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ABSTRACT: The reliable detection of stripping in asphalt mixtures is a critical challenge for
pavement performance evaluation, as conventional physical tests rely heavily on subjective
observation and lack reproducibility. This study proposes an image-based quantitative method that
integrates geometric standardization, superpixel segmentation, and feature extraction to enhance the
objectivity of stripping assessment. Petri dish images were first standardized through square cropping
and bicubic resampling to ensure comparability across samples. Superpixels were then generated, and
multiple spatial, geometric, photometric, and texture-based features were extracted, including
distance-to-center, compactness, local color similarity, and global color deviation. Automatic
background labeling was achieved through a color-based masking approach validated by visual
inspection. The extracted feature set was subsequently employed for supervised classification using
artificial neural networks (ANNSs), with model performance evaluated against reference
segmentations. The results demonstrate that the proposed method achieves high classification
accuracy, with robust generalization across multiple sample sets. In particular, ANN-based
predictions exhibited superior discriminative capability in distinguishing stripped from coated
aggregate regions, outperforming U-Net segmentation under identical input conditions. The findings
highlight that incorporating contextual descriptors, such as black pixel ratio and blue-background
masking, significantly improves classification robustness in low-contrast and noisy regions. Overall,
the proposed framework provides a reproducible and efficient alternative to conventional stripping
tests, enabling reliable quantitative evaluation of asphalt mixture performance. This study contributes
to the advancement of automated image analysis methods in pavement engineering and establishes a
foundation for broader integration of computer vision into asphalt durability assessment.
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1. INTRODUCTION

The durability and service life of asphalt pavements largely depend on the quality of adhesion
between the aggregate and the bitumen binder. Weak bonding can lead to the initiation of stripping
on the surface over time. This allows water to penetrate between layers and causes damage in the
underlying courses. Ultimately, such damage jeopardizes the structural integrity of the pavement.
Surface dressing systems are widely applied because of their low cost. However, the failure to detect
such degradations at an early stage not only adversely affects structural performance, but also
substantially increases maintenance and repair costs. Therefore, the reliable evaluation of the
aggregate—bitumen interface interaction is of critical importance both for engineering applications
and for academic studies.

The evaluation of stripping resistance in asphalt mixtures is generally carried out through
laboratory-based physical methods such as boiling tests, freeze-thaw cycles, and moisture sensitivity
tests. These methods aim to assess adhesion resistance by simulating adverse environmental
conditions to which the pavement material will be exposed during its service life. For example, in the
study by Oner (2020), the stripping resistance of asphalt mixtures prepared with different proportions
of granite ceramic waste was examined using the Nicholson Stripping Test, and it was determined
that granite ceramic waste at a rate of 20% could replace traditional limestone. In such studies in the
literature, visual-based quantitative analyses are not included, and evaluations are often carried out
based on observation. Because stripping detection processes rely on expert judgment, differences in
interpretation may arise from one user to another. Consequently, this situation hinders the
standardization of the obtained results. Moreover, the fact that these physical methods are both time-
consuming and limited in terms of repeatability increasingly highlights the need for digital and
automated methods.

In this context, some recent studies have turned to computer-based image processing techniques
in order to make stripping detection independent of expert opinion, objective, and repeatable. Xiao,
Polaczyk, and Huang (2022) developed color-based segmentation methods to automatically
determine the stripping ratio after the boiling test. Similarly, M. Li et al. (2023) performed feature
extraction in different color spaces and applied classification algorithms to facilitate the distinction
between bitumen-coated and stripped aggregate regions. Cui, Wu, Xiao, Wang, and Wang (2019)
proposed a preprocessing step that normalized lighting conditions to minimize color variations in
images and then performed segmentation based on the color components of pixels. In the study by
Giirer and Karasahin (2016), a color threshold-based algorithm was used to determine the stripping
percentage from boiling test images. The applicability of image-processing-based approaches to
stripping detection has been demonstrated by these studies. However, the methods employed were
generally restricted to the color properties of pixels. In these studies, neither contour information nor
a generalizable background-separation strategy robust to data diversity was developed.

Image-based techniques have also been widely used to characterize aggregate particles in terms
of shape, angularity, surface texture, and related morphology. Several studies extracted size and shape
descriptors from high-resolution images to investigate the influence of crushing and production
processes on aggregate morphology and mixture performance (Kamani & Ajalloeian, 2022; Reddy,
Abdallah, & Nazarian, 2025; Théodon, Coufort-Saudejaud, Hamieh, & Debayle, 2023; H. N. Wang
et al.,, 2020; L. B. Wang, Lane, Lu, & Druta, 2009). Other works developed image-processing
algorithms for the automatic extraction of aggregate geometry and shape factors (Sinecen &
Makinaci, 2010; Sinecen, Makinaci, & Topal, 2011). More recently, image-based approaches have
also been employed to analyze aggregate distribution, packing density, and gradation in asphalt
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mixtures by locating particles, deriving gradation curves, and estimating void ratios or packing
density from segmented images (Cao, Zhao, Gao, Huang, & Zhang, 2019; H. H. Huang, Luo,
Tutumluer, Hart, & Stolba, 2020; T. Huang & Liu, 2024; Reyes-Ortiz, Mejia, & Useche-Castelblanco,
2021; Salemi & Wang, 2018; Xing, Xu, Tan, Liu, & Ye, 2019). In all of these studies, segmentation
constitutes a crucial preliminary step and shares common technical components with the present
work; however, their primary focus is on geometric characterization (morphology, gradation,
packing) rather than on explicitly quantifying moisture-induced stripping or performing multi-class
segmentation tasks such as background separation and stripping ratio determination.

