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Linear penalized spline model estimation using
ranked set sampling technique
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Abstract

Bene�ts of using Ranked Set Sampling (RSS) rather than Simple Ran-
dom Sampling (SRS) are indeed signi�cant when estimating population
mean or estimating linear models. Signi�cance of this sampling method
clearly appears since it can increase e�ciency of the estimated param-
eters and decrease sampling costs. This paper investigates and intro-
duces RSS method to �t spline and penalized spline models parametri-
cally. It shows that the estimated parameters using RSS are more e�-
cient than the estimated parameters using SRS for both spline and pe-
nalized spline models. The superiority of RSS approach is demonstrated
using a simulation study as well as the �Air Pollution�environmental
real data study. The approach in this paper can be illustrated for gen-
eral smoothing spline models; for example B-spline,Radial spline etc,
straightforwardly.
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1. Introduction

Recent linear regression researches concern, with much attention, on �tting approaches
that can accommodate data sets adequately as well as show the �tted model in a smooth
fashion. A most popular regression approach, which will be discussed in this paper, is
spline models. This model approach can accommodate the underlying trends of the data,
which in some cases are curvilinear, in a linear regression model. It consists of piecewise
lines that join at �knots�which gives a precise data representation than a single straight
regression line. Furthermore, the piecewise lines with much rough can be penalized to
appear smooth.
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Spline models although play a central role in regression because their computational
properties and ability to gain appropriate �t, [7]. At early stages of their improvement,
researchers developed spline models to scatter plot smoothing (e.g. [9]). They treated
spline model as polynomial that can be improved in frame of knot selection (e.g. [25])
and basis functions (e.g. [10]). Introducing spline models to multivariate regression (e.g.
[11]), nonparametric regression (e.g.[9]) and Bayesian models (e.g. [6]) took a wide range
of interest in the literature. [21] made a considerable comparison between spline models.

Availability of various sampling methods challenge researchers to investigate appropri-
ateness of these methods to gain better model estimates. A classical sampling method to
�t spline models considers Simple Random Sampling (SRS) when selecting units. How-
ever, since it is practically more e�cient, Ranked Set Sampling (RSS) has an increasing
popularity when estimating regression models, [23]. This is because it can minimize sam-
pling costs and furthermore, it can improve e�ciency of the estimated parameters in the
underlying model, [22].

[15], who �rstly introduced RSS method, used it to estimate the population mean
of yields in some �elds. [19] provided the mathematical theory of this method. They
proved that the estimated mean using RSS method is an unbiased estimator to the
population mean as well as has less variance than usual SRS estimated mean. The recent
monograph by [23] summarized all research linked to RSS method until that date. He
presented the dramatic increase of using RSS method in di�erent statistical �elds (e.g.
estimation, statistical testing, regression etc) as well as its practical e�ciency in various
research �elds (e.g. environment, health science, epidemiology, agriculture etc). The
RSS procedure was introduced to regression by [24] and [2]. By comparing the estimated
model, researchers found the new estimated parameters using RSS had less variance
than the estimated parameters using SRS, i.e. more e�cient. This paper improves spline
model �tting by using RSS as an alternative procedure to SRS. It improves parameter
estimation because RSS decrease estimators' variances.

A simple spline model for n data points (x1, y1), (x2, y2), ..., (xn, yn) that have been
selected by SRS method, can be expressed as follows

(1.1) yi = β0 + β1xi +

q∑
j=1

β2j(xi −Kj)+ + ei; i = 1, . . . , n.

where y is the response variable, x is the predictor variable, β0, β1, β2j are the model
coe�cients, e is the error term and Kj are the model knots where q is number of knots.
The mathematical expression (a)+ means the non-negative part of a; i.e. max(0, a).
Here we call the term (x − K)+ by a linear spline basis function. Simply we can note
that the spline model in (1.1) is a linear combination of these spline basis functions
1, x, (x−K1)+, ..., (x−Kq)+.

The set of knots are usually selected from the dense set of the predictor variable. A
possible scenario for the selection method, which will be used in this paper, is equally-
spaced with su�ciently large number of knots. Su�ciently large means, number of knots
is around 35 as in most literature, see for example [14].

Settling the spline model (1.1) in matrix form gives

(1.2) y = Xβ + ε.
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where the design matrices of this model are

y =


y1
y2
...
yn

 ; X =


1 x1 (x1 −K1)+ · · · (x1 −Kq)+
1 x2 (x2 −K1)+ · · · (x2 −Kq)+
...

...
...

. . .
...

