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ABSTRACT 

In this study, image denoising has been realized with with the one of the recent Nature-Inspired optimization 

algorithms, Grey Wolf Optimizer(GWO). GWO is one of the recent most studied continous optimization algorithm 

which performs better than the other algorithms. In this study, ten test images have been selected and gaussian  

noise has been added  with some variance values.  After the noisy images have been attained, these noisy images 

have been filtered with convulation in spatial domain. Filter coefficents have been trained with GWO, Modified 

Grey Wolf Optimizer(MGWO) and Genetic Algorithm(GA). Weiner filtering is also applied on the images for 

image denosing. The results show that Weiner Filter outperforms GWO trained filters on most of the images.  

MGWO performance is better then GWO and the results show that MGWO can also be used as an alternative 

method for image denoising. In the future studies, adaptive MGWO can be enhanced for much more succesfull 

image denoising process. 
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Düzenlenmiş Gri Kurt Optimizasyon Algoritması ile Gürültü 

Temizleme 

ÖZET 

Bu çalışmada, yakın zamanda doğadan esinlenen optimizasyon algoritmalarından biri olan Gri Kurt 

Optimizasyonu(GWO) ile görüntülerdeki gürültülerin temizlenmesi gerçekleştirilmiştir. GWO, diğer 

algoritmalardan daha iyi performans gösteren,  son zamanlarda en çok çalışılan sürekli optimizasyon 

algoritmasından biridir. Bu çalışmada on test görüntüsü seçilmiş ve bazı varyans değerleri ile gauss gürültüsü 

eklenmiştir. Gürültülü görüntüler elde edildikten sonra, bu gürültülü görüntüler  uzamsal  alanda konvülasyon ile 

filtrelenmiştir. Filtre katsayıları GWO, Düzenlenmiş Gri Kurt Optimizasyonu (MGWO) ve Genetik Algoritma 

(GA) ile eğitilmiştir. Elde edilen sonuçlara göre Weiner filter çoğu resimde daha başarılı sonuçlar vermiştir.  

MGWO’nun performansı GWO’dan daha iyidir ve sonuçlar MGWO’nun gürültü gidermede alternatif bir metot 

olarak kullanılabileceğini göstermiştir. Gelecekteki çalışmalarda daha başarılı gürültü temizleme işlemi için 

adaptif MGWO geliştirilebilir. 

 

Anahtar Kelimeler: GWO, MGWO, GA, Gürültü Temizleme. 

 

Received: 22/06/2018, Revised: 25/05/2018, Accepted: 27/06/2018 

 

Düzce University  

Journal of Science & Technology 

Düzce University Journal of Science & Technology, 6 (2018) 962-982  



963 

 

I. INTRODUCTION 

 

n the recent years, with the exponential increasing  of image and video transfer, image processing 

studies have also increased. Images are exposed to various types of noise distortion during the process 

of acquisition and transmission [1].  So, most of the studies in image processing are related with the 

image denoising.  

 

There are different types of noised related with the transferring environment or acquisition. There are 

mainly two types of noises; additive and multiplicative noises. The primary reasons of noisy images are 

due to slow shutter speed, temperature, resistivity in solid state device and poor illumination [2]. 

Sampling and quantization errors also create noisy images. In order to enhance the quality of the images, 

image denoising is one of the pre-processing techniques.  In most of the image processing studies, the 

artificial noisy images are created with some additive or multiplicative noise types. The most used noise 

types are White Noise, Gaussian Noise, Salt and Peppers, Red Noise and Speckle Noise. So, 

implementing an efficient noise removal technique is quite important in order to get every detail in the 

image processing applications.  

 

In the literature, different types of methods have been used for image denoising. In the recent studies, 

deep convolutional neural networks have been used for this aim. Image denoising using the deep 

learning method has shown superior performance compared to conventional image denoising 

algorithms. In a study, improved by Lee at. al, convolutional neural network has been used for medical 

image denoising. They used 3000 chest radiograms for training their networks. In this study, they have 

introduced an image denoising technique based on a convolutional denoising autoencoder (CDAE) and 

evaluate clinical applications by comparing existing image denoising algorithms [3].  

 

Conventional smoothening and sharpening filters are the most popular filters for noise reduction in 

digital images. While smoothening filters are not very well for higher noise and it can harm to detail 

parts like edges owing to smoothness factor, sharpening filters reduce not only the noise but all the small 

details [4].  

 

Filtering for image processing can be realized both in spatial domain and frequency domain. For 

denoising in spatial domain, linear and non-linear filters[5,6,7] anisotropic diffusion[8,9] and total 

variation methods[10], dictionary learning method[11,12], bilateral and non-local means (NLM) 

filters[13], Neural Networks[14,15] and deep learning algorithms[16,17,18] have been used.  For 

transform domain filtering, Wavelet based denoising[19, 20],  fourier based denoising[21, 22], curvelet 

based denosinig[23, 24], threshold estimation[25]  and shrinkage rules[26, 27]  have been used.  