In more recent times, deep learning—based methods and advanced segmentation algorithms
have begun to be used to separate complex and overlapping particles. Zong, Zhou, Li, and Wang
(2023), using the Mask R-CNN architecture, successfully detected aggregate particles of different
shapes and sizes with high accuracy; the model was able to separate even overlapping grains at the
contour level. H. J. Li, Asbjoérnsson, and Lindgvist (2021) and Yan, Liao, Wu, Xie, and Xia (2021)
performed automatic segmentation of concrete and mineral particles using convolutional neural
networks (CNN), thereby reducing classification errors particularly in edge regions. Peng, Ying,
Kamel, and Wang (2020), on the other hand, combined multi-stage segmentation and edge
enhancement steps in complex mineral grains, extracting the geometric properties of the particles
more reliably. In the study by H. H. Huang et al. (2020), the measurement accuracy was also improved
through a deep learning—assisted separation process. The common point of these studies is that they
provide high-accuracy object segmentation; however, the fact that the labeling process requires
intensive labor and that their focus is directed toward general particle separation rather than
background-object distinction in the context of stripping limits the direct applicability of the methods.

Although numerous studies in the literature have employed image processing or learning-based
methods for stripping detection in asphalt specimens, a substantial portion of these studies has either
not addressed the reliable separation of the background at all or has been limited to rudimentary
techniques. Most of the existing approaches have either focused on holistic shape criteria without
achieving pixel-level discrimination or have lacked noise-resistant steps such as superpixel-supported
segmentation. However, in Petri dish images, the background is not merely a passive region
occupying a large portion of the image but also a critical reference point for the accurate classification
of bitumen-coated and stripped aggregate areas. Reflections from the transparent surface of the dish,
variable lighting, color variations, and bitumen splashes complicate this process and restrict the
generalizability of existing segmentation algorithms. In traditional physical methods, since the
specimen is directly examined, the results may vary depending on the observer, preventing
standardization.

In this context, the primary problem addressed in this study is the development of a
segmentation approach that is resistant to visual noise, robust against sample variability, and
specifically oriented toward background detection. The aim of the study is to design a learning-based
yet highly interpretable solution architecture that enables accurate and generalizable identification of
the background in Petri dish images. To this end, the images were standardized in terms of size and
framing, expert annotations were generated through a blue-referenced labeling method, and the
performance of two distinct learning-based models (a feature-based artificial neural network and U-
Net) was compared. Feature importance analyses were conducted to examine the decision-making
mechanism of the model, and the proposed method was demonstrated to be strong in terms of both
accuracy and interpretability.
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2. MATERIALS AND METHODS

The method developed in this study consists of two main stages. In the first stage, the images
were transformed into a standardized format in terms of size, framing, and color characteristics to
ensure consistency and reproducibility of the analyses. In the second stage, both a feature-based
artificial neural network and a U-Net-based deep learning architecture were trained using these
standardized data, and their performances were compared. In this way, the generalizability of the
method was tested under different conditions of data diversity and image quality. The following
section provides a detailed explanation of the first step of this process, namely image standardization.

2.1 Image Standardization

The sample images obtained from stripping tests do not provide a directly comparable dataset
due to variations in camera specifications, shooting angles, and similar factors. To transform these
images into a reliable dataset, several preprocessing steps were applied. For the dataset to be
constructed consistently, all images needed to be geometrically and photometrically aligned to a
common reference frame. In this study, each raw image I € R¥*W>3 (with height H, width W, and
three color channels, respectively) was aligned with the circular boundary of the Petri dish. The region
outside the dish was converted into a distinctive reference background color. The image was then
resampled into a square patch. In this way, all images were standardized into a uniform format,
ensuring comparability across the dataset (Figure 1.a and Figure 1.b).

Figure 1. a) Determination of the Petri dish boundary using three selected points (red circles) and visualization of the
fitted circle (green circle) on the image, b) generation of the standardized image (Is;;) With a resolution of 512x512 by
masking the outer region of the Petri dish (uniform blue background), c) creation of the reference image (I,..r) by coloring
the background inside the Petri dish (blue mask)

Let I denote the original RGB image with height H and width W (in pixels). The boundary of
the Petri dish is defined by three user-selected points (x;,y;),i = 1, 2, 3. From these points, the circle
parameters, namely the center (x., y,.) and radius R, are obtained in closed form. The solution is based
on solving the following linear system:

Xel _ _ S [X27 X1 Y2—N1 x5 —xf +yi —yi
A[YC]_B’ A_Z[x3_x1 YS_Y1]' B[x%—x12+y§—y12 (1)

Here, A represents the coefficient matrix constructed from the coordinate differences, while B
contains quadratic terms of the point coordinates. Solving this system yields the circle center (x., y.).
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Once the center is determined, the radius is calculated the radius R is computed as the Euclidean
distance between (x,, y.) and any of the three user-defined points (e.g., (x;1, y,)) (Equation 2).

