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Graphical/Tabular Abstract (Grafik Özet) 

This study investigates deep learning models (LSTM, Transformer, RNN) for earthquake time-series 

forecasting using USGS teleseismic data (Figure 2). LSTM Transformer+RNN achieved highest 

accuracy (R²=0.9999987) for seismic waveform prediction following Pazarcık earthquake. / Bu 

çalışma, USGS telesismik verileri kullanarak deprem zaman serisi tahmini için derin öğrenme 

modellerini (LSTM, Transformer, RNN) araştırmaktadır (Figure 2). LSTM Transformer+RNN, 

Pazarcık depremi sonrası sismik dalga formu tahmini için en yüksek doğruluğu (R²=0.9999987) 

elde etmiştir. 

 

Figure 2. General diagram of the study (Çalışmanın genel diyagramı) 

Highlights (Önemli noktalar)  

 LSTM Transformer+RNN model achieved superior performance with MSE of 

3.5691×10⁻⁹ and R² score of 0.9999987 for earthquake time-series forecasting. / LSTM 

Transformer+RNN modeli, deprem zaman serisi tahmini için 3.5691×10⁻⁹ MSE ve 

0.9999987 R² skoru ile üstün performans elde etti. 

 Global broadband teleseismic dataset from USGS containing 1000 seismic records was 

utilized for comprehensive model training and validation. / Kapsamlı model eğitimi ve 

doğrulama için 1000 sismik kayıt içeren USGS küresel geniş bant telesismik veri seti 

kullanıldı. 

 Novel integration of Transformer architecture with LSTM and RNN demonstrates 

effectiveness in capturing long-range dependencies in seismic data. / Transformer 

mimarisinin LSTM ve RNN ile yeni entegrasyonu, sismik verilerdeki uzun menzilli 

bağımlılıkları yakalamada etkinlik gösterdi. 

 Results provide significant implications for earthquake early warning systems and real-

time seismic monitoring applications. / Sonuçlar, deprem erken uyarı sistemleri ve gerçek 

zamanlı sismik izleme uygulamaları için önemli çıkarımlar sunmaktadır. 

Aim (Amaç): To develop and evaluate deep learning models for earthquake time-series forecasting 

using global teleseismic data, specifically analyzing the Pazarcık earthquake sequence. / Küresel 

telesismik verileri kullanarak deprem zaman serisi tahmini için derin öğrenme modelleri 

geliştirmek ve değerlendirmek, özellikle Pazarcık deprem dizisini analiz etmek. 

Originality (Özgünlük): This study presents the first comprehensive comparison of LSTM, 

Transformer, and hybrid architectures for earthquake waveform prediction using global USGS 

teleseismic data. / Bu çalışma, küresel USGS telesismik verileri kullanarak deprem dalga formu 

tahmini için LSTM, Transformer ve hibrit mimarilerin ilk kapsamlı karşılaştırmasını sunmaktadır. 

Results (Bulgular): LSTM Transformer+RNN model achieved the lowest error rates (MSE: 

3.5691×10⁻⁹, MAE: 4.5421×10⁻⁵) and highest accuracy (R²: 0.9999987) among tested 

architectures. / LSTM Transformer+RNN modeli, test edilen mimariler arasında en düşük hata 

oranlarını (MSE: 3.5691×10⁻⁹, MAE: 4.5421×10⁻⁵) ve en yüksek doğruluğu (R²: 0.9999987) elde 

etti. 

Conclusion (Sonuç): The hybrid LSTM Transformer+RNN architecture demonstrates superior 

capability for seismic waveform prediction, offering promising applications for earthquake early 

warning systems. / Hibrit LSTM Transformer+RNN mimarisi, sismik dalga formu tahmini için 

üstün yetenek göstererek deprem erken uyarı sistemleri için umut verici uygulamalar sunmaktadır. 
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Abstract 

The Earth's internal structure and mitigating seismic hazards are significant for understanding 

earthquake prediction and seismic wave analysis. In this study, we studied with different deep 

learning models for earthquake time series prediction using Broadband Teleseismic Data from 

the USGS database. This dataset consists of 1000 seismic records in SAC format with long-period 

seismic waves from global earthquakes. This study aimed to test LSTM and RNN models with 