 

Linear and non-linear filters are used for image denoising. While mean filters are linear, median filtering 

is non-linear.  Digital convolution using linear filters are one of the most used techniques for image 

processing.  Linear filter coefficients are selected in such a way which minimizes the noise. So, finding 

the optimum filter coefficients is an optimization problem. In recent years, since nature-inspired 

optimization algorithms are easy to implement and require no derivative process, they have been 

popular. Starting from Genetic Algorithm, several kinds of nature-inspired optimization algorithms have 

been improved such as Particle Swarm Optimization, Ant Colony Optimization, Artificial Bee Colony 

Optimization, Whale Optimization, Grey Wolf Optimizer.  

 

I 
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Grey Wolf Optimizer is one of the recent nature-inspired optimization algorithms developed by 

Mirjalili[28]. GWO has been applied successfully for the solutions of lot of real life optimization 

problems from computer engineering to biomedical engineering such as clustering,[29] training 

multilayer percepterons[30], classification[31], medical image fusion[32] and system parameter 

estimation[33]. So for the simplicity and successful denoising process, linear filters trained by GWO are 

used in this study. 

 

Section II presents image denoising.  Section III presents Nature-Inspierd Algorithms. Section IV 

presents Weiner filtering. Section V outlines the image denoising with linear filters trained by GWO 

algorithm. The results have been presented in Sections VI.  

 

 

II. IMAGE DENOISING 
 

A digital image f(x,y)  is a function of intensities  in spatial coordinates. While grey level digital image 

is two dimensional matrix, colored images are three dimensional matrix in general.  But these images 

are not always high quality. Especially medical images from CT, MRI and ultrasound have been used 

for medical diagnosis. So, all the details must be observed in the images. After the process of image 

acquisition or transmission, images are generally noisy. So, the images are pre-processed with some 

image denoising techniques. For this aim, several approaches have been improved in the literature. In 

order to evaluate the performances of the algorithms, some artificial noises are added in the studies.   

  

The best way to test the effect of noise on a standard digital image is to add a gaussian white noise[34]. 

Gaussian noise is statistical noise, which the noise values are taken from as the Gaussian distribution. 

The probability function of Gaussian distribution is as given in Equation 1. 

 

PG(z)=
2

2

2

)(

2

1









z

e            (1) 

 

In this equation, PG(z) presents the probability of Gaussian distribution, z presents the grey level,  

presents the standard deviation and µ presents the mean value.  

 

Image denosing methods are classified into two main categories called as spatial domain and frequency 

domain. These methods are given in Figure 1.  

 

The main methods in spatial domain are linear and non-linear filters. Anisotropic diffusion filter and 

non-local means filters are main non-linear filters.  

https://www.sciencedirect.com/science/article/pii/S0965997813001853#s0010
https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Gaussian_distribution
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Figure 1. Image denosing methods
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The main methods in frequency domain are based on curvelet, wavelet and contourlet transforms. In 

order to measure the performances of the denosing techniques, Means Square Error(MSE) and Peak 

Signal to Noise Ratio(PSNR) have been used.  PSNR, is the ratio between the maximum possible power 

of a signal and the power of noise. Since signals have a very wide dynamic range, PSNR is usually 

expressed with logarithmic decibel scale. 

 

 MSE and PSNR values are calculated with the Equation 2 and 3. 

 

𝑀𝑆𝐸 =
1

𝑀𝑥𝑁
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐽(𝑗, 𝑖))2𝑁

𝑗=1
𝑀
𝑖=1            (2) 

 

𝑃𝑆𝑁𝑅 = 10log
10

(
𝑀𝐴𝑋𝑖

2

𝑀𝑆𝐸
)                        (3)  

 

 

In the equation 2, I represents original image, J represents noisy image, M and N represent the size of 

the image. In the equation 3, 𝑀𝐴𝑋𝑖 represents the maximum pixel. 

 

 

III. NATURE-INSPIRED ALGORITHMS 

 

In this study, image denoising has been realized with optimized filters. For this aim, GWO, MGWO and 

GA have been used.  So GWO, MGWO and GA have been introduced below.  

 

A. GREY WOLF OPTIMIZER  

 

Grey Wolf Optimizer was firstly developed by Mirjalili in 2014[28] GWO is one of the nature inspired 

optimization algorithm developed recently. GWO simulates the hunting behavior of Grey Wolves for 

finding near optimal solution to optimization problems. GWO is one of the population based 

optimization algorithms. GWO was originally developed for the solution of continuous optimization 

problems. But it was also applied for the solutions of discrete optimization problems [35]. In order to 

increase the performance of the GWO, it was combined with other heuristic algorithms such as genetic 

operators [36], particle swarm [37], pattern search[38] and  Levy Flight[39].  