R =(x;— %)% + (¥ — y1)? )

The three-point interaction transfers the Petri dish to the same geometric reference in images
captured at different framing and scales, while keeping the user effort low and providing practical
robustness against misalignments (Figure 1.a). With the center and radius, the circular region
occupied by the dish is defined as the set Q of pixel coordinates inside the circle:

Q={Cy) €{1,.. H}x{L,... H}|(x = x)* + (v — yo)* < R*} 3)

where x and y denote integer pixel coordinates and H denotes the image height (and, assuming a
square image after cropping, also the width). Over this discrete domain, the binary mask M(x,y) is
obtained as

MG = o) =g i s @

Here, 14 (x, y) denotes the indicator function, taking the value 1 if the pixel (x,y) belongs to
the set Q, and 0 otherwise. Pixels outside the circle (i.e., M = 0) are replaced with a uniform blue
vector b = (0,0,255), thereby converting the exterior of the dish into a distinct reference background
(Figure 1.b). This choice facilitates the subsequent automatic and consistent labeling of the
background, since the blue chrominance is distinguishable from the aggregate/bitumen color
statistics, enabling the “background” class to be statistically separated from scene-related background
candidates (reflections, droplets, transparent edges, etc.) with greater reliability. In the second step of

geometric standardization, a square cropping window
C=[x.—Rx.+R]X[y.—R,y. +R] (5)

is defined to fully encompass the Petri dish. In practice, C is intersected with the image boundaries to
avoid overflow and ensure that the cropping window remains within the valid image domain. The
restriction of the original image I to this window is denoted by I|.. The resulting patch is then
resampled to a resolution of 512x512 using bicubic interpolation,

where Resize(-) denotes the bicubic interpolation operator (Figure 1.b). This resampling procedure
ensures the comparability of superpixel scales. It also satisfies the fixed-size input requirements of
architectures such as U-Net. Finally, it guarantees fair comparability across samples. Furthermore,
manual labeling was performed on copies of the standardized images by coloring the interiors of the
Petri dishes in blue, thereby generating reference images I,.. (Figure 1.c).

2.2 Feature Extraction and Background Labeling
On the standardized ;4 images, a superpixel-based segmentation approach was employed to
achieve highly accurate background separation by utilizing both geometric and photometric cues. The
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primary objective of this step is to partition the pixels into homogeneous subregions, compute
statistical features that characterize each region, and assign labels to these regions in a manner suitable
for supervised learning. In this way, subsequent classification stages can operate on more meaningful
and statistically stable “contour” (superpixel segment) units, rather than on individual pixels.

For the segmentation process, MATLAB’s superpixels function was used to divide each image
into Ng, = 1000 superpixels. This number was determined experimentally to ensure sufficient detail
in capturing aggregate and bitumen regions while preventing excessive oversegmentation. The

resulting superpixel label matrix S € {1, ...,NSI[,}SHX512 assigns each pixel to its corresponding
superpixel identity (Figure 2.a). Subsequently, the boundaries of each superpixel were extracted using
the bwboundaries function. These boundary points, denoted as By, were indexed and visually
inspected on the image for accuracy verification (Figure 2.b). Small noisy regions were removed
using a morphological area filter with a threshold of A,,;,, = 50 pixels, and the preprocessed binary
mask of the k-th superpixel was represented as M.

Figure 2. a) Representation of each superpixel with its boundary and unique identifier (ID), b) verification of the
alignment of superpixel contours with aggregate edges and background by overlaying them on the original image and the
blue background reference

For each superpixel k, spatial, geometric, color, and texture-based features were extracted. The
spatial feature was defined as the distance-to-center, computed as the Euclidean distance between the

centroid of the superpixel (¢, c}(,k)) and the image center (ximg,ycimg) = (W/2,H/2):

k k i k ]
A% ier = (00 =m0y 4 (9 = yimoy: Y

Geometric features included the superpixel area A, (number of pixels within the superpixel
mask) and the perimeter P, (length of the mask boundary), along with the compactness measure:

Ay
7 8)

k

compactness®) =
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Photometric features consisted of the grayscale mean intensity (meanlntensity), the median
values of each channel in RGB and HSV color spaces (Ry, Gy, By, Hy, Sk, Vi), and the grayscale
variance ajmy,k. The meanintensity value represents the average brightness of the superpixel,
whereas the median values reduce the effect of local outliers such as highlights or shadows, thereby
improving statistical robustness.