LSTM Transformer to predict the next time step based on previous seismic waves. In this study, 

model performances was evaluated with Mean Square Error (MSE), Mean Absolute Error (MAE) 

and R² Score. In conclusion, the LSTM Transformer+RNN model achieves the lowest error rates 

and presents its effectiveness in learning both short-term dependencies and long-term correlations 

in seismic data. At the same time, this study can also contribute to the advancement of deep 

learning applications in seismology and the improvement of the prediction capabilities of 

earthquake monitoring systems. 
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Öz 

Dünya'nın iç yapısını anlamak ve sismik tehlikeleri azaltmak için deprem tahmini ve sismik dalga 

analizlerinin yapılması büyük önem taşımaktadır. Bu çalışmada, USGS veritabanından elde 

edilen Geniş Bant Teleseismik Veriler kullanılarak deprem zaman serisi tahmini için farklı derin 

öğrenme modelleri uygulanmıştır. Veri seti, küresel depremlerden gelen uzun dönemli sismik 

dalgaları yakalayan 1000 adet SAC formatında sismik kayıttan oluşmaktadır. Çalışmanın amacı, 

önceki sismik dalgaları temel alarak bir sonraki zaman adımını tahmin etmek için LSTM, LSTM-

Transformer ve LSTM-Transformer-RNN modellerinin performansını karşılaştırmaktır. Model 

performansları, Ortalama Karesel Hata (MSE), Ortalama Mutlak Hata (MAE) ve R² skoru 

kullanılarak değerlendirilmiştir. Elde edilen sonuçlar, LSTM-Transformer-RNN modelinin en 

düşük hata oranlarına ulaştığını ve sismik verilerde hem kısa vadeli bağımlılıkları hem de uzun 

vadeli korelasyonları öğrenmede etkin olduğunu göstermektedir. Bu çalışma, derin öğrenme 

uygulamalarının sismolojide ilerlemesine ve deprem izleme sistemlerinin tahmin yeteneklerinin 

geliştirilmesine katkı sağlayabilir. 

 

1. INTRODUCTION (GİRİŞ) 

Earthquakes are disasters that cause major 

destructive disasters with seismic signals caused by 

sudden ground oscillations [1]. On February 6, 

2023, at 04:17 local time, a devastating earthquake 

with a magnitude of 7.7 struck Kahramanmaraş, 

Turkey. Approximately nine hours later, another 

7.6-magnitude earthquake occurred in the same 

region, followed by over 1,000 aftershocks, some 

exceeding magnitude 6. According to official 

reports from AFAD and USGS, these earthquakes 

are among the most destructive in Turkey’s history, 
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causing severe damage with over 50,000 casualties 

and hundreds of thousands of injuries [2,3].  

The global significance of this problem is further 

highlighted by similar large-scale earthquakes, such 

as the 2011 Tōhoku earthquake in Japan (Mw 9.0) 

and the 2010 Maule earthquake in Chile (Mw 8.8), 

both of which resulted in severe human and 

economic losses [4,5]. These events demonstrate 

the universal need for more accurate prediction 

methods. Traditional approaches for earthquake 

magnitude prediction are based on physical models 

and statistical methods; however, these techniques 

often have difficulty capturing nonlinear and 

complex patterns in seismic activities. Recent 

advancements in deep learning have introduced 

more robust predictive models capable of learning 

from large-scale seismic datasets. In particular, 

Recurrent Neural Networks (RNNs) and 

Transformer-based architectures can give 

promising results in capturing temporal 

dependencies in seismic signals.  

This study contributes to the literature by utilizing 

Broadband Teleseismic Data obtained from the 

USGS to train deep learning-based regression 

models for earthquake magnitude prediction. 

Unlike prior studies that rely on region-specific data 

or shallow learning methods, our approach 

leverages a global dataset and advanced 

architectures, thereby offering improved 

generalization and accuracy in magnitude 

estimation. 