1 xn (xn −K1)+ · · · (xn −Kq)+

 ;β =


β0
β1
β21
...
β2q

 ;

and ε =


e1
e2
...
en

 .
A general model assumptions over the random error term ε assume that E(ε) = 0

and Cov(ε) = Σ. During this research we keep the random error term independent of
the predictor variable. Applying the generalized least square method yields the model
�tting

(1.3) ŷ = Xβ̂

where β̂ is the minimizer of the quadratic form

(1.4) ||y −Xβ||2 = (y −Xβ)T(y −Xβ)

with closed solution β̂ = (XTΣ−1X)−1XTΣ−1y. The produced least square estimate is

unbiased ; i.e E(β̂) = β, moreover, its covariance is Cov(β̂) = (XTΣ−1X)−1. Simply, one

can note that the variances of model coe�cients β̂i are Var(β̂i) = [the ith diagonal element
of (XTΣ−1X)−1]. An alternative simple model assumption considers uncorrelated errors
with constant variance such that Cov(ε) = σ2I; I is the identity matrix, which gives the
least square estimate

(1.5) β̂ = (XTX)−1XTy.

Also, this leads the covariance matrix to be Cov(β̂) = σ2(XTX)−1 which simply means
that

(1.6) Var(β̂i) = σ2[the ith diagonal element of (XTX)−1].

Building model inference, as we will see in next sections, needs to estimate σ2. Im-
plementing Sum Square Errors (SSE) is a common approach to produce an unbiased
estimator for σ2 as

σ̂2 =
SSE

n− p =
||y − ŷ||2

n− p(1.7)

where n is the sample size and p is number of terms in the candidate model.
For spline model selection or goodness of �t, Mallows constant Cp is used in this paper

accordingly. The Cp statistic can be attained as

Cp = ||y − ŷ||2 + 2σ̂2p.(1.8)

A considerable improvement can be made to the �tted spline model in (1.2), which
includes piecewise line segments that join at speci�c set of knots, is by handle a smooth
�t. One possible method is by applying the penalized spline approach. [18] built a rich
infrastructure for this model type as a smoothing regression technique. They investigated
this technique under irregularly spaced knots, a basis of truncated power functions and
a ridge penalty for spline coe�cients. While the paper by [8] studied penalized spline
technique under regularly spaced knots, a set of B-spline basis functions and a penalty on
�rst or second order di�erences between neighboring spline coe�cients. A well written
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paper discussed this approach and its theory is by [16]. [17] examined e�ect of number
of knots on the degree of model smoothness. [3] studied asymptotic properties of the
penalized estimators. [1] introduced penalized spline models to marginal models with
application to longitudinal data.

Penalized spline approach mainly depends on avoid data over-�tting. Therefore, and
in ordered to optimize the �tted model, the parameters β2j in (1.2) are constrained to
some conditions. Fortunately, there are quit a few choices for the penalization criteria,
see for example [18]; chapter 3, but the easiest constraint to implement is to choose a
constant C such as Σβ2

2j ≤ C. Then the optimization problem becomes

(1.9) min ||y −Xβ||2 subject to βTDβ ≤ C

where the matrix D is a diagonal such that D = diag {02×2,1q×q} and q is number of
knots in the candidate model.

Solving this minimization problem introduces a penalty term to the equation in (1.4)
to penalize �ts that have much rough and hence, produces a smoother �t. This produces
penalized residual sum of square criterion

(1.10) ||y −Xβ||2 + λ2βTDβ

where λ is a non-negative smoothing parameter. The last term in (1.10) is called the
penalty term.

Minimize (1.10) using penalized generalized least square method attains the following
solution

(1.11) β̂ = (XTΣ−1X + λ2D)−1XTΣ−1y

and therefore, the �tted penalized spline model can be written as ŷ = Sλy where the
�smoothing matrix�Sλ equals X(XTΣ−1X + λ2D)−1XTΣ−1. The covariance matrix
of model coe�cient can be expressed as

(1.12) Cov(β̂) = (XTΣ−1X + λ2D)−1XTΣ−1X(XTΣ−1X + λ2D)−1.

In the penalized spline context, two parameters need to be estimated. The smoothing
parameter λ and the covariance matrix Σ. The smoothing parameter λ is often chosen
by minimizing the generalized cross-validation (GCV), [5], such that

GCV(λ) =
||y − ŷ||2

[1− n−1tr(Sλ)]2
=

n∑
i=1

[
{(I− Sλ)y}i

1− n−1tr(Sλ)

]2
(1.13)

where tr(.) is the trace of a matrix. While the covariance matrix Σ is estimated by
[20]. He proposed an unbiased estimator for the covariance matrix Σ under the simple
assumption which considers Cov(ε) ≡ Σ = σ2I.

The proposed estimator for σ2 can be expressed as follows

(1.14) σ̂2 =
||y − ŷ||2

n− tr(Sλ)
.

This produces the following estimator for the covariance matrix Σ̂ = σ̂2I. Consequently,
the Cp criterion can be calculated after using σ̂2 as

(1.15) Cp = ||y − ŷ||2 + 2σ̂2tr(Sλ).