To capture local color similarities, each superpixel was assigned its K = 3 nearest neighbors in
terms of radial position (d .nter). The average £,-norm distance between the RGB median vectors
of the superpixel and its neighbors,

neighbor_color_diff® = % Z |(Bx, G, Br) — (R;, 5j,§j)||2 (9)
JEN

was used as a discriminative descriptor, where N, detones the set of K nearest neighbors of superpixel
k and ||-]|, denotes the Euclidean norm. For the global color context, blue background pixels (R <
80AG <80AB > 150) and black pixels (R <30AG < 30AB < 30) were excluded, and the
mean foreground color was computed as f = ( R, G, B). The distance between the superpixel median
RGB vector and this global mean was then calculated as:

foreground_color_diff® = ||(Ry, Gy, By) — f”z (10)

and incorporated as an additional feature. The black_ratio, defined as the ratio of black pixels over
the entire image, was computed once per image and assigned to all superpixels as a constant
contextual descriptor. For automatic background labeling, the manually painted reference image
Ief (Figure 1.c) was used. Within each superpixel mask M, the ratio of blue pixels was computed
as

(k) _ Z(x,y)EMk 1blue(x' Y)
Thlue = 1 (11)
Z(x,y)EMk

where 1;,,.(x,y) is a binary indicator function that equals 1 if pixel (x,y) belongs to the “blue”
mask, and 0 otherwise. The denominator Y., ,yepn, 1 corresponds to the total number of pixels in M,,.

Superpixels with )

we > Tng = 0.5 were labeled as background, generating the binary label vector

Ybg € {0,1}"s». In addition to visual inspection of superpixel contours (Figure 2), we quantitatively
evaluated the agreement between these superpixel-level labels and the manual background
annotations. Across all specimens, the automatic labeling achieved a pixel-wise accuracy of 96.3%,
a background precision of 0.975, a recall of 0.950, an F1-score of 0.962, and a background loU of
0.927, indicating a very high consistency between the superpixel-based labels and the manual
reference masks and confirming that the automatic labeling procedure provides a reliable basis for
subsequent supervised learning.

As aresult, a data table T was constructed, where each row corresponds to a superpixel and the
columns consist of 15 features (geometric: distance to center, area, perimeter, compactness;
photometric: meanintensity, medianR, medianG, medianB, medianH, medianS, medianV, gray
variance; contextual/neighborhood: neighbor color diff, foreground color diff, black ratio) along with
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the ‘background’ label (Table 1). A subset of these features was defined by Equations (7)—(10), while
the remaining ones were computed according to standard definitions.

Table 1. Selected features of the contours obtained from the image processing procedure

Izlesrt]'t:: Area Perim. Compact. MeanInt. MedR MedG MedB MedH MedS MedV  Gray Var. czlflg?{f, Fm;.ff(?ol. l;l:icok Bckl;nd
349 225 55 0,076 29 0 218 0 0 254 1 1,000 0,996 0,0 0,380 1
229 428 80 0,067 17 246 180 16 16 15 0 0,135 0,063 48,9 0,380 0
258 176 53 0,063 30 0 218 0 0 254 1 1,000 0,996 32,1 0,380 1
250 70 30 0,077 17 178 187 13 12 9 0 0,355 0,051 276,4 0,380 0
254 125 84 0,018 84 106 41 96 98 142 0 0,040 0,569 2.748,5 0,380 1

2.3 Modeling and Training Process
In this study, the customized artificial neural network (ANN) developed using the defined
superpixel-based features (T table) and automatically generated background labels (y,,) was
compared with MATLAB’s built-in U-Net model, and the method that ensured the highest accuracy
and generalizability in predicting the background class was identified.

2.3.1 Data preparation and common protocol

For all models, the input data consisted of 15 defined feature vectors (dcenters 4, P,
compactness, meanlintensity, neighbor_color_diff, foreground_color_diff, medianR, medianG,
medianB, medianH, medianS, medianV, gray_variance, black_ratio). The output label was the binary
variable 1y, € {0,1}"s» (0 = foreground, 1 = background). During model training, z-score
standardization was applied to the input features. The experiments were conducted under two
protocols. In the single-image protocol, each image was trained and tested only with its own
superpixels, while in the combined dataset protocol, the superpixels of all images were pooled
together and split into training and test sets.

2.3.2 Developed ANN model

The ANN architecture was configured with 15 neurons in the input layer (equal to the number
of features), a single hidden layer with 10 neurons, and 2 neurons in the output layer representing the
background/foreground classes (Figure 3). A sigmoid (logsig) activation function was employed in
the hidden layer, while the output layer utilized the softmax activation function. Binary cross-entropy
was adopted as the loss function, and the default Levenberg—Marquardt algorithm was selected as the
optimization method. The training process was set to 200 epochs, and the model’s generalizability
was evaluated through 5-fold cross-validation. For each fold, independent training and testing sets
were used, and the mean accuracy values were reported.

