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1 Introduction and Problem Description
It is very well known the importance of convexity in optimization theory. But, the concept
of convexity does no longer suffice for many mathematical models coming from engi-
neering, economics, decision sciences, mechanics. Consequently, Hanson [6] introduced
a significant generalization of convexity, called invexity. A generalization of invexity is
the notion of preinvexity, introduced by Weir and Mond [29]. In this regard, more con-
tributions and various approaches refer, for instance, to Jeyakumar [8], Arana-Jiménez et
al. [4], Noor and Noor [12], Tang and Yang [18], Antczak [3], Mititelu and Treanţă [10],
Treanţă [26, 27]. Moreover, a generalization of convexity on manifolds has been proposed
by Udrişte [28] and Rapcsák [16]. Also, Pini [13] introduced the notion of invex function
on Riemannian manifolds. Other approaches have been well documented in Barani and
Pouryayevali [2], Agarwal et al. [1] and Treanţă and Arana-Jiménez [25].

In this paper, the goal is to establish some new results, associated with the nonlinear
optimization theory on higher-order jet bundles, which extend and further develop some
results obtained in previous works, such as Jagannathan [7], Tanino and Sawaragi [19],
Mond and Husain [11], Weir and Mond [30], Preda [14, 15], Liang et al. [9], Chinchu-
luun and Pardalos [5], Treanţă and Udrişte [20] and Treanţă [21, 22, 23, 24]. This work
comes as a natural continuation of a recent paper, Treanţă [23], where a study on nec-
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essary efficiency conditions associated to (MFP) is introduced. Due to their physical
meaning (mechanical work), the curvilinear integral cost functionals become very impor-
tant in applications. In physical terms, we are given a number of p sources (producing
mechanical work) which have to be minimized on a set of limited resources (namely, the
set of feasible solutions). More concretely, in this paper, we are looking for sufficient effi-
ciency conditions in the following multidimensional multiobjective fractional variational
problem

(MFP ) min
x(·)

(
F 1 (x(·))
W 1 (x(·))

,
F 2 (x(·))
W 2 (x(·))

, ...,
F r (x(·))
W r (x(·))

)
subject to x (·) ∈ F (Ωt0,t1),

where the mathematical tools used are given briefly below (for more details, see Treanţă
[23]):
• the path-independent curvilinear integral functionals

F l (x(·)) :=

∫
Γt0,t1

f lβ

(
χxα1...αs−1

(t)
)
dtβ, l = 1, r, β = 1,m,

W l (x(·)) :=

∫
Γt0,t1

wlβ

(
χxα1...αs−1

(t)
)
dtβ > 0, l = 1, r, β = 1,m,

generated by the (higher-order) closed Lagrange 1-form densities of C∞-class

fβ =
(
f lβ
)

: Js−1(T,M)→ Rr, l = 1, r, β = 1,m,

wβ =
(
wlβ
)

: Js−1(T,M)→ Rr, l = 1, r, β = 1,m;

• the notations

χxα1...αs−1
(t) :=

(
t, x(t), xα1(t), ..., xα1α2...αs−1(t)

)
, t ∈ Ωt0,t1 ,

with xα1(t) :=
∂x

∂tα1
(t), ..., xα1α2...αs−1(t) :=

∂s−1x

∂tα1∂tα2 ...∂tαs−1
(t), and

αj ∈ {1, 2, ...,m}, j = 1, s− 1, x = (x1, ..., xn) =
(
xi
)
, i = 1, n;

• t = (tβ), β = 1,m, and x = (xi), i = 1, n, are the local coordinates on the Rieman-
nian manifolds (T,h) and (M,g), respectively; in addition, M is a complete manifold;
• Γt0,t1 represents a piecewise Cs−1-class curve joining the diagonally opposite points

t0 =
(
t10, ..., t

m
0

)
and t1 =

(
t11, ..., t

m
1

)
of the hyper-parallelepiped Ωt0,t1 ⊂ Rm;