In the previous method model �tting, we consider SRS method when selecting sam-
pling units. However in this paper, we introduce a RSS method to estimate spline and
penalized spline models. This sampling method, which selects sampling units after spread
them in a proceeding manner, veri�ed its quality in many practical modeling situations,
[23]. In what follows, we describe a RSS method for general statistics and for simple
linear regression in speci�c.
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When the RSS procedure was �rstly established, [15] divided sample units in dis-
tinguished subsamples then each subsample had been ordered in a proceeding manner
separately. Particularly, he selected m simple random subsamples each of size m from
the target population, say {x1, x2, ..., xm}1; {x1, x2, ..., xm}2; ...;
{x1, x2, ..., xm}m. Then he ordered each subsample separately to produce ranked subsets
{x(1), x(2), ..., x(m)}1; {x(1), x(2), ..., x(m)}2;...;{x(1), x(2), ..., x(m)}m. Note that till this
step, no actual quanti�cation has been made for the selected units. Finally, McIntyre
selected and measured the ith smallest unit from the ith subsample, x(i)i. This means
the produced RSS units are: {x(1)1, x(2)2, ..., x(m)m}. This procedure popularly known
in the literature by balanced RSS. Generally, this procedure can be repeated r times,
where each repetition called a cycle, to generate the desired RSS size n = rm, where n
is the SRS sample size.

Essentially, McIntyre's new method is practically e�ective when sampling units are
expensive or hard to measure, however rank few units, without real quanti�cation, is
relatively cheaper. Attain ordering for sampling units can be made by an expert or an
analyst judgment visually or by any other relatively cheap method.

For regression, the RSS procedure can be extended similarly as the above procedure.
Only, we need to note that ordering sample units can be achieved either on the response
or on the predictor variables. In the following example, we consider the case of ordering
the response variable y. Also, and for simple presentation, we assume a simple regression
model (i.e. the model has one predictor variable x). The SRS sample units can be
denoted as (xi, yi); i = 1, 2, · · · , n.

In this example, assume the desired RSS size is m = 3. For this purpose, con-
sider we have the following 3 subsamples each of size 3 pairs: {(x1, y1)1 , (x2, y2)1,
(x3, y3)1},{(x1, y1)2 ,(x2, y2)2, (x3, y3)2} and {(x1, y1)3, (x2, y2)3, (x3, y3)3}. Before mea-
suring any sample unit, order these subsamples separately according to the response vari-
able. Ordering can be performed by any relatively cheap method. Then from the �rst
subsample, choose the �rst minimum-response value linked with the correspondence pre-
dictor value; which can be denoted by (x[1], y(1))1, from the second subsample choose the
second minimum-response pair (x[2], y(2))2 and �nally, from the last subsample choose the
maximum-response pair (x[3], y(3))3. Generally in this research, the pair (x[i], y(i))j means

that ith predictor value x[i] corresponds to the i
th minimum-response value y(i) from the

jth subsample. So, the yielded RSS set of size 3 is {(x[1], y(1))1, (x[2], y(2))2, (x[3], y(3))3}
which can be used to estimate the regression model.

It is important to mention for general applications and in order to achieve compari-
son, we need to increase number of the RSS sampling units to satisfy equality with SRS
sample size. This can be produced if we repeat the above RSS samples r times or cycles,
i.e n = rm, where n is the SRS sample size. Thus, the produced RSS of size 3 can be de-
noted as {(x[1], y(1))1, (x[2], y(2))2, (x[3], y(3))3}1, {(x[1], y(1))1, (x[2], y(2))2, (x[3], y(3))3}2,
..., {(x[1], y(1))1, (x[2], y(2))2, (x[3], y(3))3}r.

Equivalently , the above RSS procedure can be demonstrated when the predictor
variable need to be ranked rather than the response variable.

This paper introduces the above RSS procedure to �t spline and penalized spline
models where ranking the response variable or the predictor variable is achieved over
sampling units. The e�ciency of the new estimators in the spline models are compared
with SRS estimators. Finally, a simulation study as well as a practical example are
illustrated to verify our results. A considerable note should be mentioned here that is,
this paper investigates improvements that can be made for parameters e�ciencies in the
penalized spline models however, the degree of smoothness is not our target.

The next two sections de�ne the RSS procedure, that has been described above, for
spline and penalized spline models in which models' parameters are estimated using
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the new sampling units and the e�ciency for these parameters are compared with SRS
procedure.

2. Spline model estimation using RSS

Demonstrations of RSS procedure to select sample units and �t spline models are
achieved in this section. Firstly, in subsection (2.1), the RSS sampling units are gained
after rank the response variable and illustrated to estimate the spline models. Then, in a
similar fashion, in subsection (2.2), the entire process is applied again however this time
after rank a predictor variable. Evaluation of the RSS method is made with comparing
to SRS as well as after computing Cp goodness of �t criterion. At the end of this section,
we found the new sampling scheme, RSS, achieved better performance than SRS scheme
when �tting spline models.