/" Hidden 10) " Output 2)
Input b b § Output
L e | Hle g
15 W | W . 2
\. J \. J

Figure 3. Architecture of the developed artificial neural network
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Although the ANN and U-Net operate on different representations, superpixel-level feature
vectors versus raw RGB images, both are trained on the same stripping/background annotations and
evaluated on the same standardized images. Therefore, their results can be meaningfully compared in
terms of practical detection performance on the common test set. This dual setup allows us to contrast
a compact, feature-engineered ANN with a deep segmentation network in the same application
context, highlighting the trade-offs between model complexity, data requirements, and predictive
accuracy.

2.3.3 U-Net based pixel classification model

U-Net was employed for pixel-level background/foreground classification on standardized
RGB inputs. Class labels were derived from annotated reference images: the 'blue mask' 1, (x,y)
was defined using the threshold R < 80 A G < 80 A B > 150; pixels within this mask were assigned
the background label, while the remaining pixels were labeled as aggregate.

Data partitioning was dynamically adjusted according to the total number of images n: if n =
1, the entire dataset was used for training with no validation; if n > 1, the dataset was randomly split
into approximately 80/20 training/validation subsets. Training was conducted using the Adam
optimizer with the following settings: MaxEpochs = 25, MiniBatchSize = 4, Shuffle = every-epoch;
in cases where validation was available, ValidationData and ValidationFrequency = 30 were
specified. No alternative techniques, such as learning rate scheduling, data augmentation, or SGDM,
were applied in this study; instead, Adam was preferred for its rapid convergence in small-scale
datasets.

2.4. Importance Analysis

To identify which features the model is most sensitive to and which features contribute most to
its performance, a feature importance analysis was conducted. The analysis was performed
exclusively on the ANN model, and each of the p = 15 input features was evaluated individually.
The permutation importance method was employed for this analysis. In this approach, after
establishing the baseline accuracy Accygserine, the test set values of each feature f; were randomly
permuted. The permutation disrupts the relationship between the feature and the target variable,
thereby revealing the contribution of that feature to the model’s predictive capability. Following each
permutation, the model was re-evaluated, and the corresponding accuracy Accperm,; Was recorded.
The importance score of each feature was then calculated as follows:

Importance(f;) = Accpasetine — ACCperm,i (12)

The higher this value, the greater the contribution of the corresponding feature to the model’s
performance.

3. RESULTS AND DISCUSSION

3.1. Findings of the Single-Image Protocol
In the single-image protocol, nine different images were employed to evaluate model
performance (low level: I-5, 1-18, 1-25; medium level: O-2, O-22, O-28; poor level: K-3, K-8, K-9).
These images were selected to represent “high,” “medium,” and “low” stripping percentages, with
three samples included in each group. In addition, certain images deliberately contained extra objects
that could be classified as noise and complicate the classification process. This design enabled the
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assessment of model robustness under challenging scenarios. Figure 4 presents the Artificial Neural
Network (ANN) prediction and the corresponding accuracy maps for the I-5 sample. The figure
displays, in separate panels, the original image, the manually labeled ground truth mask, the ANN
prediction, and the error map where misclassifications are highlighted in red.

Ground Truth Label

Original Image

ANN Prediction Erroneous Predictions (in Red)

Figure 4. Results of the ANN model for the I-5 specimen; the panels show the Original Image, the Ground Truth Label
(Green: Aggregate, Purple: Background), the ANN Prediction (Green Superpixel: Aggregate, Purple Superpixel:
Background), and the Erroneous Predictions (in Red); each panel corresponds to a 512 x 512 pixel crop covering
approximately 18 x 18 cm of the specimen surface

Similarly, Figure 5 presents the predictions of the U-Net model on the same specimen. This
figure includes the original image, the ground-truth mask, the U-Net prediction, and the error map, in
which misclassified pixels are marked in red.
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Original Image Ground Truth Label

U-Net Prediction Erroneous Predictions (in Red)

Figure 5. Results of the U-Net model for the 1-5 specimen; the panels show the Original Image, the Ground Truth Label
(Green: Background, Purple: Aggregate), the U-Net Prediction (Green Pixel: Background, Purple Pixel: Aggregate), and
the Erroneous Predictions (in Red); each panel corresponds to a 512 x 512 pixel crop covering approximately 18 x 18 cm
of the specimen surface

As observed in Figure 4, the developed ANN model did not label the small droplets inside the
Petri dish, defined as noise, as aggregates. Similarly, the black text within the Petri dish was not
classified as aggregate. This indicates that the model focused exclusively on the actual aggregate
regions and successfully distinguished objects with similar colors but not belonging to the class. In
addition, the majority of the stripping regions were correctly labeled as background, with only two
small areas misclassified.

In contrast, in the U-Net predictions presented in Figure 5, droplets defined as noise and the
text on the Petri dish were observed to be labeled as aggregates. Furthermore, a substantial portion of
the stripping regions was classified as background, leading to deficiencies in detecting the actual
stripped areas. These visual results clearly demonstrate that the developed ANN model is more robust
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against noise and exhibits higher accuracy in distinguishing between bitumen and stripped regions.
Such qualitative observations are also supported by the quantitative results. For the 1-5 specimen, the
ANN model achieved an accuracy of 99.55%, whereas the U-Net model yielded a mean Intersection
over Union (Mean loU) of 93.19% for the same data. The findings indicate that, particularly for
images with complex noise, the developed ANN model provides more accurate and consistent
classification compared to U-Net.