 

Grey Wolves live as social groups. There is a hierarchy among them. So they are classified as alpha, 

beta, delta and omega. The wolf has some responsibility according to its level in the hierarchy. And their 

hunting strategy has three main phases. In the first phase, grey wolves track the prey. In the second 

phase, they encircle the prey until the prey stops moving and at last attack towards the prey. GWO 

mimics this hunting strategy for finding the optimal solution of an optimization problem. 

 

Prey represents the optimal solution while each wolf represents a solution. While real wolves change 

their position in such a way that they encircle and attack the prey, random initial solutions changes their 

position from one iteration to another in such a way that they converges optimal solution.   

 

For the encircling behavior of wolves, some equations are proposed in the article [28]. 

https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Noise
https://en.wikipedia.org/wiki/Dynamic_range
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Decibel
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There is a social hierarchy among the wolves. The solutions with the best eligibility are accepted as 

wolves named alpha (α), beta (β), delta (δ) and omega (ω) respectively. For the encircling behavior of 

wolves, the following equations are proposed: 

 

D⃗⃗ = |C⃗ . Xp
⃗⃗ ⃗⃗ (t) − X⃗⃗ (t)|                   (4) 

 

X⃗⃗ (t + 1) = Xp
⃗⃗ ⃗⃗ (t) − A⃗⃗ D⃗⃗                                (5) 

 

X represents the position of grey wolf; Xp represents the position of prey, A⃗⃗  and C⃗  are the coefficients, 

t represents current iteration and t+1 represents the next iteration.  A⃗⃗  and C⃗  are given: 

 

A⃗⃗ = 2a⃗ . r1⃗⃗  ⃗ − a                    (6) 

 

C⃗ = 2r 2                            (7) 

 

Even if the real wolves see their prey, since it has not got any idea about the optimum point(prey) in the 

solution space, the hunting behavior is simulated with the three best solution found among the wolves.  

So the following equations are proposed for hunting behavior: 

 

Dα
⃗⃗⃗⃗  ⃗ = |C⃗ 1. Xα

⃗⃗ ⃗⃗  − X⃗⃗ |                  (8) 

 

Dβ
⃗⃗⃗⃗  ⃗ = |C⃗ 2. Xβ

⃗⃗ ⃗⃗ − X⃗⃗ |                  (9) 

 

Dδ
⃗⃗ ⃗⃗  = |C⃗ 3. Xδ

⃗⃗ ⃗⃗ − X⃗⃗ |                 (10) 

 

X1
⃗⃗⃗⃗ = Xα

⃗⃗ ⃗⃗  − A1
⃗⃗ ⃗⃗ (Dα)⃗⃗⃗⃗ ⃗⃗  ⃗                 (11) 

 

X2
⃗⃗⃗⃗ = Xβ

⃗⃗ ⃗⃗ − A2
⃗⃗ ⃗⃗ (Dβ)⃗⃗⃗⃗⃗⃗  ⃗                 (12) 

 

X3
⃗⃗⃗⃗ = Xδ

⃗⃗⃗⃗ − A3
⃗⃗ ⃗⃗ (Dδ)⃗⃗⃗⃗⃗⃗  ⃗               (13) 

 

X⃗⃗ (t + 1) =
X1⃗⃗⃗⃗  ⃗+X2⃗⃗⃗⃗  ⃗+X3⃗⃗⃗⃗  ⃗

3
               (14) 

 

Attacking prey is simulated decreasing the value of a. The components of a is reduced linearly from 2 

to 0 during the iterations.  The random vectors 𝑟1 and 𝑟2  allow the wolves to reach any point in the 2D 

and 3D space. At this stage, a value is reduced and therefore the range of change of A is reduced. When 

A has random values in the range [-1,1], the next location of the search agent will be anywhere between 

the current location and the location of the prey. The pseudo-code of the GWO is given in Figure 2. 
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Initialize the grey wolf population 𝑋𝑖(𝑖 = 1,2, … , 𝑛) 

Initialize a, A and C 

Calculate the fitnessof search agent 

𝑋𝛼 = the best search agent 

𝑋𝛽 = the second best search agent 

𝑋𝛿 = the third best search agent  

While (t < Max number of iterations) 

   For each search agent  

         Update the position of the current search agent by equation  

   End for  

   Update a, A and C 

   Calculate the fitness of all search agents 

  Update 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 

  t = t +1 

end while  

return 𝑋𝛼 

 

 

Figure 2.  Pseudo code of the GWO algorithm. 

  

B. MODIFIED GREY WOLF OPTIMIZER 

 

MGWO is also based on GWO[40]. The main difference is the decreasing process of parameter a.  While 

in the original GWO, a is decreased linearly from 2 to 0 using the update equation as given in equation 

15.  

 

𝑎 = 2(1 −
𝑡

𝑇
)              (15) 

 

where T indicates the maximum number of iterations and t is the current iteration. MGWO employs 

exponential function for the decay of a over the course of iterations, as given in Equation 16.  

