreground_color_diff, medianR, medianG, 

medianB, medianH, medianS, medianV, gray_variance, black_ratio). The output label was the binary 

variable 𝑦𝑏𝑔 ∈ {0,1}𝑁𝑠𝑝 (0 = foreground, 1 = background). During model training, z-score 

standardization was applied to the input features. The experiments were conducted under two 

protocols. In the single-image protocol, each image was trained and tested only with its own 

superpixels, while in the combined dataset protocol, the superpixels of all images were pooled 

together and split into training and test sets. 

2.3.2 Developed ANN model 

The ANN architecture was configured with 15 neurons in the input layer (equal to the number 

of features), a single hidden layer with 10 neurons, and 2 neurons in the output layer representing the 

background/foreground classes (Figure 3). A sigmoid (logsig) activation function was employed in 

the hidden layer, while the output layer utilized the softmax activation function. Binary cross-entropy 

was adopted as the loss function, and the default Levenberg–Marquardt algorithm was selected as the 

optimization method. The training process was set to 200 epochs, and the model’s generalizability 

was evaluated through 5-fold cross-validation. For each fold, independent training and testing sets 

were used, and the mean accuracy values were reported. 

 

 
Figure 3. Architecture of the developed artificial neural network 

 

Dist. to 

Center
Area Perim. Compact. Mean Int. MedR MedG MedB MedH MedS MedV Gray Var.

Neigh. 

Col. Diff.

Fore. Col. 

Diff.

Black 

Raio

Is 

Bckgrnd

349 225 55 0,076 29 0 218 0 0 254 1 1,000 0,996 0,0 0,380 1

229 428 80 0,067 17 246 180 16 16 15 0 0,135 0,063 48,9 0,380 0

258 176 53 0,063 30 0 218 0 0 254 1 1,000 0,996 32,1 0,380 1

250 70 30 0,077 17 178 187 13 12 9 0 0,355 0,051 276,4 0,380 0

254 125 84 0,018 84 106 41 96 98 142 0 0,040 0,569 2.748,5 0,380 1
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Although the ANN and U-Net operate on different representations, superpixel-level feature 

vectors versus raw RGB images, both are trained on the same stripping/background annotations and 

evaluated on the same standardized images. Therefore, their results can be meaningfully compared in 

terms of practical detection performance on the common test set. This dual setup allows us to contrast 

a compact, feature-engineered ANN with a deep segmentation network in the same application 

context, highlighting the trade-offs between model complexity, data requirements, and predictive 

accuracy. 

2.3.3 U-Net based pixel classification model 

U-Net was employed for pixel-level background/foreground classification on standardized 

RGB inputs. Class labels were derived from annotated reference images: the 'blue mask' 1𝑏𝑙𝑢𝑒(𝑥, 𝑦) 

was defined using the threshold 𝑅 < 80 ∧ 𝐺 < 80 ∧ 𝐵 > 150; pixels within this mask were assigned 

the background label, while the remaining pixels were labeled as aggregate.  

Data partitioning was dynamically adjusted according to the total number of images 𝑛: if 𝑛 =

1, the entire dataset was used for training with no validation; if 𝑛 > 1, the dataset was randomly split 

into approximately 80/20 training/validation subsets. Training was conducted using the Adam 

optimizer with the following settings: MaxEpochs = 25, MiniBatchSize = 4, Shuffle = every-epoch; 

in cases where validation was available, ValidationData and ValidationFrequency = 30 were 

specified. No alternative techniques, such as learning rate scheduling, data augmentation, or SGDM, 

were applied in this study; instead, Adam was preferred for its rapid convergence in small-scale 

datasets. 

2.4. Importance Analysis 

To identify which features the model is most sensitive to and which features contribute most to 

its performance, a feature importance analysis was conducted. The analysis was performed 

exclusively on the ANN model, and each of the 𝑝 = 15 input features was evaluated individually. 

The permutation importance method was employed for this analysis. In this approach, after 

establishing the baseline accuracy 𝐴𝑐𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, the test set values of each feature fᵢ were randomly 

permuted. The permutation disrupts the relationship between the feature and the target variable, 

thereby revealing the contribution of that feature to the model’s predictive capability. Following each 

permutation, the model was re-evaluated, and the corresponding accuracy 𝐴𝑐𝑐𝑝𝑒𝑟𝑚,𝑖 was recorded. 

The importance score of each feature was then calculated as follows: 

 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑓𝑖) = 𝐴𝑐𝑐𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐴𝑐𝑐𝑝𝑒𝑟𝑚,𝑖 (12) 

 

The higher this value, the greater the contribution of the corresponding feature to the model’s 

performance. 