2.1. Spline models with ranked response variable. Mainly in this subsection,
spline model �tting is achieved using RSS units after order the response variable. We
illustrated the method described at the end of the introduction to produce the follow-
ing RSS units: {(x[1], y(1))1, (x[2], y(2))2, ..., (x[m], y(m))m}1, {(x[1], y(1))1, (x[2], y(2))2, ...,
(x[m], y(m))m}2, ..., {(x[1], y(1))1, (x[2], y(2))2, ...,(x[m], y(m))m}r where r is number of cy-
cles that RSS need to be repeated to achieve equality n = rm, n is the SRS size. Now,
the produced RSS sample is available to estimate the proposed spline model.

The spline linear model, after implement RSS units, can be written similar to model
(1.1) as follows

(2.1) y(i)j = β∗
0 + β∗

1x[i]j +

q∑
l=1

β∗
2l(x[i]j −Kl)+ + e∗(i)j ; i = 1, . . . ,m; j = 1, . . . , r.

where y(i)j is i
th smallest response unit that has been selected from ith subsample in the

jth cycle , x[i]j is the predictor variable that is associated with y(i)j ; β
∗
0 , β

∗
1 and β∗

2l are
model parameters. Here K1, ...,Kq are model knots; for a suitable number of knots q;
and e(i)j is the random error term. The produced model in matrix entity can be written
as

(2.2) y(RSS) = X[RSS]β
∗ + ε(RSS)

where

y(RSS) =



y(1)1
...

y(m)1

...
y(1)r
...

y(m)r


; X[RSS] =



1 x[1]1 (x[1]1 −K1)+ · · · (x[1]1 −Kq)+
...

...
...

. . .
...

1 x[m]1 (x[m]1 −K1)+ · · · (x[m]1 −Kq)+
...

...
...

. . .
...

1 x[1]r (x[1]r −K1)+ · · · (x[1]r −Kq)+
...

...
...

. . .
...

1 x[m]r (x[m]r −K1)+ · · · (x[m]r −Kq)+


β∗ =

[
β∗
0 β∗

1 β∗
21 · · ·β∗

2q

]T
; ε(RSS) =

[
e∗(1)1 e∗(2)1 · · · e

∗
(m)r

]T
.

Model assumptions assume uncorrelated errors with non-constant variance and zero
mean. Re-writing these assumptions in matrix notation produces

(2.3) E(ε(RSS)) = 0 and

Cov(ε(RSS)) = diag{σ∗2
(1), ..., σ

∗2
(m), ..., σ

∗2
(1), ..., σ

∗2
(m)}mr×mr ≡ Σ∗.

Keeping the non-constant variance assumption in (2.3) needs an appropriate method
to estimate variance components. A popular method to achieve this goal, when the
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likelihood is general, is by using Feasible Generalized Least Square algorithm (FGLS),
[16]. Computer statistical softwares are rich with packages to compute this algorithm.
For example, the package RFGLS in R software is a direct algorithm. If a simple assumption
is proposed by assuming constant variance hence, model assumptions becomes

(2.4) E(ε(RSS)) = 0 and Cov(ε(RSS)) ≡ Σ∗ = σ∗2I.

Using the generalized least square method to minimize ||y(RSS) −X[RSS]β
∗||2 produces

(2.5) β̂
∗

= (XT
[RSS]Σ

∗−1X[RSS])
−1XT

[RSS]Σ
∗−1y(RSS)

where the covariance matrix of these estimated coe�cients is
Cov(β̂

∗
) = (XT

[RSS]Σ
∗−1X[RSS])

−1. This generates the following estimated variance for

the model coe�cient β̂∗
i

(2.6) V̂ar(β̂∗
i ) = [the ith diagonal entry of (XT

[RSS]Σ̂
∗−1X[RSS])

−1]

where Σ̂∗−1 is the estimated covariance matrix. Accordingly, Cp can be calculated similar
to (1.8).

Considerably, the produced estimator β̂
∗
is unbiased estimator for the model parame-

ter β and its covariances satis�es Cov(β̂
∗
) ≤ Cov(β̂) where β̂ is the least square estimate

of β when using SRS as de�ned in (1.5). Proof of the �rst property is straightforward
whilst proof of the second property was attained numerically as seen in the simulation
study Table (1).

To demonstrate improvement of our new procedure, we compute the relative e�ciency
concept using the following de�nition

(2.7) eff(β̂∗
i, β̂i) =

V̂ar(β̂i)

V̂ar(β̂
∗
i )

which can indicate which estimator is better.
The second property with support of Table (1), can show that the �tted spline model

using RSS is more e�cient than the �tted spline models using SRS where, e�(β̂
∗
, β̂) ≥ 1.

2.2. Spline models with ranked predictor. In the same imperative manner that
has been improved in the previous subsection, RSS can be easily extended to �t spline
models where RSS sampling units are produced after order the predictor variable.