 

𝑎 = 2(1 −
𝑡2

𝑇2)              (16) 

 

The parameter changing both in GWO and MGWO can be seen in Figure 3.  
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Figure 3. Changing of parameter a in GWO and MGWO 

 

Using this exponential decay function, the numbers of iterations used for exploration and exploitation 

are 70% and 30%, respectively in MGWO[40]. 

 

C. GENETIC ALGORITHM 

 

GA is developed by Holand[41]. GA is a population-based nature-inspired algorithm inspired by the 

theory of evolution.  Survival of the fittest explains the Dawinian evolutionary theory. Since the  

optimization algorithms aim is to search of the fittest, evolutionary theory has been applied to the 

solution of the optimization problems very well. So, GA is one of the most successful optimization 

algorithms even today. In the algorithm, best properties are transferred from the generation to generation 

with crossover and elitism. Algorithm starts some initial random solutions of the optimization problem 

called individuals. GA uses some genetic operators such as crossover, mutation, and elitism in order to 

find the optimum solution. In each generation, fitness function values for each individual are calculated. 

The best individuals are selected for the next generation by some methods such as tournament selection 

or roulette wheel. After the selection, elitism, crossover, and mutation are applied to the population [42]. 

 

 

IV.  WEINER FILTERING 
 

The Wiener filter is stationary linear filter for additive noisy images. Weiner filter aims to find optimal 

MSE. Wiener filters are usually applied in the frequency domain. If it is assumed that x(m,n) noisy 

image and X(u,v) is the  Discrete Fourier Transform (DFT)  of the image x. The original image spectrum 

is estimated by taking the product of X(u,v) with the Wiener filter G(u,v) as given in the equation 17.  

 

Y(u,v)=G(u,v)X(u,v)              (17) 

 

The inverse DFT is then used to obtain the image estimate from its spectrum. The Wiener filter is defined 

as given below; 
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H(u,v): Fourier transform of point spread function(PSF) 

Ps(u,v): Power spectrum of signal process, obtained by taking the fourier transform of  noise 

autocorrelation 

Pn(u,v): Power spectrum of noise process, obtained by taking the fourier transform of  noise 

autocorrelation 

 

The Wiener filter is: 

 

𝐺(𝑢, 𝑣) =
𝐻(𝑢,𝑣)𝑃𝑠(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2𝑃𝑠(𝑢,𝑣)+𝑃𝑛(𝑢,𝑣)
            (18) 

 

 

V. IMAGE DENOISING WITH NATURE-INSPIRED ALGORITHMS 

 

In this study, image denoising has been realized with convolution. For this aim, Gaussian noises have 

been added with some variance and mean values. After this process, the noisy images have been 

convolved with the optimized filters trained by GWO, MGWO and GA. MSE value is used as fitness 

function for the algorithms. Since all the optimization algorithms aim to find minimum value of fitness 

function, the filter coefficients giving the minimum MSE, are accepted the best filter coefficients for 

these type of noise. Having found the coefficients, this filter is applied the noisy images and denoised  

the images. The images used for testing are given in Figure 4.  

 

          

         
 

Figure 4. Test images used for image denoising (fabric, kobi, lighthouse, onion, pears, gantrycrane, yellowlily, 

wagon, trailer, strawberries) 

 

Gaussian noise has been added to the pictures with some variance and mean values as given in the Table 

1. 

Table 1. Means and Variance Values of the Gaussian Noises 

 

Gaussian Noise 

Statistical 

parameters 

Test 1 Test 2 Test 3 

 

Test 4 

 

Mean 0 0.1 0 0 

Variance 0.01 0.02 0.02 0.04 

PSNR 20 16 17 14.5 
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The original images and noisy images after filtering have been compared with each other according to 

the PSNR value. Weiner filtering is also used for comparison in the tests.  

Some of the results are given in the figures. Denoising images with GWO and Weiner can be seen in 

Figure 5 and Figure 6. 
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Figure 5. a) Original image(Trailer), b) Gaussian Noisy image µ=0.1, =0.02, c) Denoised image with Weiner, 

d) Denoised image with GWO, e) Trained filter MSE values for each iteration(GWO), f) Denoised image with 

MGWO, g) Trained filter MSE values for each iteration(MGWO), h) Denoised image with GA, j) Trained filter 

MSE values for each iteration(GA) 
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Figure 6. a) Original image(Fabric), b) Gaussian Noisy image µ=0, =0.02, c) Denoised image with Weiner, d) 

Denoised image with GWO, e) Trained filter MSE values for each iteration(GWO), f) Denoised image with 

MGWO, g) Trained filter MSE values for each iteration(MGWO), h) Denoised image with GA,  j) Trained filter 

MSE values for each iteration(GA) 

 

The filtering results for each picture with some Gaussian noise for filter size N=3, 5 and 7 are given 

between the Table 2-13. 