 

3. RESULTS AND DISCUSSION 

3.1. Findings of the Single-Image Protocol 

In the single-image protocol, nine different images were employed to evaluate model 

performance (low level: I-5, I-18, I-25; medium level: O-2, O-22, O-28; poor level: K-3, K-8, K-9). 

These images were selected to represent “high,” “medium,” and “low” stripping percentages, with 

three samples included in each group. In addition, certain images deliberately contained extra objects 

that could be classified as noise and complicate the classification process. This design enabled the 
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assessment of model robustness under challenging scenarios. Figure 4 presents the Artificial Neural 

Network (ANN) prediction and the corresponding accuracy maps for the I-5 sample. The figure 

displays, in separate panels, the original image, the manually labeled ground truth mask, the ANN 

prediction, and the error map where misclassifications are highlighted in red. 

 

 
Figure 4. Results of the ANN model for the I-5 specimen; the panels show the Original Image, the Ground Truth Label 

(Green: Aggregate, Purple: Background), the ANN Prediction (Green Superpixel: Aggregate, Purple Superpixel: 

Background), and the Erroneous Predictions (in Red); each panel corresponds to a 512 × 512 pixel crop covering 

approximately 18 × 18 cm of the specimen surface 

 

Similarly, Figure 5 presents the predictions of the U-Net model on the same specimen. This 

figure includes the original image, the ground-truth mask, the U-Net prediction, and the error map, in 

which misclassified pixels are marked in red. 
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Figure 5. Results of the U-Net model for the I-5 specimen; the panels show the Original Image, the Ground Truth Label 

(Green: Background, Purple: Aggregate), the U-Net Prediction (Green Pixel: Background, Purple Pixel: Aggregate), and 

the Erroneous Predictions (in Red); each panel corresponds to a 512 × 512 pixel crop covering approximately 18 × 18 cm 

of the specimen surface 

 

As observed in Figure 4, the developed ANN model did not label the small droplets inside the 

Petri dish, defined as noise, as aggregates. Similarly, the black text within the Petri dish was not 

classified as aggregate. This indicates that the model focused exclusively on the actual aggregate 

regions and successfully distinguished objects with similar colors but not belonging to the class. In 

addition, the majority of the stripping regions were correctly labeled as background, with only two 

small areas misclassified. 

In contrast, in the U-Net predictions presented in Figure 5, droplets defined as noise and the 

text on the Petri dish were observed to be labeled as aggregates. Furthermore, a substantial portion of 

the stripping regions was classified as background, leading to deficiencies in detecting the actual 

stripped areas. These visual results clearly demonstrate that the developed ANN model is more robust 
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against noise and exhibits higher accuracy in distinguishing between bitumen and stripped regions. 

Such qualitative observations are also supported by the quantitative results. For the I-5 specimen, the 

ANN model achieved an accuracy of 99.55%, whereas the U-Net model yielded a mean Intersection 

over Union (Mean IoU) of 93.19% for the same data. The findings indicate that, particularly for 

images with complex noise, the developed ANN model provides more accurate and consistent 

classification compared to U-Net. 

Table 2 presents the accuracy values obtained for nine specimens selected under the single-

image protocol. The specimens were chosen to represent high, medium, and low levels of stripping 

percentage, and in some cases to include noise effects (e.g., text or droplets on the Petri dish). The 

same analysis procedure was applied to all images, and the results were comparatively evaluated. 

 

Table 2. Accuracy (%) comparison of the developed ANN and U-Net models for nine different samples used in the single-

image protocol 

Image Stripping Level ANN U-Net 

I-5 Low 99.55 93.19 

I-18 Low 98.10 87.91 

I-25 Low 96.57 87.97 

O-2 Moderate 97.79 90.27 

O-22 Moderate 95.07 86.05 

O-28 Moderate 91.37 78.11 

K-3 High 96.48 87.75 

K-8 High 97.70 91.85 

K-9 High 97.38 86.56 

 

The findings clearly demonstrate that the developed ANN model consistently outperforms the 

U-Net model across all samples. In particular, for samples containing noise and complex textures, 

such as I-5, I-18, and O-28, the accuracy difference between ANN and U-Net ranged from 6% to 

13%. The highest accuracy was achieved with the ANN model for sample I-5 (99.55%), while the 

lowest accuracy was observed with the U-Net model for sample O-28 (78.11%). Examination of the 

average accuracy values further indicates that the ANN model exhibits more consistent overall 

performance, whereas the U-Net model shows significant deviations for certain samples. This 

suggests that the ANN model provides a more robust and stable learning capability against noise, 

particularly in the single-image protocol where only a limited number of images are available. As 

illustrated in Figure 6, the ANN model is capable of achieving high accuracy even on images of 

varying difficulty levels, with examples representing low, moderate, and high levels of peeling. 