• throughout this work, there are used the customary relations between two vectors of
the same dimension;
• the set F (Ωt0,t1) of all feasible solutions in (MFP) is

x ∈ C∞ (Ωt0,t1 ,M) , g
(
χxα1...αs−1

(t)
)
≤ 0, h

(
χxα1...αs−1

(t)
)

= 0, t ∈ Ωt0,t1

x(tξ) = xξ, xα1...αj(tξ) = x̃α1...αjξ, αζ ∈ {1, ...,m}, ζ, j = 1, s− 2, ξ ∈ {0, 1},
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where
g
(
χxα1...αs−1

(t)
)
≤ 0, h

(
χxα1...αs−1

(t)
)

= 0, t ∈ Ωt0,t1 ,

are partial differential inequations (PDIs), respectively partial differential equations (PDEs)
of evolution, generated by the C∞-class Lagrange matrix densities

g =
(
gba
)

: Js−1(T,M)→ Rpq, a = 1, q, b = 1, p, p < n,

h =
(
hba
)

: Js−1(T,M)→ Rde, a = 1, e, b = 1, d, d < n,

and
C∞ (Ωt0,t1 ,M) := {x: Ωt0,t1 →M ; x of C∞ − class}

is equipped with the distance

d
(
x, x0

)
= d

(
x(·), x0(·)

)
= sup

t∈Ω
dg
(
x(t), x0(t)

)
,

where dg
(
x(t), x0(t)

)
is geodesic distance in (M,g).

Also, in this paper, we shall use the multi-index notation (see Saunders [17]). Saunders
defines a multi-index as an m-tuple I of natural numbers. Its components are denoted
I(α), where α is an ordinary index, 1 ≤ α ≤ m. For instance, the multi-index 1α is
defined as follows: 1α(α) = 1, 1α(β) = 0 for α 6= β. Define on components the addition
and the substraction of the multi-indexes (although the result of a substraction might not
be a multi-index): (I ± J)(α) = I(α) ± J(α). We call the length of a multi-index the

following number | I |=
m∑
α=1

I(α), and its factorial is I! =
m∏
α=1

(I(α))!. The number of

distinct indices represented by {α1, α2, ..., αk}, αj ∈ {1, 2, ...,m}, j = 1, k, is

n(α1, α2, ..., αk) :=
| 1α1 + 1α2 + ...+ 1αk |!
(1α1 + 1α2 + ...+ 1αk)!

.

2 Preliminaries
To make complete our presentation, we recall and introduce some definitions and prelim-
inary results.

Definition 1 A feasible solution x0(·) ∈ F (Ωt0,t1) of the problem (MFP) is called efficient
solution if there exists no other feasible solution x(·) ∈ F (Ωt0,t1) such that K (x(·)) �
K
(
x0(·)

)
, where

K (x(·)) :=


∫

Γt0,t1

f 1
β

(
χxα1...αs−1

(t)
)
dtβ∫

Γt0,t1

w1
β

(
χxα1...αs−1

(t)
)
dtβ

, ...,

∫
Γt0,t1

f rβ

(
χxα1...αs−1

(t)
)
dtβ∫

Γt0,t1

wrβ

(
χxα1...αs−1

(t)
)
dtβ

 .

3
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In Treanţă [23], the following result is proved: if x0(·) ∈ F (Ωt0,t1) is [normal] efficient
solution of the problem (MFP), then there exist the multipliers λ ∈ Rr, µ and ν such that
the following conditions are fulfilled:

r∑
c=1

λc

[
∂f cβ
∂x

(
χx0α1...αs−1

(t)
)
−Rc

0

∂wcβ
∂x

(
χx0α1...αs−1

(t)
)]

(1)

+µβ(t)
∂g

∂x

(
χx0α1...αs−1

(t)
)

+ νβ(t)
∂h

∂x

(
χx0α1...αs−1

(t)
)

− Dα1

{
r∑
c=1

λc

[
∂f cβ
∂xα1

(
χx0α1...αs−1

(t)
)
−Rc

0

∂wcβ
∂xα1

(
χx0α1...αs−1

(t)
)]}

− Dα1

{
µβ(t)

∂g

∂xα1

(
χx0α1...αs−1

(t)
)