Analogous to model (1.1), but this time we order the predictor variable to produce
RSS units, the following spline model is produced

y[i]j = β∗
0 + β∗

1x(i)j +

q∑
l=1

β∗
2l(x(i)j −Kl)+ + e∗[i]j ; i = 1, · · · ,m; j = 1, · · · , r.

where x(i)j is i
th smallest unit of the predictor variable from the ith subsample in the jth

cycle, y[i]j is the response variable that associate with x(i)j ; β
∗
0 , β

∗
1 and β∗

2l are the model
parameters,K1, ...,Kq are the model knots and e∗[i]j is the random error term.

Settle the above model in matrix form produces

(2.8) y[RSS] = X(RSS)β
∗ + ε(RSS).

Matrices of the above model can be de�ned similarly as in model (2.2) with the same
model assumptions.

Minimizing the least square criterion of ||y[RSS] −X(RSS)β
∗||2 gives the solution

(2.9) β̂
∗

= (XT
(RSS)Σ

∗−1X(RSS))
−1XT

(RSS)Σ
∗−1y[RSS].

The covariance matrix for the above estimated coe�cient can be de�ned as follows

(2.10) Cov(β̂
∗
) = (XT

(RSS)Σ
∗−1X(RSS))

−1.
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Importantly, the produced estimator β̂
∗
in 2.9 is unbiased estimator for the model

parameter β and its covariance satis�es Cov(β̂
∗
) ≤ Cov(β̂) where β̂ is the least square

estimate of β when using SRS as de�ned in (1.5). A proof for the second property of
the above estimator was gained numerically as realized from Table (2) in the simulation
study section (4). This proof depends mainly on the de�nition of the relative e�ciency
which is de�ned in (2.7). Another model evaluation principle is Cp criterion which is
de�ned in (1.8) but after introducing the RSS units to the spline model.

The second property with support of Table (2), can show that the �tted spline model
using RSS are more e�cient than ones that �tted using SRS where,

e�(β̂
∗
, β̂) ≥ 1.

3. Penalized spline model estimation using RSS

A more convenient model than simple spline model is smooth spline regression model.
This is because smooth models can �t data appropriately and capture the underlying
relation e�ciently. A speci�c smoothing spline model is penalized spline model which
will be considered in this section. Suppose a general spline model with su�ciently large
number of knots; q, as established in (2.2). Also, suppose the same design matrices as
in (2.2) and the same model assumption as in (2.3). Note that the generated design
matrices consider ranking the response variable.

The least square criterion can �t this model by minimizing the penalized sum of square
errors

(y(RSS) −X[RSS]β
∗∗)T(y(RSS) −X[RSS]β

∗∗) + λ∗2β∗∗TDβ∗∗

with respect to β∗∗ and for some smoothing parameter λ∗. The matrix
D = diag{02×2,1q×q}. The penalized least square method gives the following linear
smoother ŷ(RSS) = Hλ∗y(RSS) where the smoothing matrix is

Hλ∗ = X[RSS](X
T
[RSS]Σ

∗∗−1X[RSS]+λ
∗2D)−1XT

[RSS]Σ
∗∗−1. Consequently, the estimated

model coe�cient matrix can be written in the form

(3.1) β̂
∗∗

= (XT
[RSS]Σ

∗∗−1X[RSS] + λ∗2D)−1XT
[RSS]Σ

∗∗−1y(RSS).

Accordingly, the smoothing parameter λ∗ can be estimated using GCV concepts as de-
�ned in (1.13).

Parallel to (1.12), the covariance matrix of the estimated model coe�cients can be
written as

(3.2) Ĉov(β̂
∗∗

) ≡ M̂SE(β̂
∗∗

) =[
(XT

[RSS]Σ̂
∗∗−1X[RSS] + λ∗2D)−1XT

[RSS]Σ̂
∗∗−1X[RSS](X

T
[RSS]Σ̂

∗∗−1XT
[RSS] + λ∗2D)−1

]
.

where Σ̂∗∗ is the estimated covariance matrix and MSE is Mean Square Error. Also,
the Cp constant can be computed using (1.15).

Substantially, the covariance of generated estimator β̂
∗∗

satis�es Cov(β̂
∗∗

) ≤ Cov(β̂)

where Cov(β̂) is the least square estimate of for Cov(β) when using SRS as de�ned in
(1.5). This property was realized as seen in the simulation study, Table (3). We identi�ed
these variance components using de�nition of the relative e�ciency as in (3.3).

The relative e�ciency of the estimated model coe�cients under RSS scheme, compar-
ing to SRS scheme, can be computed in terms of MSE as

(3.3) eff(β̂∗∗
i , β̂i) =

M̂SE(β̂i)

M̂SE(β̂∗∗
i )
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where M̂SE(β̂∗∗
i ) is the ith diagonal element of the matrix (3.2) when RSS sampling

units are considered in the penalized spline model. Similarly, M̂SE(β̂i) is the estimated
diagonal element of the covariance matrix (1.12) under the SRS penalized spline model.

