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This study investigates deep learning models (LSTM, Transformer, RNN) for earthquake time-series
forecasting using USGS teleseismic data (Figure 2). LSTM Transformer+RNN achieved highest
accuracy (R*=0.9999987) for seismic waveform prediction following Pazarcik earthquake. / Bu
calisma, USGS telesismik verileri kullanarak deprem zaman serisi tahmini i¢in derin 6grenme
modellerini (LSTM, Transformer, RNN) arastirmaktadir (Figure 2). LSTM Transformer+RNN,
Pazarcik depremi sonrast sismik dalga formu tahmini igin en yiiksek dogrulugu (R*=0.9999987)
elde etmigtir.
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Figure 2. General diagram of the study (Calismanin genel diyagrami)

Highlights (Onemli noktalar)

» LSTM Transformer+RNN model achieved superior performance with MSE of
3.5691x107° and R? score of 0.9999987 for earthquake time-series forecasting. / LSTM
Transformer+RNN modeli, deprem zaman serisi tahmini i¢in 3.5691x107° MSE ve
0.9999987 R? skoru ile iistiin performans elde etti.

» Global broadband teleseismic dataset from USGS containing 1000 seismic records was
utilized for comprehensive model training and validation. / Kapsamli model egitimi ve
dogrulama icin 1000 sismik kayit iceren USGS kiiresel genis bant telesismik veri seti
kullanild:.

» Novel integration of Transformer architecture with LSTM and RNN demonstrates
effectiveness in capturing long-range dependencies in seismic data. / Transformer
mimarisinin LSTM ve RNN ile yeni entegrasyonu, sismik verilerdeki uzun menzilli
bagimhiliklar: yakalamada etkinlik gésterdi.

»  Results provide significant implications for earthquake early warning systems and real-
time seismic monitoring applications. / Sonuglar, deprem erken uyari sistemleri ve ger¢ek
zamanl sismik izleme uygulamalart i¢in 6nemli ¢ikarimlar sunmaktadur.

Aim (Amag): To develop and evaluate deep learning models for earthquake time-series forecasting
using global teleseismic data, specifically analyzing the Pazarcik earthquake sequence. / Kiiresel
telesismik verileri kullanarak deprem zaman serisi tahmini icin derin ogrenme modelleri
gelistirmek ve degerlendirmek, ozellikle Pazarcik deprem dizisini analiz etmek.

Originality (Ozgiinlitk): This study presents the first comprehensive comparison of LSTM,
Transformer, and hybrid architectures for earthquake waveform prediction using global USGS
teleseismic data. / Bu ¢alisma, kiiresel USGS telesismik verileri kullanarak deprem dalga formu
tahmini i¢in LSTM, Transformer ve hibrit mimarilerin ilk kapsamh karsilastirmasint sunmaktadur.

Results (Bulgular): LSTM Transformer+RNN model achieved the lowest error rates (MSE:
3.5691%x10° MAE: 4.5421x107) and highest accuracy (R* 0.9999987) among tested
architectures. / LSTM Transformer+RNN modeli, test edilen mimariler arasinda en diisiik hata
oranlarimt (MSE: 3.5691 %107, MAE: 4.5421 x107) ve en yiiksek dogrulugu (R*: 0.9999987) elde
etti.

Conclusion (Sonug): The hybrid LSTM Transformer+RNN architecture demonstrates superior
capability for seismic waveform prediction, offering promising applications for earthquake early
warning systems. / Hibrit LSTM Transformer+RNN mimarisi, sismik dalga formu tahmini i¢in
listiin yetenek gostererek deprem erken uyari sistemleri i¢in umut verici uygulamalar sunmaktadur.
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The Earth's internal structure and mitigating seismic hazards are significant for understanding
earthquake prediction and seismic wave analysis. In this study, we studied with different deep
learning models for earthquake time series prediction using Broadband Teleseismic Data from
the USGS database. This dataset consists of 1000 seismic records in SAC format with long-period
seismic waves from global earthquakes. This study aimed to test LSTM and RNN models with
LSTM Transformer to predict the next time step based on previous seismic waves. In this study,
model performances was evaluated with Mean Square Error (MSE), Mean Absolute Error (MAE)
and R2 Score. In conclusion, the LSTM Transformer+RNN model achieves the lowest error rates
and presents its effectiveness in learning both short-term dependencies and long-term correlations
in seismic data. At the same time, this study can also contribute to the advancement of deep
learning applications in seismology and the improvement of the prediction capabilities of
earthquake monitoring systems.

