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Abstract —In this paper, we propose a new spectral form of the Fletcher – Reeves 
conjugate gradient algorithm for solving unconstrained optimization problems which 
has sufficient descent direction. We prove the global convergent of these algorithms 
under Wolf line search conditions. We presented some numerical result and com-
parison with Fletcher – Reeves algorithm.  
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1 Introduction 
Let   : RRf n → be continuously differentiable. Consider the unconstrained optimization 
problem  

 min nR  x,  )( ∈xf             (1)  

We use )(xg to denote the gradient of f at x . We are concerned with the conjugate gradi-
ent methods for solving )1( . Let x be the initial guess of the solution of problem )1( . A 
conjugate gradient method generates sequence of iterates by letting  

0,1,...,k     ,1 =+=+ kkkk dxx α               (2) 
Where the step length kα is obtained by carrying out some line search, and the direction 

kd  is defined by 

=+1kd  
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  where kβ  is a scalar. If )(xf  is a strictly convex quadratic function and if kα  is the 
exact one-dimensional minimizer, )3()2( −  is called the linear conjugate gradient 
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method. On the other hand, )3()2( −  is called the nonlinear conjugate gradient method for 
general unconstrained optimization. Some well-known formulae for kβ  are as follows. 
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Here, (CD) denotes the Conjugate Descent [1], (PR) denotes the Polak and Ribiere [2], 
(HS) denotes the Hestenes and Stiefel [3]. The Fletcher-Reeves(FR) method [4] is famous 
conjugate gradient method. In the FR method, the parameter kβ  is specified by 
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where kg  is the abbreviation of )( kxg and ⋅  stands for Euclidean norm of vectors. 

 We see from )3(  that for each 1≥k , the directional derivative of f at kx along 
direction kd  is given by 

 .1
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111 k
T
k

FR
kkk

T
k dggdg ++++ +−= β                          (8) 

 It is clear that if exact line search is used, then we have for any 0≥k , 

.02 <−= kk
T
k gdg                    (9) 

Consequently, vector kd  is a descent direction of f at kx . Zoutendijk [5] proved that the 
FR method with exact line search is globally convergent. Another line search that ensures 
descent property of kd  is the Wolf line search, that is, kα  satisfies the following two ine-
qualities 

,)()( k
T
kkkkkk dgxfdxf δαα ≤−+                   (10) 

and 
,g g T

k
T

1k kk dd σ≥+                           (11) 

where 
2
10 <<< σδ . Al-Baali [6] showed the global of FR method with the strong line 

search, Dai and Yuan [7] extended this result to 
2
1

=σ . Recently, Birgin and Matinez [8] 
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proposed a spectral conjugate gradient  method by combining conjugate gradient method 
and spectral method [9] in the following way:   

,11 kkkkk dgd βθ +−= ++                            (12) 
where kθ  is parameter, Li zhang, Weijun Zhou and Donghui Li [10].  

 The paper is organized as follows. Section (1) is the introduction. In Section (2) 
new spectral form for FR non-linear conjugate gradient algorithm is suggested. The suffi-
cient descent condition are presented in section (3). In section (4) global convergence of 
new spectral conjugate gradient methods. Numerical results are reported in section (5). 

2 New spectral Conjugate Gradient method  
In  this section, we describe the modified FR method whose form is similar to that 

of [8] but with different parameters kθ and kβ . An important feature of the CG method is 
that satisfies conjugacy condition: 

01 =+ k
T
k yd                        (13) 

which is independent of the objective function )(xf  is convex quadratic and line search 
is exact [11]. Let the search direction be defined by 

k
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where kθ  is parameter. We also assume that the search direction )14(  satisfies the rela-
tion )9(  i.e. 
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then we have 
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Now by using conjugacy condition )14( , we find value of λ  then 
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Put the value of kθ  in equation )19( , we can then obtain 



B. A. Hassan and H. M. Sadeq 

44 
 

k
T
k

k

k
k

T
k

k

k
T
k

k dy
g

g
gy

g
gd

g 2

2
1

12
1

1
T
ky +

+
+

+ +−=λ                   (20) 