Demonstration of the RSS method to �t penalized spline models after ordering the
predictor variable is straightforward. To achieve this goal, we follow the steps of this sec-
tion and model construction after providing the design matrices by new RSS units. Model
evaluation conducted by computing the relative e�ciencies of the estimated parameters
which are summarized in Table (4).

Regarding to the above results with support of the simulation study, Table (3) and
Table (4), we can conclude that the �tted penalized spline models using RSS are more

e�cient than ones that �tted using SRS where, e�(β̂
∗∗
, β̂) ≥ 1.

Next section, a simulation study is conducted to show main properties of our new
sampling method that has been discussed in this paper. Tables of the relative e�ciencies
of the model parameters are presented.

4. Simulation study

To illustrate the practical performance of estimating spline and penalized spline models
using RSS scheme, computer arti�cial studies were conducted with the following general
set up. Data sets were generated from the smooth relation: yi = f(xi) + ei, such that
f(x) = 2 sin(x) exp(−x2) and x has Uniform(−2, 2) distribution. The error terms ei
were assumed uncorrelated with 0 mean and 0.122 constant variance. We proposed RSS
samples of size m = 2, 3 and 4 units with speci�c number of cycles r to perform the
relation n = rm, where n is the SRS size. Each yielded RSS sample was used to estimate
a spline model with 3 knots then it was used to estimate a penalized spline model with
the same number of knots.

Our speci�c selection for small number of knots; i.e q = 3, is to enhance comfortable
visibility for the produced tables where each table will only have 5 estimated parameters

β̂∗
0 , β̂

∗
1 , β̂

∗
21, β̂

∗
22 and β̂

∗
23. Despite the small number of knots we used, performance of our

method when we increase number of knots to be large is statistically indistinguishable.
For sake of comparison, the same smoothing model above was used to generate SRS

samples of size n = 4, 6, 9, 12 and 24. The yielded SRS samples were used to estimate
spline and penalized spline models with 3 knots. This small number of knots is to allow
comparison with the simulated RSS that have same number of knots. Last point to
mention that all con�gurations in this simulation study were ran with 10000 replicates.

4.1. Simulated spline models. According to the above simulation arrangements, RSS
samples were produced after ranking the response variable as discussed in subsection
(2.1). Then the generated data sets were used to estimate the spline model in (2.2)
under the proposed assumptions in (2.3) by using (2.5).

To enhance model comparison, the generated SRS samples in the above section (4)
were used to estimate the spline model (1.2) via (1.3).

Outputs of these simulation trails are summarized relative e�ciency of the model

parameters in Table (1). Relative e�ciencies eff(β̂∗
i , β̂i) were computed using (2.7) for

i = 1, 2, 3, 4, 5. These outputs show, with all RSS sizes, that the spline models which
used RSS sampling units are more e�cient than spline models used SRS sampling units.

To show e�ectiveness of extension of the RSS method, samples were generated after
ranking the predictor variable as mentioned in subsection (2.2) to estimate the spline
model. Then the produced RSS samples were used to �t the spline model in (2.8) by
using the estimated parameters in (2.9).
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Table 1. Relative e�ciencies of the RSS spline models comparing to
the SRS spline models when ranking the response variable.

m = 2 m = 3 m = 4
r = 2 r = 3 r = 2 r = 3 r = 3 r = 6

n = 4 n = 6 n = 6 n = 9 n = 12 n = 24

β̂∗
0 1.151 1.107 1.208 1.187 1.482 1.410

β̂∗
1 1.149 1.093 1.208 1.188 1.469 1.396

β̂∗
21 1.150 1.117 1.210 1.176 1.417 1.389

β̂∗
22 1.152 1.153 1.194 1.179 1.431 1.390

β̂∗
23 1.147 1.126 1.211 1.181 1.416 1.397

Table 2. Relative e�ciencies of the RSS spline models comparing to
the SRS spline models when ranking the predictor variable.

m = 2 m = 3 m = 4

r = 2 r = 3 r = 2 r = 3 r = 3 r = 6

n = 4 n = 6 n = 6 n = 9 n = 12 n = 24

β̂∗
0 1.138 1.131 1.196 1.176 1.412 1.378

β̂∗
1 1.137 1.130 1.201 1.180 1.396 1.329

β̂∗
21 1.140 1.129 1.189 1.175 1.402 1.363

β̂∗
22 1.132 1.137 1.193 1.173 1.378 1.337

β̂∗
23 1.139 1.141 1.185 1.182 1.381 1.345

We compared the estimated RSS spline models, after ranking the predictor variable,
with the above SRS spline models. The results for these simulation experiments are
summarized in Table (2).