LSTM, Transformer ve RNN Modellerini Kullanarak Pazarcik Depreminin
Zaman Serisi Tahmini
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Diinya'nin i¢ yapisini anlamak ve sismik tehlikeleri azaltmak i¢in deprem tahmini ve sismik dalga
analizlerinin yapilmasi bilyiik onem tagimaktadir. Bu caligmada, USGS veritabanindan elde
edilen Genis Bant Teleseismik Veriler kullanilarak deprem zaman serisi tahmini igin farkl: derin
6grenme modelleri uygulanmustir. Veri seti, kiiresel depremlerden gelen uzun dénemli sismik
dalgalari yakalayan 1000 adet SAC formatinda sismik kayittan olugmaktadir. Caligmanin amaci,
onceki sismik dalgalari temel alarak bir sonraki zaman adimini tahmin etmek i¢in LSTM, LSTM-
Transformer ve LSTM-Transformer-RNN modellerinin performansimi karsilagtirmaktir. Model
performanslari, Ortalama Karesel Hata (MSE), Ortalama Mutlak Hata (MAE) ve R? skoru
kullanilarak degerlendirilmistir. Elde edilen sonuglar, LSTM-Transformer-RNN modelinin en
diislik hata oranlarina ulastigini ve sismik verilerde hem kisa vadeli bagimliliklart hem de uzun
vadeli korelasyonlar1 6grenmede etkin oldugunu gostermektedir. Bu c¢alisma, derin 6grenme
uygulamalarinin sismolojide ilerlemesine ve deprem izleme sistemlerinin tahmin yeteneklerinin
gelistirilmesine katk1 saglayabilir.

1. INTRODUCTION (GIRiS)

Earthquakes are disasters that cause major
destructive disasters with seismic signals caused by
sudden ground oscillations [1]. On February 6,
2023, at 04:17 local time, a devastating earthquake
with a magnitude of 7.7 struck Kahramanmaras,

Turkey. Approximately nine hours later, another
7.6-magnitude earthquake occurred in the same
region, followed by over 1,000 aftershocks, some
exceeding magnitude 6. According to official
reports from AFAD and USGS, these earthquakes
are among the most destructive in Turkey’s history,
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causing severe damage with over 50,000 casualties
and hundreds of thousands of injuries [2,3].

The global significance of this problem is further
highlighted by similar large-scale earthquakes, such
as the 2011 Tohoku earthquake in Japan (Mw 9.0)
and the 2010 Maule earthquake in Chile (Mw 8.8),
both of which resulted in severe human and
economic losses [4,5]. These events demonstrate
the universal need for more accurate prediction
methods. Traditional approaches for earthquake
magnitude prediction are based on physical models
and statistical methods; however, these techniques
often have difficulty capturing nonlinear and
complex patterns in seismic activities. Recent
advancements in deep learning have introduced
more robust predictive models capable of learning
from large-scale seismic datasets. In particular,

Recurrent  Neural Networks (RNNs) and
Transformer-based  architectures can  give
promising  results in  capturing temporal

dependencies in seismic signals.

This study contributes to the literature by utilizing
Broadband Teleseismic Data obtained from the
USGS to train deep learning-based regression
models for earthquake magnitude prediction.
Unlike prior studies that rely on region-specific data

or shallow learning methods, our approach
leverages a (global dataset and advanced
architectures,  thereby  offering  improved
generalization and accuracy in  magnitude

estimation.