Table 2 presents the accuracy values obtained for nine specimens selected under the single-
image protocol. The specimens were chosen to represent high, medium, and low levels of stripping
percentage, and in some cases to include noise effects (e.g., text or droplets on the Petri dish). The
same analysis procedure was applied to all images, and the results were comparatively evaluated.

Table 2. Accuracy (%) comparison of the developed ANN and U-Net models for nine different samples used in the single-
image protocol

Image Stripping Level ANN U-Net
I-5 Low 99.55 93.19
1-18 Low 98.10 87.91
I-25 Low 96.57 87.97
0-2 Moderate 97.79 90.27
0-22 Moderate 95.07 86.05
0-28 Moderate 91.37 78.11
K-3 High 96.48 87.75
K-8 High 97.70 91.85
K-9 High 97.38 86.56

The findings clearly demonstrate that the developed ANN model consistently outperforms the
U-Net model across all samples. In particular, for samples containing noise and complex textures,
such as I-5, 1-18, and O-28, the accuracy difference between ANN and U-Net ranged from 6% to
13%. The highest accuracy was achieved with the ANN model for sample 1-5 (99.55%), while the
lowest accuracy was observed with the U-Net model for sample O-28 (78.11%). Examination of the
average accuracy values further indicates that the ANN model exhibits more consistent overall
performance, whereas the U-Net model shows significant deviations for certain samples. This
suggests that the ANN model provides a more robust and stable learning capability against noise,
particularly in the single-image protocol where only a limited number of images are available. As
illustrated in Figure 6, the ANN model is capable of achieving high accuracy even on images of
varying difficulty levels, with examples representing low, moderate, and high levels of peeling.
Similarly, Figure 7 presents the performance of the U-Net model on the same samples, revealing that
while the model performs acceptably on images with low noise, it produces unstable results when
faced with noise and contrast distortions.
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: - )il sl T
Figure 6. Prediction outputs of the ANN model across the nine specimens used in the single-image protocol: each panel
shows the ANN segmentation for one specimen (green superpixels: aggregate, purple superpixels: background); each
panel corresponds to a 512 x 512 pixel crop covering approximately 18 x 18 cm of the specimen surface

The visuals in Figure 6 replicate the format shown in Figure 4 (original image, labeled
reference, model prediction, and error map) for each specimen. The top row contains examples
representing low stripping levels, the middle row moderate levels, and the bottom row high stripping
levels. When Figure 6 and Table 2 are jointly considered, it is evident that the ANN model achieved
highly accurate predictions for specimens with low stripping percentages in the top row; for instance,
an accuracy of 99.55% was obtained for the I-5 image. In the middle row, accuracy values declined
relatively, yet were still preserved up to 91.37%. A common feature of specimens in this group is the
presence of droplets generating significant noise on the Petri dish surface or stains distorting contrast.
Despite these noise factors, the ANN model largely labeled bitumen-coated and stripped areas
correctly, though some misclassifications occurred. Visual inspections revealed that the model did
not mistakenly label non-bitumen black elements (e.g., inscriptions on the Petri dish) as bitumen,
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thereby demonstrating more consistent behavior compared to the U-Net model. In the bottom row,
although the noise was less prominent, the low color and texture contrast led to errors concentrated
in certain small clusters. Overall, the examples in Figure 6 clearly highlight the robustness of the
ANN model against noise and its ability to maintain high accuracy even across images of varying
quality.

Figure 7. Prediction outputs of the U-Net model across the nine specimens used in the single-image protocol each panel
shows the U-Net segmentation for one specimen (green: background, purple: aggregate); each panel corresponds to a 512
x 512 pixel crop covering approximately 18 x 18 cm of the specimen surface

The visuals in Figure 7 were generated by applying the format presented in Figure 5 (original
image, labeled reference, model prediction, and error regions) to each sample. The top row shows
examples with low stripping, the middle row with moderate stripping, and the bottom row with high
stripping levels. In the top row, the model generally labeled bitumen-covered areas correctly,
although small errors were observed at some edges. In the middle row, which includes samples with
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moderate stripping, accuracy loss is more pronounced; particularly in regions with droplets or strong
reflections, the model showed uncertainty in distinguishing between bitumen and stripped areas. In
the bottom row with high stripping levels, acceptable accuracy was maintained in overall shape
detection, but misclassifications marked in red appeared more frequently and in clustered forms. This
indicates that the U-Net model is more sensitive to noise and complex textures, and that its error rate
increases under conditions of low color and texture contrast. Overall, the figure set demonstrates that
the U-Net model can produce successful results under certain conditions, but its performance
becomes unstable in the presence of noise and contrast distortions.