A general conclusion can be summarized from both Tables (1) and (2) that RSS
method is more e�cient than SRS when it used to �t spline models either the response
variable or the predictor variable was ordered. Also, it can be realized that ranking on
the response variable is more e�cient than ranking on the predictor variable. Adding to
this, it can be noted that the e�ciency in all tables increasing with RSS size, m. This
note cab be clari�ed as proved by [19] where the upper bound of the e�ciency is m+1

2

which is increasing as m increasing.

4.2. Simulated penalized spline models. In the previous subsection (4.1), we �tted
the spline regression models using RSS approach however, in this section, we illustrated
our method to penalized spline models. By returning to the above simulation con�gu-
rations in section (4), simulated RSS samples were generated after ranking the response
variable. The same model and assumptions as in subsection (4.1) were considered where,
however, estimates in (3.1) were used to produce smooth model �tting. Variance com-
ponents were estimated using (3.2).

To make the comparison applicable, we generated SRS samples as discussed in sec-
tion (4) and then the produced samples were used to �t penalized spline models. This
smooth model �tting was achieved using (1.11). Results of these simulation experiments
are summarized in Table (3) where relative e�ciencies of model parameters are given.

Relative e�ciencies eff(β̂∗∗
i , β̂i) were computed using (3.3).

To present a further advantage of the RSS method, samples were simulated after rank-
ing the predictor variable as discussed at the end of section (3). Then, the generated data
were settled in the design matrices and fed into model (2.8). The penalized spline model,
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Table 3. Relative e�ciencies of the RSS penalized spline models com-
paring to the SRS spline models when ranking the response variable.

m = 2 m = 3 m = 4
r = 2 r = 3 r = 2 r = 3 r = 3 r = 6

n = 4 n = 6 n = 6 n = 9 n = 12 n = 24

β̂∗
0 1.145 1.113 1.313 1.263 1.401 1.399

β̂∗
1 1.171 1.107 1.296 1.217 1.418 1.371

β̂∗
21 1.190 1.116 1.308 1.219 1.398 1.400

β̂∗
22 1.186 1.125 1.271 1.231 1.413 1.385

β̂∗
23 1.192 1.131 1.259 1.205 1.418 1.412

Table 4. Relative e�ciencies of the RSS penalized spline models com-
paring to the SRS spline models when ranking the predictor variable.

m = 2 m = 3 m = 4
r = 2 r = 3 r = 2 r = 3 r = 3 r = 6

n = 4 n = 6 n = 6 n = 9 n = 12 n = 24

β̂∗
0 1.168 1.137 1.203 1.135 1.481 1.412

β̂∗
1 1.157 1.128 1.196 1.112 1.426 1.408

β̂∗
21 1.183 1.117 1.173 1.117 1.398 1.391

β̂∗
22 1.171 1.129 1.190 1.125 1.401 1.400

β̂∗
23 1.176 1.133 1.199 1.131 1.417 1.397

with the same assumption, were estimated using (3.1) using the new design matrices.
Covariance matrix was computed using (3.2). We compared these estimated penalized
spline models (i.e models after ranking the predictor variable) with above SRS penalized
spline models. Results of these simulation trails are summarized in Table (4).

A superior and general result, according to both tables (3) & (4), that is RSS method
increased the competency of the selected sampling units to capture the underlying spline
and penalized spline �ttings. This is clearly shown by the computed e�ciencies of the
method. Also, it can be noti�ed that ranking on the response variable is more e�cient
(in most cases) than ranking on the predictor variable. Additionally, it can be seen that
the e�ciency increased as the RSS size, m, increased which matches with the results in
the previous section.

Finally, we run a small simulation study to compare penalized spline models under
RSS and SRS methods in term of bias. The model in (1.1) was used to generate data with
3 knots. We propose the SRS size n = 45 and RSS size m = 5 which means that number
of cycles is r = 9. To implement RSS methodology, a ranking mechanism was applied to
order the predictor variable. After estimate penalized spline model under two sampling
approaches, we summarized the results in table (5). As seen in this table, bias is higher
in penalized spline SRS model estimators than penalized spline RSS model estimators.

5. Practical study

To illustrate the method that has been improved in this paper to real life applications,
the environment study �Air Pollution�data set was used in this section. The data set
shows daily readings of air quality components in New York city from May 1, 1973 to
September 30, 1973. The data set have 154 observations with 6 variables. More details
about this study can be found in [4]. Our investigations on this study is mainly to show
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Table 5. Bias of the estimated parameters in penalized spline models
under RSS and SRS methods. Ordering observations were achieved on
the response variable.

m = 5 r = 9 n = 45
Parameter Exact value Bias under RSS Bias under SRS

β0 1 0.0759 0.1102
β1 2 0.0583 0.0901
β21 1 0.0843 0.1273
β22 1.5 0.0861 0.1165
β23 2 0.0533 0.0971

e�ciency of using RSS when �tting spline and penalized spline models. We studied two
variables of this study which are Ozone (which represent the mean ozone parts per billion
from 1300 to 1500 hours) as the response variable and Solar Radiation (which represent
solar radiation in Langleys in the frequency band 4000-7700 Angstroms from 0800 to
1200 hours) as the predictor variable. The transformation Ozone(1/3) was considered in
this paper.