 

Table 2. PSNR values after the removal of Gaussian Noise ( M=0, Var=0.01) (GWO) 

 

Image Average 

Time(s) 

GWO Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

 N=3 N=5 N=7 

Fabric 134,3484 22,7897 25,8485 136,7641 21,8268 25,1783 139,3408 18,905 23,3692 

Kobi 298,8725 25,8925 27,5211 310,0827 26,0859 30,0938 322,9824 25,1226 30,0788 

Lighthouse 135,3147 24,2563 26,9584 135,8922 24,5908 27,8387 137,9614 23,01 27,4676 

Onion 105,8386 24,8621 27,007 106,5224 24,8256 28,0234 106,6018 22,5069 27,2532 

Pears 139,086 22,6484 27,2991 139,4954 20,8796 29,8569 141,5134 20,1853 30,3382 

Gantrycrane 112,1146 23,0666 26,0325 112,9489 21,4982 25,9751 113,6594 21,1594 25,004 

Yellowlily 282,4301 25,4763 27,4127 288,4157 25,317 29,2485 297,1742 23,4926 29,5293 

Wagon 174,3174 23,1354 24,056 176,2602 20,1013 23,7345 180,1517 21,2028 23,2404 

Trailer 165,8312 25,9632 27,0826 168,5925 26,0951 28,8726 171,9355 24,949 28,875 

Strawberries 164,5891 24,3922 25,8506 167,1693 24,2702 25,3331 171,4862 21,9998 24,353 
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Table 3. PSNR values after the removal of Gaussian Noise ( M=0, Var=0.02) (GWO) 

 

Image Average 

Time(s) 

GWO Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

 N=3 N=5 N=7 

Fabric 134,0033 21,1163 23,6793 134,8141 20,26 23,9289 136,7654 18,0742 22,5535 

Kobi 289,9725 24,548 24,6467 295,0976 24,2969 27,5801 305,9505 21,3766 28,1689 

Lighthouse 136,8795 22,9722 24,1934 135,8335 22,8832 25,6435 138,2997 20,4745 25,6633 

Onion 106,2051 23,25 24,2222 106,3686 22,9058 25,909 107,0079 22,0529 25,5759 

Pears 138,2129 22,24 24,4312 139,1395 20,6046 27,4991 141,5461 20,2674 28,546 

Gantrycrane 112,0751 21,2681 23,6268 112,8857 21,2397 24,228 113,585 19,7571 23,6222 

Yellowlily 284,358 24,0018 24,4067 285,2345 23,9413 26,1841 293,3956 22,7801 26,6261 

Wagon 174,2253 21,4967 22,3251 176,7826 21,5461 22,6439 179,88 20,9168 22,3588 

Trailer 166,2067 24,1584 24,2934 169,2443 22,9496 26,6346 172,5073 23,3794 27,1294 

Strawberries 164,9504 22,5999 23,4377 167,3169 20,7434 23,8186 170,7758 21,3649 23,2488 

 

 

Table 4. PSNR values after the removal of Gaussian Noise (M=0.1, Var=0.02) (GWO) 

 

Image Average 

Time(s) 

GWO Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

 N=3 N=5 N=7 

Fabric 133,6148 17,6692 18,5691 134,8184 16,963 18,6334 136,3902 15,3649 18,1664 

Kobi 291,8498 21,7013 19,4668 298,2074 21,129 20,1074 307,028 22,6996 20,2171 

Lighthouse 135,2092 19,671 19,7071 136,1868 19,2719 20,18 138,3968 18,8522 20,1958 

Onion 105,6204 19,1249 18,8219 106,4527 19,3907 19,3532 107,0532 18,9647 19,4769 

Pears 138,4479 18,9895 18,9198 138,5476 19,175 19,5851 139,3987 18,3398 19,755 

Gantrycrane 112,1355 18,2828 18,7725 113,1537 18,3268 19,0309 113,9882 18,4821 18,8867 

Yellowlily 277,9273 17,9588 18,5557 283,1165 17,9153 19,0708 291,2346 17,2095 19,1808 

Wagon 174,2757 19,2671 18,667 174,4376 19,2315 18,7978 177,3628 18,8392 18,6954 

Trailer 166,6848 19,6589 19,2105 168,5054 21,6918 19,7719 172,5877 20,9479 19,8896 

Strawberries 165,1459 18,3858 18,6325 168,487 18,3677 18,8042 173,0544 17,3426 18,6236 

 

 

 

 

 

 

 

Table 5. PSNR values after the removal of Gaussian Noise (M=0, Var=0.04) (GWO) 

 

Image Average 

Time(s) 

GWO Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

Average 

Time(s)  

GWO 

 

Weiner 

 

 N=3 N=5 N=7 

Fabric 133,69 19,6806 21,2806 134,8594 19,402 22,3234 136,9146 17,8912 21,4806 

Kobi 293,1977 22,6167 21,8782 298,4864 22,7732 24,8535 310,3481 22,273 25,8169 

Lighthouse 133,3527 21,1538 21,4046 134,1711 21,1107 23,1195 135,8882 20,691 23,429 