2. MATERIALS AND METHODS (MATERYAL
VE METOD)

In this study, we used a dataset of seismic
waveforms recorded during the Mw 7.8 Pazarcik
earthquake on February 6, 2023, consisting of 1,000
SAC-formatted seismic records obtained from the
USGS, primarily collected through the Global
Seismographic Network (GSN) and selected ANSS
stations were used in this study [6]. It was in SAC
(Seismic Analysis Code) format which includes
broadband teleseismic waveforms and the SAC files
contain time-series data representing ground motion
with metadata such as station information, sampling
rate and the details of events.

2.1. DATASET AND PREPROCESSING

(Veriseti ve Onisleme)

The raw seismic data were preprocessed to remove
noise and normalize the amplitude values. A band-
pass filter (0.1 Hz to 1.0 Hz) was applied to
eliminate low-frequency and high-frequency noise.
Then, the MinMaxScaler from the scikit-learn

library was used to normalize to ensure that all
values were scaled between O and 1. This
normalization step is crucial for improving the
convergence of the deep learning model during
training.

In this study, all measurements and data are
processed using the International System of Units
(SI). The parameters of the data used in the study
are given in the Table 1. The seismic data, which are
read from the SAC files, are represented in amperes
per meter (A/m) for magnetic field strength and
teslas (T) for magnetic flux density. The time-series
data extracted from the seismic recordings are
normalized using the MinMaxScaler, where the data
values are scaled between 0 and 1. The deep
learning models (LSTM, RNN) wuse these
normalized data for training and prediction and the
evaluation metrics (e.g.,, Mean Squared Error -
MSE, Mean Absolute Error - MAE) are computed
without changing units, as the data is already
normalized. For data storage, both SI and English
units are used when required (e.g., "10 Gb/cm? (100
Gb/in?)").

Table 1. Key parameters of the seismic dataset
(Sismik verisetindeki anahtar parametreler)

Parameter Value

Network V]

Station MACI

Location 00

Channel BH2

Start Time 2023-02-
06T01:17

End Time 2023-02-
06T02:07

Sampling Rate 40.0Hz

Sample Interval 0.025 seconds

Number of samples 120,000

Calibration Factors 1.0

Station Latitude 28.2502°

Station Longitude -16.5082°

Station Elevation 1674.0 meters

Component Azimuth 81.0°

Component Inclination ~ 90.0°

For the seismic data processing, the Matplotlib
library is used for visualization of the seismic
waveforms, where the plots are saved in PNG
format which is represented in Figure 1.
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Figure 1. Sample seismic waveforms with PNG
format (PNG formatinda ornek sismik dalga
formlary)

Each plot corresponds to a seismic recording file
and the output is stored in a specified directory. The
training and testing of the machine learning models,
such as LSTM and RNN are performed with input
data in the form of 3D arrays (samples, time steps,
features).

2.2. PROPOSED SYSTEM (Onerilen Sistem)

The overall framework of the proposed system is
illustrated in Figure 2. ) Three different deep
learning architectures were implemented and
compared in this study: LSTM, LSTM +
Transformer and LSTM + Transformer+RNN. The
details of each architecture are described below.

SAC data provided by the United States Geological
Survey (USGS) is used in this study. This dataset
consists of seismic waveform time series that
represent ground motion generated by the Mw 7.8
Pazarcik earthquake. The dataset serves as the
primary source for model training and evaluation.
The proposed deep learning-based framework
shows significant potential for improving
earthquake magnitude prediction.

Furthermore, the evaluation results are presented in
a comparative format, supported by quantitative
metrics such as RMSE, MAE and R? which are
summarized in Table 2. This comparative
discussion highlights the relative strengths of
different models and provides a clearer
understanding of the performance improvements
achieved.

Data  Preprocessing  (Densifying,  Filtering,
Normalization): Densifying: Filling in missing data
or condensing the dataset. Filtering: Noisy or
anomalous data is cleaned. Normalization: Scaled
the data to a specific range (e.g. 0-1). Purpose: To
make the data suitable for model training.

Model training: LSTM: Used to learn
dependencies in time series

long
data.

LSTM+Transformer: Used to capture both local
(LSTM) and global (Transformer) dependencies
and to use in time series data. RNN: Used for time
series problems.