+ νβ(t)
∂h

∂xα1

(
χx0α1...αs−1

(t)
)}

+...+ (−1)s−1 1

n(α1, ..., αs−1)
Ds−1
α1...αs−1

{
r∑
c=1

λc
∂f cβ

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)}

+(−1)s
1

n(α1, ..., αs−1)
Ds−1
α1...αs−1

{
r∑
c=1

λcR
c
0

∂wcβ
∂xα1...αs−1

(
χx0α1...αs−1

(t)
)}

+(−1)s−1 1

n(α1, ..., αs−1)
Ds−1
α1...αs−1

{
µβ(t)

∂g

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)}

+(−1)s−1 1

n(α1, ..., αs−1)
Ds−1
α1...αs−1

{
νβ(t)

∂h

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)}

= 0

(higher − order Euler − Lagrange PDEs), β = 1,m

µβ(t)g
(
χx0α1...αs−1

(t)
)

= 0, µβ(t) ≥ 0, t ∈ Ωt0,t1 , β = 1,m

λ ≥ 0, etλ = 1, et := (1, 1, ..., 1) ∈ Rr.

Further, we shall introduce a generalized (ρ, b)-quasiinvexity associated with the afore-
mentioned optimization problem involving path-independent curvilinear integral func-
tionals. The concept of (ρ, b)-quasiinvexity, associated with simple integral functionals,
was also used in recent works for the study of some multiobjective variational problems
(see Treanţă [20, 22]).

Let ρ be a real number and b: [C∞ (Ωt0,t1 ,M)]2s → [0,∞) a functional. In the follow-
ing, we consider the notations:

b
(
x(·), xα1(·), . . . , xα1...αs−1(·), x0(·), x0

α1
(·), . . . , x0

α1...αs−1
(·)
)

:= bxx0

η
(
t, x(t), xα1(t), . . . , xα1...αs−1(t), x

0(t), x0
α1

(t), . . . , x0
α1...αs−1

(t)
)

:= ηtxx0 , t ∈ Ωt0,t1 .

Also, let a = (aβ) : Js−1(T,M) → Rm be a closed Lagrange 1-form that determines the
following path-independent curvilinear integral functional

A(x(t)) =

∫
Γt0,t1

aβ

(
χxα1...αs−1

(t)
)
dtβ.

4



Sufficient Efficiency Conditions

Definition 2 The functional A(x) is [strictly] (ρ, b)-quasiinvex at x0 if there exist the
vector functions η = (η1, ..., ηn), with the property

ηtx0x0 = 0, Dα1ηtx0x0 = 0, · · · , Ds−2
α1...αs−2

ηtx0x0 = 0

αζ ∈ {1, ...,m}, ζ = 1, s− 2, t ∈ Ωt0,t1 ,

and θ: [C∞ (Ωt0,t1 ,M)]2s → Rn such that, for any x [x 6= x0], we have the following
implication: [

A(x) ≤ A(x0)
]

=⇒ [bxx0

∫
Γt0,t1

[
ηtxx0

∂aβ
∂x

(
χx0α1...αs−1

(t)
)

+ (Dα1ηtxx0)
∂aβ
∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+ bxx0

∫
Γt0,t1

[(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)
∂aβ

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

[<] ≤ −ρbxx0 ‖ θxx0 ‖2].

Example 1 Consider

x : [0, 1]→M ⊆ R2, x(t) =
(
x1(t), x2(t)

)
,

a C2-class function defined on the real interval [0, 1]. Let h : [0, 1] ×M → R be a
continuously differentiable function. The following functional of curvilinear integral type

H (x(·)) =

∫ 1

0

h (t, ẍ(t)) dt

is, as it can be verified, (ρ, 1)-quasiinvex, for ρ ≤ 0 and any θ, at x0(·) with respect to

η
(
t, x(t), ẋ(t), ẍ(t), x0(t), ẋ0(t), ẍ0(t)

)
=
(
η1(t, x(t), ẋ(t), ẍ(t), x0(t), ẋ0(t), ẍ0(t)), η2(t, x(t), ẋ(t), ẍ(t), x0(t), ẋ0(t), ẍ0(t))

)
=
(
H (x(·))−H

(
x0(·)

))(
D2 ∂h

∂ẍ1

(
t, ẍ0(t)

)
, D2 ∂h

∂ẍ2

(
t, ẍ0(t)

))
.