From )20( , we have 
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Substituting )21(  into )17( , we get 
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Therefore the new spectral FR search direction is  

k
k

k
k
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3 The Descent Property  and  Descent Algorithm  
In this section, we give a general condition on the spectral kθ  and show that such 

a condition can ensure the descent property of the conjugate gradient method in the case 

of Wolfe line searches. Furthermore, the sufficient descent condition, namely 

   2
111 +++ −≤ kk

T
k gcdg  for   0≥k  and 0>c                 (24) 

Theorem 3.1. Consider the algorithm defined in (2) where kd  computed from (22) and 

(23). Assume that step size α satisfies the Wolf Condition (10) and (11). Then the search 

directions kd  generated by the new method algorithm are descent for all k provided 

1 0T
k ky g + > .  

2
1 1 1

T
k k kd g gλ+ + += −                     (25) 

  

Proof :  

 For initial direction (k=0) we have: 

02
11111 <−=⇒−= ggdgd T                        (26) 

Now let the theorem be true for all k, i.e. 

02 <−=⇒−= kk
T
kkk ggdgd                   (27) 

To complete the proof, we have to show that the theorem is true for all k+1. 
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Multiplying )12(  by T
kg 1+ , we have 
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Substituting (18) in to (28), we obtain: 
2 2

21 1
1 1 1 12 2( )
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Then, we have  
2

1 1 1
T
k k kd g gλ+ + += −                         (30) 

For convenience, we summarize the above method as the following algorithm: 

Algorithm(The new method) 

Step  0: Given an initial starting point nRx ∈  and 610−=ε , consider °° −= gd ,


 g
1

=α   

and 0=k . 

Step  1: Test for convergence, If ε<kg  stop kx  is optimal Else go to step 2. 

Step 2: Compute kα  satisfying the Wolfe line search and update the variable    

kkkk dxx α+=+1  and compute 1+kf  , 1+kg  , ky  and ks . 

Step 3: Direction computation: compute 1+kθ  from )22(  and set 
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αα  and set 1+= kk  go to step 1. 

4 Global convergence property  
In order to establish the global convergence of the proposed method. We assume 

that the following assumption always holds. 
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Assumption(1): 

i- The level set { })()(: xfxfRxS n ≤∈=  is bounded, namely, there exists a con-

stant 0>B  such that 

Bx ≤     for all  Sx∈                       (31) 

ii- In some neighbourhood N  of ,S f is continuously differentiable, and its gradient 

is Lipschitz continuous, namely, there exist  0>L  such that: 

Nyx,   )()( ∈∀−≤− yxLygxg .                 (32) 

Lemma 1. Suppose assumption(1) holds. Consider any iteration of )2(  and )12( , where 

kd  satisfies 0<k
T
k dg  for +∈ Nk  and kα  satisfies the Wolf line search. Then 

∞<∑
≥1

2

2)(
k k

k
T
k

d
dg  .                    (33) 

More details can be found in [12]. 

Now, we give the following Theorem of global convergence for the spectral FR conjugate 

gradient method. 

Theorem 4.1. Consider the spectral FR conjugate gradient Algorithm, suppose that As-

sumptions hold. Then 

.0inflim =
∞→ kk

g                     (34) 

Proof : 

 Suppose by contradiction that there exists a real number 0>ε  such that ε>+1kg  

for all .   ,...3,2,1=k  

Squaring the both terms of  kkk
BHS
kk dgd βθ =+ ++ 11   we get: 
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From(35), we have: 
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Dividing both sides of (36) by 4
1+kg , by (7), (33) and ε>+1kg  we get: 
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From (30) and (33) we get: 
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From (38), we know 
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which contradicts [40], so 0lim =
∞→ kk

g .  