Onion 105,7577 21,2133 21,4218 106,4979 20,4916 23,3452 106,9988 20,3228 23,6075 

Pears 136,2395 20,5472 21,7475 137,7498 19,6898 25,0086 139,6628 19,6516 26,4309 

Gantrycrane 112,2422 19,5637 21,1332 113,1742 19,1263 22,2679 114,7772 17,5506 22,0245 

Yellowlily 281,2751 21,147 21,3783 291,4211 20,8967 23,0441 300,8309 19,7165 23,5452 

Wagon 172,1187 19,4874 20,2994 174,6267 20,1943 21,2371 179,1735 19,5832 21,2369 

Trailer 168,8631 22,0243 21,5876 168,5988 22,7112 24,1533 172,1153 22,6116 24,9774 

Strawberries 166,4015 20,8136 20,889 169,3823 19,8732 21,8981 172,7733 19,8393 21,7585 
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Table 6. PSNR values after the removal of Gaussian Noise (M=0, Var=0.01) (MGWO) 

 

Image Average 

Time(s) 

MGWO Weiner 

 

Average 

Time(s)  

MGWO  Weiner 

 

Average 

Time(s)  

MGWO  Weiner 

 

 N=3 N=5 N=7 

Fabric 133,3652 22,6776 25,8779 134,4606 21,6243 25,1912 136,4701 19,4578 23,362 

Kobi 288,3694 26,2327 27,5357 293,6421 26,244 30,0932 322,5773 25,1201 30,0738 

Lighthouse 139,8766 24,7474 26,9555 142,8566 25,6874 27,4555 143,6178 23,8591 27,4668 

Onion 107,0948 24,75 27,0587 107,2631 24,2276 27,9538 107,464 23,1005 27,2461 

Pears 143,6635 21,9508 27,2781 147,5703 20,9467 29,8432 149,3868 19,5866 30,3448 

Gantrycrane 113,7784 22,7629 26,0213 114,512 20,0646 25,9625 115,3446 20,1667 24,9561 

Yellowlily 333,843 25,7258 27,4097 318,723 24,463 29,2498 336,0282 24,6897 29,524 

Wagon 177,3223 23,157 24,0509 174,0743 23,0607 23,7366 185,0308 21,8754 23,2344 

Trailer 171,6666 25,5616 27,0794 169,0148 26,2144 28,8791 173,2772 25,1057 28,8947 

Strawberries 177,9264 24,3379 25,8475 182,3927 24,1923 25,3363 191,8655 22,552 24,3491 

 

 

Table 7. PSNR values after the removal of Gaussian Noise (M=0, Var=0.02) (MGWO) 

 

Image Average 

Time(s) 

MGWO Weiner 

 

Average 

Time(s) 

MGWO  Weiner 

 

Average 

Time(s)  

MGWO  Weiner 

 

 N=3 N=5 N=7 

Fabric 133,45 20,3007 23,696 134,6831 21,1478 23,9249 136,597 19,3403 22,5441 

Kobi 295,4934 24,3013 24,6551 334,0922 24,4338 27,5731 376,6728 24,3988 28,1636 

Lighthouse 140,5744 22,8819 24,1728 142,5427 22,0226 25,6766 144,0474 22,0154 25,6406 

Onion 107,0126 22,6813 24,2554 106,9324 23,1963 25,7296 107,7687 21,3641 25,6027 

Pears 144,8482 21,8551 24,4463 146,7596 21,2223 27,5098 149,0278 20,6226 28,5555 

Gantrycrane 114,004 21,2233 23,6167 114,6656 21,3793 24,2452 116,2253 19,7314 23,6059 

Yellowlily 350,425 23,9279 24,4156 361,9068 23,1757 26,1778 368,8394 22,3431 26,6175 

Wagon 177,8133 21,2786 22,3173 175,8125 21,5711 22,646 178,861 20,718 22,3642 

Trailer 167,1213 23,9916 24,2887 169,4697 24,2387 26,6225 173,2695 24,5011 27,1351 

Strawberries 185,0589 22,6067 23,4377 188,0555 21,3388 23,8174 195,7107 20,7909 23,255 

 

 

 

 

 

 

 

Table 8. PSNR values after the removal of Gaussian Noise (M=0.1, Var=0.02) (MGWO) 

 

Image Average 

Time(s) 

MGWO Weiner 

 

Average 

Time(s) 

MGWO  Weiner 

 

Average 

Time(s) 

MGWO  Weiner 

 

 N=3 N=5 N=7 

Fabric 133,2294 17,3245 18,5583 134,5593 17,1341 18,6386 136,448 17,4353 18,1771 

Kobi 346,6606 21,8546 19,4585 364,4716 22,9807 20,1146 375,2674 23,2187 20,2248 

Lighthouse 141,0673 19,0155 19,7162 144,0296 19,4059 20,1787 143,1814 20,1272 20,1919 