The previous example can be easily extended to n-dimensional vector valued functions
and, by using normal coordinates, to the multidimensional case.

3 Main result
The next theorem is the main result of this paper.

Theorem 3.1 (Sufficient efficiency conditions for (MFP)). Let x0(·) ∈ F (Ωt0,t1), λ ∈
Rr, µ and ν satisfying (1). As well, assume that the following hypotheses are fulfilled:

a) the functionals
∫

Γt0,t1

[
f lβ

(
χxα1...αs−1

(t)
)
−Rl

0w
l
β

(
χxα1...αs−1

(t)
)]
dtβ , l = 1, r, β =

1,m, are (ρl1, b)-quasiinvex at x0(·) with respect to η and θ;

5
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b)
∫

Γt0,t1

µβ(t)g
(
χxα1...αs−1

(t)
)
dtβ is (ρ2, b)-quasiinvex at x0(·) with respect to η and

θ;

c)
∫

Γt0,t1

νβ(t)h
(
χxα1...αs−1

(t)
)
dtβ is (ρ3, b)-quasiinvex at x0(·) with respect to η and

θ;
d) at least one of the integrals of a) - c) is strictly (ρ, b)-quasiinvex at the point x0(·)

with respect to η and θ; (see ρ = ρl1, ρ2 or ρ3)

e)
r∑
l=1

λlρ
l
1 + ρ2 + ρ3 ≥ 0 (ρl1, ρ2, ρ3 ∈ R).

Then the point x0(·) is an efficient solution of the problem (MFP).

Proof. Consider, by reductio ad absurdum, that x0(·) is not an efficient solution of
(MFP). Then, for l = 1, r, there exists x(·) ∈ F (Ωt0,t1) such that∫

Γt0,t1

[
f lβ

(
χxα1...αs−1

(t)
)
−Rl

0w
l
β

(
χxα1...αs−1

(t)
)]
dtβ

≤
∫

Γt0,t1

[
f lβ

(
χx0α1...αs−1

(t)
)
−Rl

0w
l
β

(
χx0α1...αs−1

(t)
)]
dtβ

and there exists at least k ∈ {1, 2, ..., r} with∫
Γt0,t1

[
fkβ

(
χxα1...αs−1

(t)
)
−Rk

0w
k
β

(
χxα1...αs−1

(t)
)]
dtβ

<

∫
Γt0,t1

[
fkβ

(
χx0α1...αs−1

(t)
)
−Rk

0w
k
β

(
χx0α1...αs−1

(t)
)]
dtβ.

Using the hypothesis a) and setting X l
β := f lβ −Rl

0w
l
β , we have

bxx0

∫
Γt0,t1

[
ηtxx0

∂X l
β

∂x

(
χx0α1...αs−1

(t)
)

+ (Dα1ηtxx0)
∂X l

β

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+ bxx0

∫
Γt0,t1

[(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)
∂X l

β

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

≤ −ρl1bxx0 ‖ θxx0 ‖2 .

Multiplying by λl ≥ 0 and making the sum from l = 1 to l = r, we obtain

bxx0

∫
Γt0,t1

[
ηtxx0λ

∂Xβ

∂x

(
χx0α1...αs−1

(t)
)]

dtβ (2)

+bxx0

∫
Γt0,t1

[
(Dα1ηtxx0)λ

∂Xβ

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

6
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+...+ bxx0

∫
Γt0,t1

[(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)
λ

∂Xβ

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

≤ −

(
r∑
l=1

λlρ
l
1

)
bxx0 ‖ θxx0 ‖2 .