Similarly, Figure 7 presents the performance of the U-Net model on the same samples, revealing that 

while the model performs acceptably on images with low noise, it produces unstable results when 

faced with noise and contrast distortions. 
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Figure 6. Prediction outputs of the ANN model across the nine specimens used in the single-image protocol: each panel 

shows the ANN segmentation for one specimen (green superpixels: aggregate, purple superpixels: background); each 

panel corresponds to a 512 × 512 pixel crop covering approximately 18 × 18 cm of the specimen surface 

 

The visuals in Figure 6 replicate the format shown in Figure 4 (original image, labeled 

reference, model prediction, and error map) for each specimen. The top row contains examples 

representing low stripping levels, the middle row moderate levels, and the bottom row high stripping 

levels. When Figure 6 and Table 2 are jointly considered, it is evident that the ANN model achieved 

highly accurate predictions for specimens with low stripping percentages in the top row; for instance, 

an accuracy of 99.55% was obtained for the I-5 image. In the middle row, accuracy values declined 

relatively, yet were still preserved up to 91.37%. A common feature of specimens in this group is the 

presence of droplets generating significant noise on the Petri dish surface or stains distorting contrast. 

Despite these noise factors, the ANN model largely labeled bitumen-coated and stripped areas 

correctly, though some misclassifications occurred. Visual inspections revealed that the model did 

not mistakenly label non-bitumen black elements (e.g., inscriptions on the Petri dish) as bitumen, 
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thereby demonstrating more consistent behavior compared to the U-Net model. In the bottom row, 

although the noise was less prominent, the low color and texture contrast led to errors concentrated 

in certain small clusters. Overall, the examples in Figure 6 clearly highlight the robustness of the 

ANN model against noise and its ability to maintain high accuracy even across images of varying 

quality. 

 

 
Figure 7. Prediction outputs of the U-Net model across the nine specimens used in the single-image protocol: each panel 

shows the U-Net segmentation for one specimen (green: background, purple: aggregate); each panel corresponds to a 512 

× 512 pixel crop covering approximately 18 × 18 cm of the specimen surface 

 

The visuals in Figure 7 were generated by applying the format presented in Figure 5 (original 

image, labeled reference, model prediction, and error regions) to each sample. The top row shows 

examples with low stripping, the middle row with moderate stripping, and the bottom row with high 

stripping levels. In the top row, the model generally labeled bitumen-covered areas correctly, 

although small errors were observed at some edges. In the middle row, which includes samples with 
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moderate stripping, accuracy loss is more pronounced; particularly in regions with droplets or strong 

reflections, the model showed uncertainty in distinguishing between bitumen and stripped areas. In 

the bottom row with high stripping levels, acceptable accuracy was maintained in overall shape 

detection, but misclassifications marked in red appeared more frequently and in clustered forms. This 

indicates that the U-Net model is more sensitive to noise and complex textures, and that its error rate 

increases under conditions of low color and texture contrast. Overall, the figure set demonstrates that 

the U-Net model can produce successful results under certain conditions, but its performance 

becomes unstable in the presence of noise and contrast distortions. 

3.2. Findings of Multi-Protocol Comparison 

In this section, the classification performance of the ANN and U-Net models on multi-protocol 

data is compared. For both models, mean accuracies and 95% confidence intervals over four 

independent repetitions were computed; the results are summarized in Table 3. 

 

Table 3. Comparison of ANN and U-Net accuracies in the multi-protocol setting (mean ± 95% confidence interval over 

four runs) 

Model 
Global Accuracy 

(%) 

Aggregate Accuracy 

% 

Background Accuracy 

% 

ANN 95.65 ± 0.57 97.58 ± 0.08 93.45 ± 0.67 

U-Net 84.77 ± 7.79 80.87 ± 17.27 89.67 ± 4.51 

 

As shown in Table 3, the ANN model exhibits a clear advantage under multi-protocol 

conditions, achieving a mean global accuracy of 95.65% (±0.57) compared to 84.77% (±7.79) for U-