5 Numerical Results  
In this section, we compare the performance of the new algorithm with one CG-

algorithm, the Fletcher-Reeves (FR) algorithm which is one of the best and well-know 

CG-algorithms. The codes were written in fortran language with f77 and double preci-
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sion. Our experiment are performed on a set of (15) nonlinear unconstrained test prob-

lems. We have considered numerical experiment with the number of variable 

1000100 −=n . We use 001.0=δ  and 9.0=σ  in line search, we stop the iteration if the ine-

quality 6
1 10−
+ <kg  is satisfied. We record the number of iteration (NOI), and the number 

of function evaluation (NOF), and the number of restart (NOR). Comparing the new 

method with Fletcher – Revees method, we find that for some problems new method 

really performs much better than Fletcher method. Table (1) and (2) shows the details of 

numerical results for Fletcher – Revees (FR) and our algorithm.     

 
Table 1: Comparison of the algorithms for 100=n  

 
Test 

Problems 

algorithm FR  
BHS
k with algorithm θNew  

NOI NOR NOF NOI NOR NOF 

DenschnF 22 19 38 19 17 33 

Extended Rosenbrock 47 18 93 42 22 86 

Nondia 13 7 25 11 6 22 

Extended Tridiagonal 2 40 18 65 41 14 64 

Liarwhd 23 11 45 17 9 33 

Extended While & Holst 43 18 88 36 20 76 

Extended Quadratic Pen-

alty QP2 

32 12 65 28 15 60 

Arwhead 9 4 18 9 6 36 

DenschnB 12 7 25 7 5 15 

Generalized Tridiagonal 2 37 8 67 37 11 59 

Generalized Quadratic GQ 11 6 24 7 5 16 

Extended PSC 1 15 9 31 8 6 17 

Partial Perturbed Quad-

ratic 

74 21 123 68 26 109 

Sincos 15 9 31 8 6 17 

Engval 1 34 16 57 28 10 49 

 427 183 795 366 178 692 
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Table 2: Comparison of the algorithms for 1000=n  

 
Test 

Problems 

algorithm FR  
BHS
k with algorithm θNew  

NOI NOR NOF NOI NOR NOF 

DenschnF 22 21 37 19 17 33 

Extended Rosenbrock 78 45 131 42 21 96 

Nondia 15 7 29 12 7 25 

Extended Tridiagonal 2 43 23 68 41 20 67 

Liarwhd 27 11 55 19 10 42 

Extended While & Holst 46 19 92 37 19 80 

Extended Quadratic Pen-

alty QP2 

53 22 116 36 20 87 

Arwhead 12 7 82 8 6 56 

DenschnB 11 7 23 7 5 15 

Generalized Tridiagonal 2 73 27 115 67 25 102 

Generalized Quadratic GQ 9 5 22 7 5 18 

Extended PSC 1 8 6 17 7 5 15 

Partial Perturbed Quad-

ratic 

370 88 616 249 66 407 

Sincos 8 6 17 7 5 15 

Engval 1 142 126 3616 132 118 3565 

 917 420 5036 690 349 4623 

 

6   Conclusions and Discussions 
In this paper, we have derived a new spectral conjugate gradient method for solv-

ing unconstrained minimization problems. It is shown in previous section that the new 

spectral CG method converges under some assumption using Wolf line search condition 
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and satisfies the sufficient descent property. The computational experiments show that the 

new algorithm given in this paper are successful. 

Table(3) gives the new algorithm saves(15 - 25  )% NOI ,( 3 - 17 )% NOF, and ( 9 - 12)%  

IRS, overall against the standard FR algorithm, especially for our selected test functions. 

These results are shown in following table: 

. 

Table 3: Relative efficiency of the new Algorithm )100( =n  

Tools NOI NOF IRS 

FR Algorithm 100   % 100 %             100  % 

New Algorithm with 
BHS
kθ  85.71% 97.26%              88.04% 

 

 

 

Table 4: Relative efficiency of the new Algorithm )1000( =n  

Tools NOI NOF IRS 

FR Algorithm 100   % 100 %             100  % 

New Algorithm with 
BHS
kθ  75.24% 83.09%             91.79% 
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