The following inequality∫
Γt0,t1

µβ(t)g
(
χxα1...αs−1

(t)
)
dtβ ≤

∫
Γt0,t1

µβ(t)g
(
χx0α1...αs−1

(t)
)
dtβ,

according to b), leads us to

bxx0

∫
Γt0,t1

[
ηtxx0µβ(t)

∂g

∂x

(
χx0α1...αs−1

(t)
)]

dtβ (3)

+bxx0

∫
Γt0,t1

[
(Dα1ηtxx0)µβ(t)

∂g

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+bxx0

∫
Γt0,t1

[(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)
µβ(t)

∂g

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

≤ −ρ2bxx0 ‖ θxx0 ‖2 .

Also, the equality (see c))∫
Γt0,t1

νβ(t)h
(
χxα1...αs−1

(t)
)
dtβ =

∫
Γt0,t1

νβ(t)h
(
χx0α1...αs−1

(t)
)
dtβ

gives

bxx0

∫
Γt0,t1

[
ηtxx0νβ(t)

∂h

∂x

(
χx0α1...αs−1

(t)
)]

dtβ (4)

+bxx0

∫
Γt0,t1

[
(Dα1ηtxx0) νβ(t)

∂h

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+bxx0

∫
Γt0,t1

[(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)
νβ(t)

∂h

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

≤ −ρ3bxx0 ‖ θxx0 ‖2 .

Making the sum (2) + (3) + (4), side by side, and taking into account d), we get

bxx0

∫
Γt0,t1

ηtxx0

[
λ
∂Xβ

∂x

(
χx0α1...αs−1

(t)
)

+ µβ(t)
∂g

∂x

(
χx0α1...αs−1

(t)
)]

dtβ

+bxx0

∫
Γt0,t1

ηtxx0

[
νβ(t)

∂h

∂x

(
χx0α1...αs−1

(t)
)]

dtβ

+bxx0

∫
Γt0,t1

(Dα1ηtxx0)

[
λ
∂Xβ

∂xα1

(
χx0α1...αs−1

(t)
)

+ µβ(t)
∂g

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

7
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+bxx0

∫
Γt0,t1

(Dα1ηtxx0)

[
νβ(t)

∂h

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+ bxx0

∫
Γt0,t1

(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)[
λ

∂Xβ

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

+bxx0

∫
Γt0,t1

(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)[
µβ(t)

∂g

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

+bxx0

∫
Γt0,t1

(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)[
νβ(t)

∂h

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

< −

(
r∑
l=1

λlρ
l
1 + ρ2 + ρ3

)
bxx0 ‖ θxx0 ‖2 .

This implies that bxx0 > 0 and the foregoing inequality can be rewritten as∫
Γt0,t1

ηtxx0

[
λ
∂Xβ

∂x

(
χx0α1...αs−1

(t)
)

+ µβ(t)
∂g

∂x

(
χx0α1...αs−1

(t)
)]

dtβ

+

∫
Γt0,t1

ηtxx0

[
νβ(t)

∂h

∂x

(
χx0α1...αs−1

(t)
)]

dtβ

+

∫
Γt0,t1

(Dα1ηtxx0)

[
λ
∂Xβ

∂xα1

(
χx0α1...αs−1

(t)
)

+ µβ(t)
∂g

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+

∫
Γt0,t1

(Dα1ηtxx0)

[
νβ(t)

∂h

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+

∫
Γt0,t1

(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)[
λ

∂Xβ

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

+

∫
Γt0,t1

(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)[
µβ(t)

∂g

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

+

∫
Γt0,t1

(
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

ηtxx0

)[
νβ(t)

∂h

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

< −

(
r∑
l=1

λlρ
l
1 + ρ2 + ρ3

)
‖ θxx0 ‖2,

or, after integrating by parts, we get∫
Γt0,t1

ηtxx0

[
λ
∂Xβ

∂x

(
χx0α1...αs−1

(t)
)

+ µβ(t)
∂g

∂x

(
χx0α1...αs−1

(t)
)]

dtβ

+

∫
Γt0,t1

ηtxx0

[
νβ(t)

∂h

∂x

(
χx0α1...αs−1

(t)
)]

dtβ
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−
∫

Γt0,t1

ηtxx0Dα1

[
λ
∂Xβ

∂xα1

(
χx0α1...αs−1

(t)
)

+ µβ(t)
∂g

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

−
∫

Γt0,t1

ηtxx0Dα1

[
νβ(t)