Model evaluation: MSE (Mean Squared Error):
Measures how far the predictions are from the true
values. MAE (Mean Absolute Error): Gives the
absolute average of the prediction errors. R* (R-
squared): It presents how well the model explains
the data. Purpose: To compare the performance of
the models quantitatively.

Results: LSTM Model: It achieved 2.669 x 107
MSE and 3.01 x 10° MAE values. LSTM +
Transformer Model: It achieved 3.63 x 10~ MSE,
1.20 x 10 MAE and 0.99999 R? score. LSTM
Transformer+RNN Model: It recorded 3.57 x 107
MSE, 3.48 x 10°* MAE and 0.999999 R? score.

The results indicate that hybrid models combining
recurrent and transformer-based architectures can
effectively capture complex patterns in seismic
data. These findings highlight the substantial
potential of deep learning approaches in earthquake
magnitude estimation and contribute to advancing
research in seismic prediction.

Model Training Resul

SAC data fom | | Data preprocessing 5 Predclons and

U363 Densing Fiteng
Nomalzatin [STM#Transformer, performgnce
RN comparison

Nodel Evaluaton

Figure 2. General diagram of the study (Calismanin
genel diyagrami)

2.3. MODEL TRAINING AND EVALUATION

(Model egitimi ve degerlendirmesi)

In this study, the Adam optimizer with Mean
Squared Error (MSE) as the loss function was used
to train all models. Early stopping and learning rate
reduction mechanisms were implemented to prevent
overfitting to improve training efficiency: Early
Stopping: It shows the validation loss and stops
training if no improvement is observed for 5
consecutive epochs. ReduceLROnPlateau: It
reduces the learning rate by a factor of 0.5 if the
validation loss does not improve for 3 consecutive
epochs. The data set of this study was split into
training and testing sets as 80% of the data used for
training and 20% for testing procedure. Each model
was trained for a maximum of 50 epochs with a
batch size of 32. The training process was presented
using validation loss to ensure generalization. After
training process, the models' performance was
evaluated using the test dataset. As a result, the
predicted values were compared to the actual

1255



Sahin, Cankaya | GU J Sci, Part C, 13(3): 1253-1260 (2025)

values, then the following performance metrics
were calculated: Mean Absolute Error (MAE): It is
the average absolute difference between predicted
and actual values. Mean Squared Error (MSE): It is
the the average squared difference between
predicted and actual values. R? Score: It is the
proportion of variance in the dependent variable that
is predictable from the independent variable.

2.3.1. LSTM MODEL (LSTM modeli)

The LSTM model was designed to capture temporal
dependencies in the seismic time-series data. The
architecture consists of the following layers. Figure
3. shows the LSTM model architecture. Input
Layer: It accepts input with shape (None, 20, 1),
where 20 is the window size and 1 is the number of
features. LSTM L1: 100 units  with
return_sequences=True. LSTM L2: 50 units with
return_sequences=False. Dense Layer: A single unit
for regression output. The total number of trainable

parameters in this model is 71,051.
H Qutput

Input lst_12 Dense Layer
(None, 20, 1) (None, 50) (None, 1)
Figure 3. LSTM Diagram (LSTM diyagramr)

LSTh Model

2.3.2. LSTM + TRANSFORMER MODEL
(LSTM+TRANSFORMER)

To enhance the model's ability to capture long-range
dependencies, a hybrid architecture combining
LSTM and Transformer was implemented. Figure
4. shows the LSTM model architecture. Input
Layer: Accepts input with shape (None, None, 1).
LSTM Layer: 64 units with return_sequences=True.
Multi-Head Attention Layer: 64 units with 8
attention heads. Layer Normalization: Applied after
the attention layer. Global Average Pooling 1D:
Reduces the sequence dimension. Dense Layer: A
single unit for regression output. The total number
of trainable parameters in this model is 83,457.