2. MATERIALS AND METHODS (MATERYAL 

VE METOD) 

In this study, we used a dataset of seismic 

waveforms recorded during the Mw 7.8 Pazarcık 

earthquake on February 6, 2023, consisting of 1,000 

SAC-formatted seismic records obtained from the 

USGS, primarily collected through the Global 

Seismographic Network (GSN) and selected ANSS 

stations were used in this study [6]. It was in SAC 

(Seismic Analysis Code) format which includes 

broadband teleseismic waveforms and the SAC files 

contain time-series data representing ground motion 

with metadata such as station information, sampling 

rate and the details of events. 

2.1.  DATASET AND PREPROCESSING 
(Veriseti ve Önişleme) 

The raw seismic data were preprocessed to remove 

noise and normalize the amplitude values. A band-

pass filter (0.1 Hz to 1.0 Hz) was applied to 

eliminate low-frequency and high-frequency noise. 

Then, the MinMaxScaler from the scikit-learn 

library was used to normalize to ensure that all 

values were scaled between 0 and 1. This 

normalization step is crucial for improving the 

convergence of the deep learning model during 

training.    

In this study, all measurements and data are 

processed using the International System of Units 

(SI). The parameters of the data used in the study 

are given in the Table 1. The seismic data, which are 

read from the SAC files, are represented in amperes 

per meter (A/m) for magnetic field strength and 

teslas (T) for magnetic flux density. The time-series 

data extracted from the seismic recordings are 

normalized using the MinMaxScaler, where the data 

values are scaled between 0 and 1. The deep 

learning models (LSTM, RNN) use these 

normalized data for training and prediction and the 

evaluation metrics (e.g., Mean Squared Error - 

MSE, Mean Absolute Error - MAE) are computed 

without changing units, as the data is already 

normalized. For data storage, both SI and English 

units are used when required (e.g., "10 Gb/cm² (100 

Gb/in²)"). 

Table 1. Key parameters of the seismic dataset 

(Sismik verisetindeki anahtar parametreler) 

Parameter Value 

Network IU 

Station MACI 

Location 00 

Channel BH2 

Start Time 2023-02-

06T01:17 

End Time 2023-02-

06T02:07 

Sampling Rate 40.0Hz 

Sample Interval  0.025 seconds 

Number of samples 120,000 

Calibration Factors 1.0 

Station Latitude 28.2502° 

Station Longitude -16.5082° 

Station Elevation  1674.0 meters 

Component Azimuth  81.0° 

Component Inclination 90.0° 

For the seismic data processing, the Matplotlib 

library is used for visualization of the seismic 

waveforms, where the plots are saved in PNG 

format which is represented in Figure 1. 
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Figure 1. Sample seismic waveforms with PNG 

format (PNG formatında örnek sismik dalga 

formları) 

Each plot corresponds to a seismic recording file 

and the output is stored in a specified directory. The 

training and testing of the machine learning models, 

such as LSTM and RNN are performed with input 

data in the form of 3D arrays (samples, time steps, 

features). 

2.2.  PROPOSED SYSTEM (Önerilen Sistem) 

The overall framework of the proposed system is 

illustrated in Figure 2. ) Three different deep 

learning architectures were implemented and 

compared in this study: LSTM, LSTM + 

Transformer and LSTM + Transformer+RNN. The 

details of each architecture are described below.  

SAC data provided by the United States Geological 

Survey (USGS) is used in this study. This dataset 

consists of seismic waveform time series that 

represent ground motion generated by the Mw 7.8 

Pazarcık earthquake. The dataset serves as the 

primary source for model training and evaluation. 

The proposed deep learning-based framework 

shows significant potential for improving 

earthquake magnitude prediction.  

Furthermore, the evaluation results are presented in 

a comparative format, supported by quantitative 

metrics such as RMSE, MAE and R² which are 

summarized in Table 2. This comparative 

discussion highlights the relative strengths of 

different models and provides a clearer 

understanding of the performance improvements 

achieved.  

Data Preprocessing (Densifying, Filtering, 

Normalization): Densifying: Filling in missing data 

or condensing the dataset. Filtering: Noisy or 

anomalous data is cleaned. Normalization: Scaled 

the data to a specific range (e.g. 0-1). Purpose: To 

make the data suitable for model training.  