Onion 107,1561 18,7679 18,8256 107,2315 19,263 19,3507 107,8479 19,1781 19,4238 

Pears 144,9998 19,0738 18,9481 146,9665 19,5018 19,5947 149,3479 19,2801 19,7651 

Gantrycrane 113,4972 18,268 18,7959 120,0271 18,9685 19,0164 124,0573 17,8454 18,8682 

Yellowlily 346,5991 18,2467 18,5554 354,6791 17,9728 19,0699 330,526 17,5983 19,1945 

Wagon 173,068 18,8002 18,661 175,3768 19,4151 18,8029 179,5636 18,1616 18,6961 

Trailer 166,8805 20,3935 19,2181 178,0588 22,0685 19,7794 194,273 22,0921 19,8665 

Strawberries 188,1755 18,4277 18,6363 186,4083 18,9737 18,7938 191,2795 18,8412 18,6212 

 



977 

 

 

Table 9. PSNR values after the removal of Gaussian Noise (M=0, Var=0.04) (MGWO) 

 

Image Average 

Time(s) 

MGWO Weiner 

 

Average 

Time(s)  

MGWO  Weiner 

 

Average 

Time(s) 

MGWO  Weiner 

 

 N=3 N=5 N=7 

Fabric 133,763 19,7531 21,2637 135,0499 19,9751 22,3087 136,937 18,4578 21,4928 

Kobi 343,7036 22,6018 21,8776 357,6147 23,164 24,8571 362,3382 22,2236 25,8095 

Lighthouse 137,9777 20,7075 21,3775 143,1658 21,3829 23,1336 144,8573 19,2344 23,423 

Onion 106,7463 21,2299 21,4491 107,4155 20,3476 23,4280 107,3432 20,5665 23,423 

Pears 145,0422 21,047 21,7544 146,534 20,4281 25,0326 148,2611 20,0933 26,3948 

Gantrycrane 125,0575 19,4684 21,0967 117,9371 19,5383 22,2393 119,9955 18,4053 22,0245 

Yellowlily 314,4412 21,1556 21,3703 315,3832 21,2302 23,0558 330,7387 20,6115 23,5309 

Wagon 173,3476 19,4402 20,3103 181,2612 20,1373 21,2407 182,1381 19,4515 21,2262 

Trailer 185,0538 21,2512 21,5839 188,3792 22,8752 24,1556 185,3137 23,3709 24,9662 

Strawberries 185,5828 20,8149 20,8902 188,2174 19,9501 21,8918 191,9452 20,6462 21,7458 

 

 

Table 10. PSNR values after the removal of Gaussian Noise (M=0, Var=0.01) (GA) 

 

Image Average 

Time(s) 

GA Weiner 

 

Average 

Time(s)  

GA Weiner 

 

Average 

Time(s)  

GA Weiner 

 

 N=3 N=5 N=7 

Fabric 41,4988 21,4671 25,8714 42,8663 17,6124 25,1866 42,9729 17,2521 23,3811 

Kobi 261,3749 24,8927 27,5251 261,8328 24,4208 30,0871 287,8099 22,2683 30,0853 

Lighthouse 47,0023 23,08 26,9857 48,7433 21,0321 27,849 49,7034 19,9094 27,4467 

Onion 9,4753 23,638 27,0099 9,1977 21,5099 28,0011 10,3619 19,9583 27,2224 

Pears 45,7399 21,3022 27,2736 40,1252 20,0464 29,8482 50,1232 19,593 30,3355 

Gantrycrane 21,8319 20,9673 26,0305 22,2179 18,4006 25,9485 15,9433 16,3008 24,9619 

Yellowlily 283,8835 26,0409 27,4203 299,4907 24,777 29,2569 322,1625 23,0057 29,519 

Wagon 104,6458 22,7733 24,0528 97,8151 20,0146 23,7497 126,7426 18,5334 23,2392 

Trailer 68,0519 25,0693 27,0802 68,9768 24,6449 28,8666 72,7132 22,7121 28,8871 

Strawberries 66,7125 23,452 25,8352 68,4861 20,2545 25,3404 71,4942 19,4331 24,3452 

 

 

 

 

 

 

 

Table 11. PSNR values after the removal of Gaussian Noise (M=0, Var=0.02) (GA) 

 

Image Average 

Time(s) 

GA Weiner 

 

Average 

Time(s)  

GA Weiner 

 

Average 

Time(s) 

GA Weiner 

 

 N=3 N=5 N=7 

Fabric 41,7937 19,8628 23,6755 41,4299 18,3043 23,9356 43,8131 17,0635 22,5511 

Kobi 240,5879 23,5142 24,6563 253,5413 23,8201 27,5652 271,4847 22,4243 28,1646 

Lighthouse 41,5229 22,4101 24,1849 46,1619 21,2402 25,6808 44,6024 20,1455 25,6775 