∂h

∂xα1

(
χx0α1...αs−1

(t)
)]

dtβ

+...+ (−1)s−1

∫
Γt0,t1

ηtxx0
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

[
λ

∂Xβ

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

(−1)s−1

∫
Γt0,t1

ηtxx0
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

[
µβ(t)

∂g

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

(−1)s−1

∫
Γt0,t1

ηtxx0
1

n (α1, ..., αs−1)
Ds−1
α1...αs−1

[
νβ(t)

∂h

∂xα1...αs−1

(
χx0α1...αs−1

(t)
)]

dtβ

< −

(
r∑
l=1

λlρ
l
1 + ρ2 + ρ3

)
‖ θxx0 ‖2 .

The above given computation is obtained by using the boundary conditions

x(tξ) = xξ, xα1...αj(tξ) = x̃α1...αjξ, αζ ∈ {1, ...,m}, ζ, j = 1, s− 2, ξ ∈ {0, 1},

(see x(tξ) = xξ = x0(tξ), xα1...αj(tξ) = x̃α1...αjξ = x0
α1...αj

(tξ)), and the following
conditions (see Definition 2),

ηtx0x0 = 0, Dα1ηtx0x0 = 0, · · · , Ds−2
α1...αs−2

ηtx0x0 = 0

αζ ∈ {1, ...,m}, ζ = 1, s− 2, t ∈ Ωt0,t1 .

The conditions (1) lead us to

0 < −

(
r∑
l=1

λlρ
l
1 + ρ2 + ρ3

)
‖ θxx0 ‖2 .

Applying the hypothesis e) and ‖ θxx0 ‖2≥ 0, we get a contradiction. Thus, the point x0

is an efficient solution for (MFP) and the proof is complete.

Corollary 1 (Sufficient efficiency conditions for (MFP)). Let x0(·) be a feasible solution
of the problem (MFP) and assume that (1) is fulfilled. Also, consider the following prop-
erties hold:

a) the functionals
∫

Γt0,t1

[
f lβ

(
χxα1...αs−1

(t)
)
−Rl

0w
l
β

(
χxα1...αs−1

(t)
)]
dtβ , l = 1, r, β =

1,m, are (ρl1, b)-quasiinvex at the point x0(·) with respect to η and θ;

b’) the functional
∫

Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)

+ νβ(t)h
(
χxα1...αs−1

(t)
)]
dtβ is (ρ2, b)-

quasiinvex at the point x0(·) with respect to η and θ;

9
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d’) at least one of the integrals
∫

Γt0,t1

[
f lβ

(
χxα1...αs−1

(t)
)
−Rl

0w
l
β

(
χxα1...αs−1

(t)
)]
dtβ ,

l = 1, r, β = 1,m,
∫

Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)

+ νβ(t)h
(
χxα1...αs−1

(t)
)]
dtβ , is

strictly (ρl1, b) or (ρ2, b)-quasiinvex at the point x0(·) with respect to η and θ;

e’)
r∑
l=1

λlρ
l
1 + ρ2 ≥ 0 (ρl1, ρ2 ∈ R).

Then the point x0(·) is an efficient solution of the problem (MFP).

Proof. The proof follows in the same manner as in Theorem 3.1. The functionals∫
Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)]
dtβ,

∫
Γt0,t1

[
νβ(t)h

(
χxα1...αs−1

(t)
)]
dtβ

are replaced by
∫

Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)

+ νβ(t)h
(
χxα1...αs−1

(t)
)]
dtβ .