Model training: LSTM: Used to learn long 

dependencies in time series data. 

LSTM+Transformer: Used to capture both local 

(LSTM) and global (Transformer) dependencies 

and to use in time series data. RNN: Used for time 

series problems.  

Model evaluation: MSE (Mean Squared Error): 

Measures how far the predictions are from the true 

values. MAE (Mean Absolute Error): Gives the 

absolute average of the prediction errors. R² (R-

squared): It presents how well the model explains 

the data. Purpose: To compare the performance of 

the models quantitatively.  

Results: LSTM Model: It achieved 2.669 × 10⁻⁹ 

MSE and 3.01 × 10⁻⁵ MAE values. LSTM + 

Transformer Model: It achieved 3.63 × 10⁻⁸ MSE, 

1.20 × 10⁻⁴ MAE and 0.99999 R² score. LSTM 

Transformer+RNN Model: It recorded 3.57 × 10⁻⁹ 

MSE, 3.48 × 10⁻⁵ MAE and 0.999999 R² score.  

 The results indicate that hybrid models combining 

recurrent and transformer-based architectures can 

effectively capture complex patterns in seismic 

data. These findings highlight the substantial 

potential of deep learning approaches in earthquake 

magnitude estimation and contribute to advancing 

research in seismic prediction. 

 

Figure 2. General diagram of the study (Çalışmanın 

genel diyagramı) 

2.3. MODEL TRAINING AND EVALUATION 
(Model eğitimi ve değerlendirmesi)  

In this study, the Adam optimizer with Mean 

Squared Error (MSE) as the loss function was used 

to train all models. Early stopping and learning rate 

reduction mechanisms were implemented to prevent 

overfitting to improve training efficiency: Early 

Stopping: It shows the validation loss and stops 

training if no improvement is observed for 5 

consecutive epochs. ReduceLROnPlateau: It 

reduces the learning rate by a factor of 0.5 if the 

validation loss does not improve for 3 consecutive 

epochs. The data set of this study was split into 

training and testing sets as 80% of the data used for 

training and 20% for testing procedure. Each model 

was trained for a maximum of 50 epochs with a 

batch size of 32. The training process was presented 

using validation loss to ensure generalization. After 

training process, the models' performance was 

evaluated using the test dataset. As a result, the 

predicted values were compared to the actual 
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values, then the following performance metrics 

were calculated: Mean Absolute Error (MAE): It is 

the average absolute difference between predicted 

and actual values.  Mean Squared Error (MSE): It is 

the the average squared difference between 

predicted and actual values. R² Score: It is the 

proportion of variance in the dependent variable that 

is predictable from the independent variable. 

2.3.1. LSTM MODEL (LSTM modeli) 

The LSTM model was designed to capture temporal 

dependencies in the seismic time-series data. The 

architecture consists of the following layers. Figure 

3. shows the LSTM model architecture. Input 

Layer: It accepts input with shape (None, 20, 1), 

where 20 is the window size and 1 is the number of 

features. LSTM L1: 100 units with 

return_sequences=True. LSTM L2: 50 units with 

return_sequences=False. Dense Layer: A single unit 

for regression output. The total number of trainable 

parameters in this model is 71,051. 

 

Figure 3. LSTM Diagram (LSTM diyagramı) 

2.3.2. LSTM + TRANSFORMER MODEL 
(LSTM+TRANSFORMER) 

To enhance the model's ability to capture long-range 

dependencies, a hybrid architecture combining 

LSTM and Transformer was implemented. Figure 

4. shows the LSTM model architecture. Input 

Layer: Accepts input with shape (None, None, 1). 

LSTM Layer: 64 units with return_sequences=True. 

Multi-Head Attention Layer: 64 units with 8 

attention heads. Layer Normalization: Applied after 

the attention layer.  Global Average Pooling 1D: 

Reduces the sequence dimension. Dense Layer: A 

single unit for regression output. The total number 

of trainable parameters in this model is 83,457. 

Figure 4. LSTM + Transformer model diagram 
(LSTM+Transformer modeli diyagramı) 

2.3.3. RNN MODEL (RNN modeli) 

Recurrent neural networks (RNN) is one of the most 

widely used method for time series forecasting. 