Onion 9,3217 22,141 24,2179 11,3989 21,061 25,8049 11,7957 19,1099 25,5983 

Pears 47,9712 20,9853 24,4465 48,5342 20,3401 27,4976 55,5888 19,812 28,5856 

Gantrycrane 21,0333 20,3751 23,6024 15,7716 17,2587 24,2391 16,0895 15,28 23,599 

Yellowlily 305,4893 23,373 24,4123 307,9756 22,9819 26,1868 326,069 21,9797 26,625 

Wagon 127,2575 20,9927 22,3277 77,2082 19,6099 22,652 78,2904 18,4278 22,366 

Trailer 55,9851 23,5533 24,2892 69,3534 23,8387 26,6478 73,5194 22,9182 27,1478 

Strawberries 66,7316 22,206 23,4273 68,8344 20,706 23,8321 70,8182 18,8052 23,2586 
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Table 12. PSNR values after the removal of Gaussian Noise (M=0.1, Var=0.02) (GA) 

 

Image Average 

Time(s) 

GA Weiner 

 

Average 

Time(s)  

GA Weiner 

 

Average 

Time(s)  

GA Weiner 

 

 N=3 N=5 N=7 

Fabric 41,527 16,2775 18,5418 42,3557 15,762 18,6318 47,0664 15,1826 18,1754 

Kobi 252,8218 20,1933 19,473 253,7768 19,5916 20,1008 245,1399 19,5916 20,1008 

Lighthouse 45,9429 19,168 19,703 43,4029 18,9023 20,178 40,3719 18,0881 20,2030 

Onion 9,1657 18,813 18,8205 9,137 18,8955 19,402 9,473 17,2161 19,448 

Pears 57,936 17,9701 18,917 67,6669 17,5462 19,5972 61,6646 16,8875 19,7775 

Gantrycrane 15,2802 16,6257 18,7942 21,825 15,7551 19,0341 22,9933 14,7169 18,8548 

Yellowlily 284,7644 17,8891 18,5502 300,1836 17,7304 19,0693 308,9944 17,1731 19,1888 

Wagon 73,889 19,2232 18,6674 75,4003 18,6499 18,7947 78,378 16,8814 18,7003 

Trailer 67,572 20,2523 19,2193 69,3749 21,1818 19,7755 72,118 20,1628 19,8731 

Strawberries 67,0096 18,2843 18,6351 69,2872 17,5227 18,8007 71,6449 16,5254 18,6127 

 

 

Table 13. PSNR values after the removal of Gaussian Noise (M=0, Var=0.04) (GA) 

 

Image Average 

Time(s) 

GA Weiner 

 

Average 

Time(s)  

GA Weiner 

 

Average 

Time(s) 

GA Weiner 

 

 N=3 N=5 N=7 

Fabric 45,633 19,6431 21,2819 47,5375 17,911 22,3492 52,6115 16,0481 21,4589 

Kobi 233,8753 21,3802 21,8714 266,5404 22,5575 24,8577 291,5235 21,6254 25,8223 

Lighthouse 43,3984 20,967 21,4038 46,1647 20,4508 23,1113 47,0753 19,4435 23,4361 

Onion 11,3878 18,8422 21,4998 9,0669 20,602 23,2443 11,6438 19,4913 23,5637 

Pears 58,2026 21,5982 21,7264 61,7265 20,6919 25,0071 41,3623 20,0131 26,4396 

Gantrycrane 22,0066 19,4617 21,1299 15,3294 17,0795 22,3126 16,0595 15,7672 22,0571 

Yellowlily 272,4333 20,164 21,3724 299,5036 20,9121 23,0406 312,6632 19,7259 23,5433 

Wagon 74,1945 19,7784 20,3144 76,0623 19,112 21,2304 79,7701 18,3017 21,2455 

Trailer 67,959 21,5114 21,5812 69,4109 22,4146 24,1510 73,176 21,3379 24,97 

Strawberries 67,8407 19,6057 20,8827 69,1379 19,4629 21,907 71,6522 19,0708 21,7321 

 

 

 

 

 

 

 

VI. CONCLUSION 

 

In this study,  image denoising with Nature-Inspired Algorithms has been implemented. With this aim 

ten images have been selected and Gaussian noise with some mean and standart deviation has been 

added to the images. These noisy images have been used for denoising process. Denosing process has 

been realized with Weiner filtering, and GWO, MGWO and GA. Filter coefficents have been trained 

with GWO,MGWO and GA for N=3,5 and 7 square filter size. Results have been compared. According 

to the PSNR values, Weiner and MGWO have most succesfull results. After Weiner and MGWO, GWO 

is the third and GA has the worst results. As it can be seen from the tables, MGWO has better results 

for some images from Weiner. But MGWO needs some adaptation. If we adapt MGWO for image 

denoising for different type of images, results can be better.  
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