3.2. Findings of Multi-Protocol Comparison
In this section, the classification performance of the ANN and U-Net models on multi-protocol
data is compared. For both models, mean accuracies and 95% confidence intervals over four
independent repetitions were computed; the results are summarized in Table 3.

Table 3. Comparison of ANN and U-Net accuracies in the multi-protocol setting (mean + 95% confidence interval over
four runs)

Model Global Accuracy Aggregate Accuracy Background Accuracy
(%) % %

ANN 95.65 + 0.57 97.58 £ 0.08 93.45 £ 0.67

U-Net 84.77+7.79 80.87 + 17.27 89.67 + 4.51

As shown in Table 3, the ANN model exhibits a clear advantage under multi-protocol
conditions, achieving a mean global accuracy of 95.65% (+0.57) compared to 84.77% (£7.79) for U-
Net. In the class-based evaluation, ANN attains a notably high accuracy of 97.58% (+£0.08) for the
aggregate class, whereas U-Net remains at 80.87% (+17.27) in the same category. For the background
class, both models reach high accuracy levels, with ANN (93.45% + 0.67) again slightly
outperforming U-Net (89.67% + 4.51). The substantially narrower confidence intervals of the ANN
model, particularly for the aggregate class, indicate a much more stable and reproducible performance
across independent runs, while the wide intervals observed for U-Net reveal a strong sensitivity to
initialization and data splits. These results indicate that ANN provides a more balanced and stable
performance across classes, particularly yielding more reliable predictions in distinguishing between
bitumen-coated and stripped areas. The distribution of class predictions, error rates, and overall
performance metrics of the ANN model are further examined through the confusion matrices in
Figure 8, while the evolution of accuracy and loss during U-Net training is presented in Figure 9.
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Figure 8. Confusion matrices of the ANN model obtained from training, validation, test, and overall data under the multi-
protocol setting

Training Progress (04-Aug-2025 14:31:20)

Figure 9. Training and validation loss/accuracy curves of the U-Net model under the multi-protocol setting

As observed in Figure 8, the error distribution matrix of the ANN indicates that
misclassifications were limited both in quantity and variety, suggesting a strong generalization
capability of the model. In contrast, Figure 9 shows that the error curves of U-Net reveal a plateau in
accuracy gains after a certain stage of training, indicating constrained improvement. These findings
highlight that, within multi-protocol scenarios, ANN appears to provide a more reliable option.

To complement the accuracy-based comparison, we also report additional threshold-based
metrics for the ANN in the multi-protocol setting. Aggregating the confusion-matrix terms over the
five cross-validation folds and treating the background class as the positive class, the ANN achieved
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an overall accuracy of 95.65%, a precision of 0.961, a recall (sensitivity) of 0.943, a specificity of
0.966, an F1-score of 0.952, and an loU of 0.908 for the positive class. These values indicate a well-
balanced trade-off between false positives and false negatives and further confirm the robustness of
the ANN model in separating background from aggregate regions.

3.3. Importance Analysis

The relative importance levels of the features influencing the model’s classification
performance are presented in Figure 10. According to the analysis results, medianV (the brightness
component in the HSV color space) has the highest importance score, with a mean value of 0.19 +
0.01 over four independent runs (visually shown as approximately 0.20 in Figure 10). This confirms
its decisive role in the model’s decision-making process. It is followed by medianB (the median of
the blue channel in the RGB color space) and medianS (saturation), indicating that color- and
brightness-based features directly contribute to classification accuracy.

Feature Importance Analysis
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Figure 10. Relative importance levels of the features

On the other hand, the black_ratio variable also provides a meaningful contribution (~0.045).
This indicates that the proportion of black color in objects is an important discriminative factor,
particularly in detecting bituminous surfaces. In contrast, geometry-based features such as
distance_center, area, and perimeter exhibit considerably low importance scores.

These findings reveal that the model predominantly relies on color- and brightness-oriented
decisions, while shape and spatial features make only a limited contribution. Therefore, to further
enhance classification performance, it would be an appropriate strategy to focus on improving color-
based features and, if necessary, to consider additional spectral transformations.

The findings regarding feature utilization also demonstrate clear distinctions between different
model types such as ANN and U-Net. Since the ANN model is fed directly with numerical feature
vectors, the contribution of each feature to the classification decision can be explicitly computed and
interpreted. In contrast, the U-Net model takes raw image pixels as input and, through its multi-
layered convolutional structure, automatically learns color, texture, and edge information within its
intermediate layers. Therefore, unlike in ANN, the relative importance of predefined features in U-
Net cannot be directly obtained; instead, techniques such as Grad-CAM or similar visualization
methods are employed to analyze which visual regions the model attends to. This distinction arises
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from the higher interpretability of ANN and the broader learning capacity of U-Net, though it
precludes direct feature-level comparison between the two approaches.