LSTM + Tramstommis Moge

Figure 4. LSTM + Transformer model diagram
(LSTM+Transformer modeli diyagramu)

2.3.3. RNN MODEL (RNN modeli)

Recurrent neural networks (RNN) is one of the most
widely used method for time series forecasting.
RNN is an artificial neural network in which nodes
are connected in a loop and the internal state of the
network can display dynamic temporal behavior [7].
Figure 5. shows the LSTM model architecture Input
Layer: Accepts input with shape (None, None, 1).
Simple  RNN  Layer: 64 wunits  with
return_sequences=True.Multi-Head Attention
Layer: 64 units with 8 attention heads. Layer
Normalization: Applied after the attention layer.
Global Average Pooling 1D: Reduces the sequence
dimension. Dense Layer: A single unit for
regression output. The total number of trainable
parameters in this model is 70,785.

g W HeaghBenton | | Layitomalcaton | GhbalveragePoolng!D Dense
e en)) 7] vt T e ] pore e 7 ey ||

Figure 5. RNN MODEL (RNN modeli)

3. FINDINGS AND DISCUSSION (BULGULAR
VE TARTISMA)

In this study, three deep learning models LSTM,
LSTM +  Transformer and LSTM +
Transformer+RNN were developed and evaluated
for predicting seismic waveforms following the
Mw7.8 Pazarcik earthquake. The models were
trained on broadband teleseismic data obtained
from the USGS, preprocessed to remove noise and
normalize amplitude values. The key findings are as
follows:

Model Performance: The LSTM model achieved a
Mean Squared Error (MSE) of 2.6694e-09, a Mean
Absolute Error (MAE) of 3.0116e-05 and an R2
score 0f 0.9999993 on the test dataset. The LSTM +
Transformer model demonstrated slightly lower
performance, with an MSE of 3.6322e-08, an MAE
of 0.0001200 and an R? score of 0.9999950. The
LSTM+RNN model showed the best performance
among the three, with an MSE of 3.5691e-09, an
MAE of 4.5421e-05 and an R? score of 0.9999987.
The LSTM Transformer+RNN model the extremely
low MSE and MAE values, along with the high R?
scores, indicate that all models are highly accurate
in predicting seismic waveforms.

Training Dynamics: LSTM model converged in 18
epochs, LSTM + Transformer model converged in
21 epochs and LSTM + Transformer+RNN model
converged in 13 epochs. This also shows that
LSTM+Transformer+RNN model trained faster.
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Learning rate was kept at 1.0e-04 throughout the
training process and no significant fluctuation was
observed. Visualization of Predictions: Predicted
waveforms closely matched the actual waveforms
for all models, especially for
LSTM+Transformer+RNN model. For example,
RNN model achieved a nearly perfect R? score of
0.9999987 indicating almost perfect match between
predicted and actual values. LSTM model also
showed an outstanding performance with an R?
score of 0.9999993, while LSTM + Transformer
model achieved an R? score of 0.9999950. The
results of this study are consistent with previous
research demonstrating the effectiveness of deep
learning models in seismic data analysis. Time
series prediction features are usually obtained by
shifting the time window and the prediction results
are influenced by the sequence of events. The use of
LSTM for time series prediction in seismology has
been widely documented with studies such as [8]
reporting similar success in capturing temporal
dependencies. The deep NN model has a recurrent
Long Short Term Memory (LSTM) part that
accounts for temporal dependencies between
earthquakes and a convolutional part that accounts
for spatial dependencies. The results demonstrate
that NNs-based models outperform baseline
feature-based models, which also account for
spatio-temporal dependencies between different
earthquakes. The other benefit of combining LSTM
and RNNs is to achieve both high accuracy and
computational efficiency [9]. Time series prediction
is a critical component in many fields, such as the
geosciences [10]. However, due to limited
measurement conditions, we can usually only obtain
short-term time series samples. On the one hand,
since a short-term data set does not have enough
information, accurate multi-step forward prediction
using a short-term time series becomes a
challenging task [11]. Transformer, RNN, and
LSTM models are therefore used in the study.

3.1. MODEL PERFORMANCE (Model performanst)

The LSTM Transformer+RNN model achieved the
best performance, with an MSE of 3.5691e-09, an
MAE of 4.5421e-05 and an R? score of 0.9999987.
This indicates that the hybrid architecture
combining LSTM Transformer and RNN is highly
effective in capturing both local and global
dependencies in seismic data. The Actual and
Estimated Values graph is shown in Figure 6 and the
training graph is shown in Figure 7.