RNN is an artificial neural network in which nodes 

are connected in a loop and the internal state of the 

network can display dynamic temporal behavior [7]. 

Figure 5. shows the LSTM model architecture Input 

Layer: Accepts input with shape (None, None, 1). 

Simple RNN Layer: 64 units with 

return_sequences=True.Multi-Head Attention 

Layer: 64 units with 8 attention heads. Layer 

Normalization: Applied after the attention layer. 

Global Average Pooling 1D: Reduces the sequence 

dimension. Dense Layer: A single unit for 

regression output. The total number of trainable 

parameters in this model is 70,785. 

Figure 5. RNN MODEL (RNN modeli) 

3.  FINDINGS AND DISCUSSION (BULGULAR 

VE TARTIŞMA) 

In this study, three deep learning models LSTM, 

LSTM + Transformer and LSTM + 

Transformer+RNN were developed and evaluated 

for predicting seismic waveforms following the 

Mw7.8 Pazarcık earthquake. The models were 

trained on broadband teleseismic data obtained 

from the USGS, preprocessed to remove noise and 

normalize amplitude values. The key findings are as 

follows:  

Model Performance: The LSTM model achieved a 

Mean Squared Error (MSE) of 2.6694e-09, a Mean 

Absolute Error (MAE) of 3.0116e-05 and an R² 

score of 0.9999993 on the test dataset. The LSTM + 

Transformer model demonstrated slightly lower 

performance, with an MSE of 3.6322e-08, an MAE 

of 0.0001200 and an R² score of 0.9999950. The 

LSTM+RNN model showed the best performance 

among the three, with an MSE of 3.5691e-09, an 

MAE of 4.5421e-05 and an R² score of 0.9999987. 

The LSTM Transformer+RNN model the extremely 

low MSE and MAE values, along with the high R² 

scores, indicate that all models are highly accurate 

in predicting seismic waveforms.  

Training Dynamics: LSTM model converged in 18 

epochs, LSTM + Transformer model converged in 

21 epochs and LSTM + Transformer+RNN model 

converged in 13 epochs. This also shows that 

LSTM+Transformer+RNN model trained faster. 



Şahin, Çankaya / GU J Sci, Part C, 13(3): 1253-1260 (2025) 

1257 
 

Learning rate was kept at 1.0e-04 throughout the 

training process and no significant fluctuation was 

observed. Visualization of Predictions: Predicted 

waveforms closely matched the actual waveforms 

for all models, especially for 

LSTM+Transformer+RNN model. For example, 

RNN model achieved a nearly perfect R² score of 

0.9999987 indicating almost perfect match between 

predicted and actual values. LSTM model also 

showed an outstanding performance with an R² 

score of 0.9999993, while LSTM + Transformer 

model achieved an R² score of 0.9999950. The 

results of this study are consistent with previous 

research demonstrating the effectiveness of deep 

learning models in seismic data analysis. Time 

series prediction features are usually obtained by 

shifting the time window and the prediction results 

are influenced by the sequence of events. The use of 

LSTM for time series prediction in seismology has 

been widely documented with studies such as [8] 

reporting similar success in capturing temporal 

dependencies. The deep NN model has a recurrent 

Long Short Term Memory (LSTM) part that 

accounts for temporal dependencies between 

earthquakes and a convolutional part that accounts 

for spatial dependencies. The results demonstrate 

that NNs-based models outperform baseline 

feature-based models, which also account for 

spatio-temporal dependencies between different 

earthquakes. The other benefit of combining LSTM 

and RNNs is to achieve both high accuracy and 

computational efficiency [9]. Time series prediction 

is a critical component in many fields, such as the 

geosciences [10]. However, due to limited 

measurement conditions, we can usually only obtain 

short-term time series samples. On the one hand, 

since a short-term data set does not have enough 

information, accurate multi-step forward prediction 

using a short-term time series becomes a 

challenging task [11]. Transformer, RNN, and 

LSTM models are therefore used in the study. 

3.1. MODEL PERFORMANCE (Model performansı) 

The LSTM Transformer+RNN model achieved the 

best performance, with an MSE of 3.5691e-09, an 

MAE of 4.5421e-05 and an R² score of 0.9999987. 