Corollary 2 (Sufficient efficiency conditions for (MFP)). Consider that (1) and the fol-
lowing hypotheses are fulfilled:

a’) the functionals∫
Γt0,t1

[
W l
(
x0(t)

)
f lβ

(
χxα1...αs−1

(t)
)
− F l

(
x0(t)

)
wlβ

(
χxα1...αs−1

(t)
)]
dtβ,

l = 1, r, β = 1,m, are (ρl1, b)-quasiinvex at the point x0(·) with respect to η and θ;

b’) the functional
∫

Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)

+ νβ(t)h
(
χxα1...αs−1

(t)
)]
dtβ is (ρ2, b)-

quasiinvex at the point x0(·) with respect to η and θ;
d”) at least one of the integrals∫

Γt0,t1

[
W l
(
x0(t)

)
f lβ

(
χxα1...αs−1

(t)
)
− F l

(
x0(t)

)
wlβ

(
χxα1...αs−1

(t)
)]
dtβ,

l = 1, r, β = 1,m,
∫

Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)

+ νβ(t)h
(
χxα1...αs−1

(t)
)]
dtβ is strictly

(ρl1, b) or (ρ2, b)-quasiinvex at the point x0(·) with respect to η and θ;

e”)
r∑
l=1

λlρ
l
1 + ρ2 ≥ 0 (ρl1, ρ2 ∈ R).

Then the point x0(·) is an efficient solution of the problem (MFP).

Proof. Taking into account the definition of Rl
0 and redefining µβ and νβ , the functional∫

Γt0,t1

[
f lβ

(
χxα1...αs−1

(t)
)
−Rl

0w
l
β

(
χxα1...αs−1

(t)
)]
dtβ

10
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is changed into∫
Γt0,t1

[
W l
(
x0(t)

)
f lβ

(
χxα1...αs−1

(t)
)
− F l

(
x0(t)

)
wlβ

(
χxα1...αs−1

(t)
)]
dtβ

and the integrals∫
Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)]
dtβ,

∫
Γt0,t1

[
νβ(t)h

(
χxα1...αs−1

(t)
)]
dtβ

are replaced by
∫

Γt0,t1

[
µβ(t)g

(
χxα1...αs−1

(t)
)

+ νβ(t)h
(
χxα1...αs−1

(t)
)]
dtβ .

Corollary 3 (Sufficient efficiency conditions for (MFP)). If the conditions (1) are fulfilled
and the following properties hold:

a’) the functionals∫
Γt0,t1

[
W l
(
x0(t)

)
f lβ

(
χxα1...αs−1

(t)
)
− F l

(
x0(t)

)
wlβ

(
χxα1...αs−1

(t)
)]
dtβ,

l = 1, r, β = 1,m, are (ρl1, b)-quasiinvex at the point x0(·) with respect to η and θ;

b)
∫

Γt0,t1

µβ(t)g
(
χxα1...αs−1

(t)
)
dtβ is (ρ2, b)-quasiinvex at x0(·) with respect to η and

θ;

c)
∫

Γt0,t1

νβ(t)h
(
χxα1...αs−1

(t)
)
dtβ is (ρ3, b)-quasiinvex at x0(·) with respect to η and

θ;
d*) at least one of the integrals of a’), b), c) is strictly (ρ, b)-quasiinvex at the point

x0(·) with respect to η and θ; (see ρ = ρl1, ρ2 or ρ3)

e*)
r∑
l=1

λlρ
l
1 + ρ2 + ρ3 ≥ 0 (ρl1, ρ2, ρ3 ∈ R),

then the point x0(·) is an efficient solution of the problem (MFP).

Proof. Taking into account the definition of Rl
0 and redefining µβ and νβ , the functional∫

Γt0,t1

[
f lβ

(
χxα1...αs−1

(t)
)
−Rl

0w
l
β

(
χxα1...αs−1

(t)
)]
dtβ

is replaced by∫
Γt0,t1

[
W l
(
x0(t)

)
f lβ

(
χxα1...αs−1

(t)
)
− F l

(
x0(t)

)
wlβ

(
χxα1...αs−1

(t)
)]
dtβ

and the proof follows in the same manner as in Theorem 3.1.
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4 Conclusion
In this paper, motivated by the ongoing research in this area, by using the extended notion
of (ρ, b)-quasiinvexity, we have formulated and proved sufficient efficiency conditions for
a class of multidimensional vector ratio optimization problems (MFP) of minimizing a
vector of path-independent curvilinear integral functionals (mechanical work) quotients
subject to PDE and/or PDI constraints involving higher-order partial derivatives. Due to
physical meaning of the objective functionals, the importance of this research paper has
been supported both from theoretical and practical considerations.
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