Actual and Estimated Values l

il

20000

10000 15000 25000
Figure 6. Actual and Estimated Values graph
+RNN for LSTM T. + RNN model (Gergek ve
Tahmini Degerler grafigi +LSTM T i¢in RNN. + RNN

modeli)
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Figure 7. Training graph of LSTM T.+RNN
Model (LSTM T+RNN. Modelinin egitim grafigi)

The LSTM model also performed exceptionally
well, with an MSE of 2.6694e-09, an MAE of
3.0116e-05 and an R? score of 0.9999993,
demonstrating the robustness of LSTM in handling
temporal dependencies. The Actual and Estimated
Values graph is shown in Figure 8 and the training
graph is shown in Figure 9.
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Figure 8. Actual and Estimated Values graph for

LSTM model (LSTM modu igin Gergek ve Tahmini
Degerler grafigi)
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Figure 9 Training graph of LSTM model
(LSTM egitim grafigi)
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The LSTM + Transformer model showed slightly
lower performance, with an MSE of 3.6322e-08, an
MAE of 0.0001200 and an R? score of 0.9999950,
but still provided accurate predictions, highlighting
the potential of Transformer-based approaches for
seismic data analysis. The Actual and Estimated
Values graph is shown in Figure 10 and the training
graph is shown in Figure 11.

[ Actual and Estimated Values ]
101 —

Actual values

0 %00 10000 15000 20000 25000

Figure 10. Actual and Estimated Values LSTM T.
model (Gergek ve Tahmini Degerler LSTM T. modeli)
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0,0030 == Loss of training
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0.0025
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—

00 25 S0 15 100 125 150 175 200

Figure 11. Training graph of LSTM T. model
(LSTM egitim grafigi)

0.0000

3.2. TRAINING EFFICIENCY (Egitim performanst)

The LSTM + Transformer+RNN model not only
achieved the highest accuracy but also
demonstrated faster convergence, requiring only 13
epochs to train, compared to 18 epochs for the
LSTM model and 21 epochs for the model. This
suggests that the LSTM Transformer+RNN
architecture is both efficient and effective for
seismic waveform prediction. The Model Values
graph is shown in Table 2.
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Table 2. Different Deep Learning Models Result
Values (Farkli Derin Ogrenme Modelleri Sonug Degerleri)

Model MSE MAE R? Epoch
LSTM 2.6694e- 3.0116e- 0.999 18
09 05 9993
LSTM + 3.6322e- 0.000120 0999 21

Transfor 08 0 9950
mer

LSTM 3.5691e- 4.5421e- 0999 13
Transfor 09 05 9987
mer+

RNN

4. CONCLUSION (SONUCLAR)

This study investigates the effectiveness of three
deep learning models—LSTM, LSTM +
Transformer and LSTM Transformer+RNN—for
forecasting seismic waveforms following the Mw
7.8 Pazarcik earthquake. The models were trained
on broadband teleseismic data from the USGS
which were preprocessed to remove noise and
normalize amplitude values. The results of this
study have significant implications for earthquake
early warning systems and seismic data analysis.
The LSTM Transformer+RNN model demonstrated
the highest accuracy and efficiency, making it a
strong candidate for real-time applications as it
achieved the lowest MSE (3.5691 x 10~°) and MAE
(4.5421 x 107°) values, along with the highest R?
score (0.9999987), outperforming both the LSTM
and LSTM + Transformer models. Furthermore, the
integration of Transformers with LSTM and RNN
models presents a novel approach for capturing
long-range dependencies in seismic data. In
conclusion, this study highlights the considerable
potential of deep learning models for seismic
waveform prediction. Future research could focus
on enhancing these models using explainable Al
(XAIl) techniques [12, 13] to enable accurate and
reliable automatic detection of seismic processes.

DECLARATION OF ETHICAL STANDARDS
(ETIK STANDARTLARIN BEYANI)

The author of this article declares that the materials
and methods they use in their work do not require
ethical committee approval and/or legal-specific
permission.