This indicates that the hybrid architecture 

combining LSTM Transformer and RNN is highly 

effective in capturing both local and global 

dependencies in seismic data. The Actual and 

Estimated Values graph is shown in Figure 6 and the 

training graph is shown in Figure 7. 

 

Figure 6. Actual and Estimated Values graph 

+RNN for LSTM T. + RNN model (Gerçek ve 

Tahmini Değerler grafiği +LSTM T için RNN. + RNN 

modeli) 

 

     Figure 7. Training graph of LSTM T.+RNN 

Model (LSTM T+RNN. Modelinin eğitim grafiği) 

The LSTM model also performed exceptionally 

well, with an MSE of 2.6694e-09, an MAE of 

3.0116e-05 and an R² score of 0.9999993, 

demonstrating the robustness of LSTM in handling 

temporal dependencies. The Actual and Estimated 

Values graph is shown in Figure 8 and the training 

graph is shown in Figure 9. 
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Figure 8. Actual and Estimated Values graph for 

LSTM model (LSTM modu için Gerçek ve Tahmini 

Değerler grafiği) 

 

 Figure 9 Training graph of LSTM model         

(LSTM eğitim grafiği) 

The LSTM + Transformer model showed slightly 

lower performance, with an MSE of 3.6322e-08, an 

MAE of 0.0001200 and an R² score of 0.9999950, 

but still provided accurate predictions, highlighting 

the potential of Transformer-based approaches for 

seismic data analysis. The Actual and Estimated 

Values graph is shown in Figure 10 and the training 

graph is shown in Figure 11. 

 

 

Figure 10. Actual and Estimated Values  LSTM T. 

model (Gerçek ve Tahmini Değerler LSTM T. modeli) 

 

Figure 11. Training graph of LSTM T. model 
(LSTM eğitim grafiği) 

3.2. TRAINING EFFICIENCY (Eğitim performansı) 

The LSTM + Transformer+RNN model not only 

achieved the highest accuracy but also 

demonstrated faster convergence, requiring only 13 

epochs to train, compared to 18 epochs for the 

LSTM model and 21 epochs for the model. This 

suggests that the LSTM Transformer+RNN 

architecture is both efficient and effective for 

seismic waveform prediction. The Model Values 

graph is shown in Table 2. 
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Table 2.  Different Deep Learning Models Result 

Values (Farklı Derin Öğrenme Modelleri Sonuç Değerleri) 

Model  MSE MAE R² Epoch 

LSTM 2.6694e-

09 

3.0116e-

05  

0.999

9993

  

18 

LSTM + 

Transfor

mer 

3.6322e-

08 

0.000120

0  

0.999

9950

  

21 

LSTM 

Transfor

mer+ 

RNN 

3.5691e-

09  

4.5421e-

05 

0.999

9987 

13  

 

4. CONCLUSION (SONUÇLAR) 

This study investigates the effectiveness of three 

deep learning models—LSTM, LSTM + 

Transformer and LSTM Transformer+RNN—for 

forecasting seismic waveforms following the Mw 

7.8 Pazarcık earthquake. The models were trained 

on broadband teleseismic data from the USGS 

which were preprocessed to remove noise and 

normalize amplitude values. The results of this 

study have significant implications for earthquake 

early warning systems and seismic data analysis. 

The LSTM Transformer+RNN model demonstrated 

the highest accuracy and efficiency, making it a 

strong candidate for real-time applications as it 

achieved the lowest MSE (3.5691 × 10⁻⁹) and MAE 

(4.5421 × 10⁻⁵) values, along with the highest R² 

score (0.9999987), outperforming both the LSTM 

and LSTM + Transformer models. Furthermore, the 

integration of Transformers with LSTM and RNN 

models presents a novel approach for capturing 

long-range dependencies in seismic data. In 

conclusion, this study highlights the considerable 

potential of deep learning models for seismic 

waveform prediction. Future research could focus 

on enhancing these models using explainable AI 

(XAI) techniques [12, 13] to enable accurate and 

reliable automatic detection of seismic processes. 
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