Using set size m = 3, RSS samples were drawn from the Air Pollution data set with
r = 8 cycles. In the �rst step, we ranked sample units with respect to the response vari-
able to estimate the underlying relationship using spline and penalized spline estimates.
Later on, we ranked sampling units with respect to the predictor variable to estimate
appropriate spline and penalized spline models. And for the purpose of comparison, we
selected a SRS of size n = 24 and then we estimated spline and penalized spline models
as regular.

A note to mention here is that variables of the study were ranked based on exactly
measured values. This method of ranking called �perfect ranking�. We used this method
because observations of this example were already measured. However, practically, the
interesting attribute of RSS method is to use a relatively cheap ranking method to order
subsamples then measure a few units of these subsamples which reduces sampling costs.

In all above models, we considered number of knots q = 2 and we chose optimal
value of the smoothing parameter using GCV approach. Table (6) shows the relative
e�ciencies of the estimated spline and penalized spline models by using RSS sample
units when ordering the response variable. While to enhance visual evaluation of our
�tting models, we plot these estimated models as shown in Figure (1).

Table (7) presents the relative e�ciencies of the estimated spline and penalized spline
models when ordering the predictor variable. As seen in tables of this practical study,
both spline and penalized spline models that were �tted using RSS method are more
e�cient than models that were �tted using SRS method. Adding to this, by comparing
Cp plots of the estimated models is looking superior where the small Cp the better model.

6. Conclusion

The main conclusion drawn from this research is that the RSS methodology is more
e�cient when its sampling units were used to �t penalized spline models. The improve-
ment of using our method is illustrated through parameters e�ciencies which is clearly
shown in all tables of the simulation study as well as outputs of the practical study. In
spite of this paper presented better performance in estimating penalized spline models,
we are not improving degree of smoothness of the targeted model. This is because we
are keen about minimizing MSE of model coe�cients.
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Table 6. Relative e�ciencies of the RSS models comparing to the SRS
models of the practical example. Ordering observations were achieved
on the response variable. CpRSS is the Mallow constant computed for
the RSS estimated models and CpSRS is the Mallow constant computed
for the SRS estimated models.

m = 3 r = 8 n = 24

spline model penalized spline model

β̂∗
0 1.273 β̂∗∗

0 1.289

β̂∗
1 1.256 β̂∗∗

1 1.293

β̂∗
21 1.251 β̂∗∗

21 1.272

β̂∗
22 1.244 β̂∗∗

22 1.286
CpRSS 15.23 CpRSS 15.01
CpSRS 16.83 CpSRS 16.03
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Figure 1. Estimated models for �Air Pollution�data set via RSS
method when ranking the response variable.

In real data applications where sampling units are di�cult or expensive to measure,
another advantage can be appeared for this sampling method that is cost e�cient at-
tribute. This means, ranking a small number of units, before measuring a subset, can
reduce time and sampling expenditure. Another practical point of view when ranking
sampling units, analyst can consider a negligibly cost variable to achieve ranking, so he
can select either the response or the predictor variable which is cheaper. Also, he can
select the cheapest predictor variable to rank among all other expensive predictors.
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Table 7. Relative e�ciencies of the RSS models comparing to the SRS
models of the practical example. Ordering observations were achieved
on the predictor variable. CpRSS is the Mallow constant computed for
the RSS estimated models and CpSRS is the Mallow constant computed
for the SRS estimated models.

m = 3 r = 8 n = 24

spline model penalized spline model

β̂∗
0 1.199 β̂∗∗

0 1.205

β̂∗
1 1.192 β̂∗∗

1 1.211

β̂∗
21 1.201 β̂∗∗

21 1.196

β̂∗
22 1.195 β̂∗∗

22 1.213
CpRSS 15.23 CpRSS 15.10
CpSRS 16.93 CpSRS 16.33

This paper establishes a paradigm for future research under general linear model
scenarios. Applying RSS procedure to other spline models like B-spline, natural cubic
spline etc., to produce smooth regression models can be extended in the same simple
manner. [18], Chapter 3, summarized these spline models which can prepare for general
setup to use RSS method. Moreover, statistical inferences for our improved models can
be investigated.

Also, and because the penalized spline RSS estimators are biased, further research can
investigate bias reduction procedures. A possible scenario can improve methods discussed
in [13]. The authors improved two weighting methods that can reduce estimators bias of
the least square estimates. One method by using probability and the second is to smooth
the weights. They also extended their method to pseudo maximum likelihood estimation
for generalized linear models.
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