Net. In the class-based evaluation, ANN attains a notably high accuracy of 97.58% (±0.08) for the 

aggregate class, whereas U-Net remains at 80.87% (±17.27) in the same category. For the background 

class, both models reach high accuracy levels, with ANN (93.45% ± 0.67) again slightly 

outperforming U-Net (89.67% ± 4.51). The substantially narrower confidence intervals of the ANN 

model, particularly for the aggregate class, indicate a much more stable and reproducible performance 

across independent runs, while the wide intervals observed for U-Net reveal a strong sensitivity to 

initialization and data splits. These results indicate that ANN provides a more balanced and stable 

performance across classes, particularly yielding more reliable predictions in distinguishing between 

bitumen-coated and stripped areas. The distribution of class predictions, error rates, and overall 

performance metrics of the ANN model are further examined through the confusion matrices in 

Figure 8, while the evolution of accuracy and loss during U-Net training is presented in Figure 9. 
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Figure 8. Confusion matrices of the ANN model obtained from training, validation, test, and overall data under the multi-

protocol setting 

 

 
Figure 9. Training and validation loss/accuracy curves of the U-Net model under the multi-protocol setting 

 

As observed in Figure 8, the error distribution matrix of the ANN indicates that 

misclassifications were limited both in quantity and variety, suggesting a strong generalization 

capability of the model. In contrast, Figure 9 shows that the error curves of U-Net reveal a plateau in 

accuracy gains after a certain stage of training, indicating constrained improvement. These findings 

highlight that, within multi-protocol scenarios, ANN appears to provide a more reliable option. 

To complement the accuracy-based comparison, we also report additional threshold-based 

metrics for the ANN in the multi-protocol setting. Aggregating the confusion-matrix terms over the 

five cross-validation folds and treating the background class as the positive class, the ANN achieved 
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an overall accuracy of 95.65%, a precision of 0.961, a recall (sensitivity) of 0.943, a specificity of 

0.966, an F1-score of 0.952, and an IoU of 0.908 for the positive class. These values indicate a well-

balanced trade-off between false positives and false negatives and further confirm the robustness of 

the ANN model in separating background from aggregate regions. 

3.3. Importance Analysis 

The relative importance levels of the features influencing the model’s classification 

performance are presented in Figure 10. According to the analysis results, medianV (the brightness 

component in the HSV color space) has the highest importance score, with a mean value of 0.19 ± 

0.01 over four independent runs (visually shown as approximately 0.20 in Figure 10). This confirms 

its decisive role in the model’s decision-making process. It is followed by medianB (the median of 

the blue channel in the RGB color space) and medianS (saturation), indicating that color- and 

brightness-based features directly contribute to classification accuracy. 

 

 
Figure 10. Relative importance levels of the features 

 

On the other hand, the black_ratio variable also provides a meaningful contribution (~0.045). 

This indicates that the proportion of black color in objects is an important discriminative factor, 

particularly in detecting bituminous surfaces. In contrast, geometry-based features such as 

distance_center, area, and perimeter exhibit considerably low importance scores. 

These findings reveal that the model predominantly relies on color- and brightness-oriented 

decisions, while shape and spatial features make only a limited contribution. Therefore, to further 

enhance classification performance, it would be an appropriate strategy to focus on improving color-

based features and, if necessary, to consider additional spectral transformations. 

The findings regarding feature utilization also demonstrate clear distinctions between different 

model types such as ANN and U-Net. Since the ANN model is fed directly with numerical feature 

vectors, the contribution of each feature to the classification decision can be explicitly computed and 

interpreted. In contrast, the U-Net model takes raw image pixels as input and, through its multi-

layered convolutional structure, automatically learns color, texture, and edge information within its 

intermediate layers. Therefore, unlike in ANN, the relative importance of predefined features in U-

Net cannot be directly obtained; instead, techniques such as Grad-CAM or similar visualization 

methods are employed to analyze which visual regions the model attends to. This distinction arises 
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from the higher interpretability of ANN and the broader learning capacity of U-Net, though it 

precludes direct feature-level comparison between the two approaches. 

It is important to address the methodological differences in the comparison. Although U-Net is 

a more expressive architecture with a higher representational capacity, its training in this study was 

intentionally kept simple: a standard encoder–decoder configuration with Adam optimization, fixed 

learning rate, and no data augmentation or learning-rate scheduling. Under these small-data 

conditions (nine standardized RGB images) and without aggressive regularization, the pixel-wise U-

Net model proved more sensitive to noise and exhibited larger variability in accuracy, whereas the 

feature-based ANN remained markedly more data-efficient and stable. Therefore, the lower 

performance of U-Net in this work should be interpreted as a limitation of the current training regime 

and dataset size, rather than as a fundamental weakness of the architecture for stripping detection 

problems. This comparison highlights that for engineering applications with limited labeled data, 

feature-engineering approaches (like the proposed superpixel-ANN) can offer a more robust 'ready-

to-use' solution than deep learning models requiring extensive optimization. Investigating more 

advanced optimization strategies and larger, more diverse datasets for U-Net constitutes a natural 

extension of the present study. 