It is important to address the methodological differences in the comparison. Although U-Net is
a more expressive architecture with a higher representational capacity, its training in this study was
intentionally kept simple: a standard encoder—decoder configuration with Adam optimization, fixed
learning rate, and no data augmentation or learning-rate scheduling. Under these small-data
conditions (nine standardized RGB images) and without aggressive regularization, the pixel-wise U-
Net model proved more sensitive to noise and exhibited larger variability in accuracy, whereas the
feature-based ANN remained markedly more data-efficient and stable. Therefore, the lower
performance of U-Net in this work should be interpreted as a limitation of the current training regime
and dataset size, rather than as a fundamental weakness of the architecture for stripping detection
problems. This comparison highlights that for engineering applications with limited labeled data,
feature-engineering approaches (like the proposed superpixel-ANN) can offer a more robust 'ready-
to-use' solution than deep learning models requiring extensive optimization. Investigating more
advanced optimization strategies and larger, more diverse datasets for U-Net constitutes a natural
extension of the present study.

4. CONCLUSIONS

Within the scope of this study, the developed model successfully distinguished aggregate and
background in stripping tests applied during asphalt mixture production through visual analysis. For
this purpose, the images of the test specimens were standardized, manually labeled, and thereby used
to construct training datasets. The classification tasks were carried out separately using a simple
Artificial Neural Network (ANN)-based model and the U-Net deep learning architecture. The ANN
model was designed as a single-layer structure with 10 neurons, and different normalization
techniques (z-score and min-max) were also tested for data scaling.

The ANN model achieved higher accuracy compared to the U-Net model in both single-image
and multi-image protocols. In particular, for the single-image analysis of specimen I-5, the ANN
model reached an accuracy of 99.55%, whereas the U-Net model remained at 93.19%. Likewise,
under the multi-image protocol, the average accuracy calculated across all specimens was
approximately 95.7% for the ANN model, while it was around 83.89% for U-Net. These results
demonstrate that the proposed simple ANN-based approach exhibits a clear performance advantage,
even compared to a complex deep network architecture such as U-Net, which is widely employed for
pixel-based segmentation.

The analysis of the results revealed that the superior performance of the ANN model (Global
Accuracy 95.7%) compared to U-Net (83.89%) stems primarily from the robustness of the superpixel-
based feature extraction process and the high discriminative power of the selected features. The
Feature Importance Analysis (Section 3.3) showed that the ANN model largely relied on color- and
brightness-based features (medianV, medianB, medianS) in the decision-making process. The distinct
differences in color and brightness between the dark bituminous aggregate material and the light/blue
background surface explain why such a separation could be achieved with high accuracy even by a
relatively simple ANN structure. The superpixel approach aggregates noisy pixel data into stable,
statistically representative units, rendering the ANN model more stable against noise and contrast
distortions than the pixel-based U-Net, particularly as confirmed by the Single-Image Protocol
findings (Figure 6 vs. Figure 7). Furthermore, the model’s design utilizes contextual descriptors, such
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as the black pixel ratio, which enhances robustness by explicitly incorporating scene-specific
information often missed by raw pixel input models like U-Net. The finding that alternative
architectures or different normalization techniques did not yield meaningful improvement suggests
that, owing to the high discriminative power of the problem-specific features, even a simple single-
layer network architecture is sufficient, and more complex ANN structures are not currently
necessary. A limitation of our study is that the ANN and U-Net models rely on different input
representations (hand-crafted superpixel features versus raw image data). As a result, their
comparison should be interpreted as a practical assessment of two alternative modeling paradigms
for stripping detection, rather than as a strictly controlled architectural benchmark.

Overall, the proposed method provides a highly accurate and practically flexible solution. Due
to the low computational complexity of the superpixel-based feature extraction, the developed ANN
model has been successfully integrated into a standalone software application that operates efficiently
on standard laboratory computers without the need for high-performance GPUs. Furthermore, the
geometric standardization step ensures that images captured by ubiquitous devices, such as mobile
phone cameras, can be consistently processed. This makes the method a readily deployable tool for
routine stripping analysis in field or laboratory settings, independent of expensive imaging setups.
While the number of raw images used (nine samples) is limited, the superpixel-based feature
extraction process, which generates approximately 9000 independent feature vectors, ensures
sufficient data points for robust model training and prevents overfitting. However, it is considered
that incorporating certain preprocessing steps or data augmentation techniques could further enhance
classification performance and address generalization concerns for extremely diverse, large-scale
datasets. In particular, removing noise or artifacts from the images may enable the model to perceive
discriminative features more clearly, thereby contributing positively to accuracy. Indeed, the
literature reports that noise reduction techniques applied in fields such as medical image analysis have
increased the accuracy of deep learning-based models by approximately 3.5% (Mechria, Hassine, &
Gouider, 2022). The findings of the present study are consistent with this evidence, and similarly, it
is anticipated that incorporating additional preprocessing steps such as noise reduction, or
implementing data augmentation, which was not applied in this study, could further strengthen our
model for aggregate—background separation. In conclusion, this study, which provides an automatic
visual analysis as an alternative to expert evaluation, supports comparable approaches in the literature
with its high accuracy and implementation flexibility, and offers promising potential for future
research.
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