Bu makalenin yazari ¢aligmalarinda kullandiklar
materyal ve yontemlerin etik kurul izni ve/veya
yasal-6zel bir izin gerektirmedigini beyan ederler.

AUTHORS’ CONTRIBUTIONS
(YAZARLARIN KATKILARI)

Seda SAHIN: She conducted the software, program
experiments, analyzed the results and performed the
writing process.

Yazilim ve program uygulamalarini yapmus,
sonuglarin1 analiz etmis ve makalenin yazim
islemini gerceklestirmistir.

Emine CANKAYA: She conducted the software,
program experiments, analyzed the results.

Yazilim ve program uygulamalarinm
sonuclarini analiz etmistir.

yapmis,

CONFLICT OF INTEREST (CIKAR
CATISMASI)

There is no conflict of interest in this study.
Bu calismada herhangi bir ¢ikar ¢atigsmasi yoktur.

REFERENCES (KAYNAKLAR)

[1] B. Gutenberg and C. F. Richter, Seismicity of
the Earth and Associated Phenomena. Princeton
University Press, 1954.

[2] AFAD, “6 Subat 2023 Kahramanmaras
Depremleri Raporu,” Afet ve Acil Durum
Yonetimi  Bagkanligi, 2023.  [Online].
Available: https://www.afad.gov.tr

[3] USGS, “M 7.8 — Tiirkiye-Suriye smnir bolgesi,”
United States Geological Survey, 2023.
[Online]. Available:
https://earthquake.usgs.gov.

[4] K. Satake, Y. Fujii, T. Harada, and Y.
Namegaya, “Time and space distribution of
coseismic slip of the 2011 Tohoku earthquake
as inferred from tsunami waveform data,”
Bulletin of the Seismological Society of
America, vol. 103, no. 2B, pp. 1473-1492,
2013.

[5] R. Madariaga, M. Métois, C. Vigny, and J.
Campos, “The 2010 Mw 8.8 Maule megathrust
earthquake of Central Chile, and its
aftershocks,” Geophysical Journal
International, vol. 184, no. 1, pp. 1-17, 2011.

[6] USGS “M 7.8 - Pazarcik earthquake,
Kahramanmaras earthquake sequence”
Avaible:https://earthquake.usgs.gov/earthquak
es/eventpage/us6000jllz/executive [Accessed :
February 09,2024].

[7] Qin, Yao & Song, Dongjin & Cheng, Haifeng
& Cheng, Wei & Jiang, Guofei & Cottrell,
Garrison. (2017). A Dual-Stage Attention-
Based Recurrent Neural Network for Time
Series Prediction. 10.48550/arXiv.1704.0297.

1259


https://www.afad.gov.tr/
https://earthquake.usgs.gov/

Sahin, Cankaya | GU J Sci, Part C, 13(3): 1253-1260 (2025)

[8] Youru Li.,Zhenfeng Zhu. ,Degiang Kong. , Hua
Han. ,Yao Zhao.”EA-LSTM: Evolutionary
attention-based LSTM for time series
prediction”,2019,01.

[9] R. Kail, E. Burnaev and A. Zaytsev, "Recurrent
Convolutional Neural Networks Help to Predict
Location of Earthquakes," in IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1-5,
2022, Art no. 8019005, doi:
10.1109/LGRS.2021.3107998.

[10] Bosilovich, M.G.; Robertson, F.R.; Chen, J.
NASA’s Modern Era Retrospective-analysis
for Research and Applications (MERRA). U.S.
CLIVAR Var. 2006

[11] You, Y., Zhang, L., Tao, P., Liu, S., &
Chen, L. (2022). Spatiotemporal Transformer
Neural Network for Time-Series Forecasting.
Entropy, 24(11), 1651.
https://doi.org/10.3390/e24111651.

[12]  Saranya A., Subhashini R., A systematic
review of Explainable Artificial Intelligence
models and applications: Recent developments
and  future  trends,Decision  Analytics
Journal,Volume 7,2023,100230, ISSN 2772-
6622.

[13] “What is explainable AI?” Available
-https://www.ibm.com/ [Accessed :June 2020].

1260


https://doi.org/10.3390/e24111651