 

4. CONCLUSIONS 

Within the scope of this study, the developed model successfully distinguished aggregate and 

background in stripping tests applied during asphalt mixture production through visual analysis. For 

this purpose, the images of the test specimens were standardized, manually labeled, and thereby used 

to construct training datasets. The classification tasks were carried out separately using a simple 

Artificial Neural Network (ANN)-based model and the U-Net deep learning architecture. The ANN 

model was designed as a single-layer structure with 10 neurons, and different normalization 

techniques (z-score and min-max) were also tested for data scaling. 

The ANN model achieved higher accuracy compared to the U-Net model in both single-image 

and multi-image protocols. In particular, for the single-image analysis of specimen I-5, the ANN 

model reached an accuracy of 99.55%, whereas the U-Net model remained at 93.19%. Likewise, 

under the multi-image protocol, the average accuracy calculated across all specimens was 

approximately 95.7% for the ANN model, while it was around 83.89% for U-Net. These results 

demonstrate that the proposed simple ANN-based approach exhibits a clear performance advantage, 

even compared to a complex deep network architecture such as U-Net, which is widely employed for 

pixel-based segmentation. 

The analysis of the results revealed that the superior performance of the ANN model (Global 

Accuracy 95.7%) compared to U-Net (83.89%) stems primarily from the robustness of the superpixel-

based feature extraction process and the high discriminative power of the selected features. The 

Feature Importance Analysis (Section 3.3) showed that the ANN model largely relied on color- and 

brightness-based features (medianV, medianB, medianS) in the decision-making process. The distinct 

differences in color and brightness between the dark bituminous aggregate material and the light/blue 

background surface explain why such a separation could be achieved with high accuracy even by a 

relatively simple ANN structure. The superpixel approach aggregates noisy pixel data into stable, 

statistically representative units, rendering the ANN model more stable against noise and contrast 

distortions than the pixel-based U-Net, particularly as confirmed by the Single-Image Protocol 

findings (Figure 6 vs. Figure 7). Furthermore, the model’s design utilizes contextual descriptors, such 
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as the black pixel ratio, which enhances robustness by explicitly incorporating scene-specific 

information often missed by raw pixel input models like U-Net. The finding that alternative 

architectures or different normalization techniques did not yield meaningful improvement suggests 

that, owing to the high discriminative power of the problem-specific features, even a simple single-

layer network architecture is sufficient, and more complex ANN structures are not currently 

necessary. A limitation of our study is that the ANN and U-Net models rely on different input 

representations (hand-crafted superpixel features versus raw image data). As a result, their 

comparison should be interpreted as a practical assessment of two alternative modeling paradigms 

for stripping detection, rather than as a strictly controlled architectural benchmark. 

Overall, the proposed method provides a highly accurate and practically flexible solution. Due 

to the low computational complexity of the superpixel-based feature extraction, the developed ANN 

model has been successfully integrated into a standalone software application that operates efficiently 

on standard laboratory computers without the need for high-performance GPUs. Furthermore, the 

geometric standardization step ensures that images captured by ubiquitous devices, such as mobile 

phone cameras, can be consistently processed. This makes the method a readily deployable tool for 

routine stripping analysis in field or laboratory settings, independent of expensive imaging setups. 

While the number of raw images used (nine samples) is limited, the superpixel-based feature 

extraction process, which generates approximately 9000 independent feature vectors, ensures 

sufficient data points for robust model training and prevents overfitting. However, it is considered 

that incorporating certain preprocessing steps or data augmentation techniques could further enhance 

classification performance and address generalization concerns for extremely diverse, large-scale 

datasets. In particular, removing noise or artifacts from the images may enable the model to perceive 

discriminative features more clearly, thereby contributing positively to accuracy. Indeed, the 

literature reports that noise reduction techniques applied in fields such as medical image analysis have 

increased the accuracy of deep learning-based models by approximately 3.5% (Mechria, Hassine, & 

Gouider, 2022). The findings of the present study are consistent with this evidence, and similarly, it 

is anticipated that incorporating additional preprocessing steps such as noise reduction, or 

implementing data augmentation, which was not applied in this study, could further strengthen our 

model for aggregate–background separation. In conclusion, this study, which provides an automatic 

visual analysis as an alternative to expert evaluation, supports comparable approaches in the literature 

with its high accuracy and implementation flexibility, and offers promising potential for future 

research. 
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