h Hacettepe Journal of Mathematics and Statistics Volume 46 (3) (2017), 389-395

The influence of partially τ -quasinormal subgroups on the structure of finite groups

Changwen Li^{*}, Shouhong Qiao[†] and Jianhong Huang[‡]

Abstract

A subgroup H of a group G is said to be τ -quasinormal in G if H permutes with every Sylow subgroup Q of G such that (|H|, |Q|) = 1 and $(|H|, |Q^G|) \neq 1$; H is called partially τ -quasinormal in G if G has a normal subgroup T such that HT is S-quasinormal in G and $H \cap T \leq H_{\tau G}$, where $H_{\tau G}$ is the subgroup generated by all those subgroups of H which are τ -quasinormal in G. In this paper, we investigate the influence of some partially τ -quasinormal subgroups on the structure of finite group. Some new characterizations of p-supersoluble and p-nilpotent groups are obtained.

Keywords: S-quasinormal, partially τ -quasinormal, p-supersoluble, p-nilpotent 2000 AMS Classification: 20D10; 20D20

Received: 13.06.2015 Accepted: 19.07.2016 Doi: 10.15672 /HJMS.2016.387

1. Introduction

All groups that we consider will be finite. We use standard notions and notation, as in [2] and [4]. G always denotes a finite group, |G| is the order of G and p denotes a prime. The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G (see [5, X, 13]). The generalized p-Fitting subgroup $F_p^*(G)$ is defined to be as the normal subgroup of G such that $F^*(G/O_{p'}(G)) = F_p^*(G/O_{p'}(G))$ (see [1]).

A subgroup H of G is said to be S-quasinormal in G if H permutes with every Sylow subgroup of G (see [6]). As a generalization of S-quasinormality, a subgroup H of G is

^{*}School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China Email: lcw2000@126.com

[†]School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510006, China

[‡]School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, 221116, China The project is supported by the Natural Science Foundation of China (No: 11401264 and 11571145) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

said to be τ -quasinormal in G if H permutes with every Sylow subgroup Q of G such that (|H|, |Q|) = 1 and $(|H|, |Q^G|) \neq 1$ (see [9]). On the other hand, Wang extended normality as follows: a subgroup H of G is said to be c-normal in G if there exists a normal subgroup T of G such that HT = G and $H \cap T \leq H_G$, where H_G is the maximal normal subgroup of G contained in H (see [12]). In order to unify the above mentioned subgroups, the authors in [8] introduced the following concept:

1.1. Definition. A subgroup H of G is partially τ -quasinormal in G if there exists a normal subgroup T of G such that HT is S-quasinormal in G and $H \cap T \leq H_{\tau G}$, where $H_{\tau G}$ is the subgroup generated by all those subgroups of H which are τ -quasinormal in G.

G is said to be p-nilpotent if it has a normal p-complement and G is said to be psupersoluble if every p-chief factor of G is cyclic. It is easy to see that if G is p-nilpotent then G is also *p*-supersoluble. The aim of this paper is to take the above mentioned studies further. More precisely, we investigate the p-supersolubility and p-nilpotency of finite groups using some partially τ -quasinormal subgroups.

2. Preliminaries

2.1. Lemma ([8, Lemma 2.3]). Let H be a subgroup of G. Then

(1) If H is partially τ -quasinormal in G and $H \leq K \leq G$, then H is partially τ quasinormal in K.

(2) Suppose that $N \leq G$ and $N \leq H$. If H is a p-group and H is partially τ quasinormal in G, then H/N is partially τ -quasinormal in G/N.

(3) Suppose that H is a p-subgroup of G and N is a normal p'-subgroup of G. If H is partially τ -quasinormal in G, then HN/N is partially τ -quasinormal in G/N.

(4) If H is partially τ -quasinormal in G and $H \leq K \leq G$, then there exists $T \leq G$ such that HT is S-quasinormal in $G, H \cap T \leq H_{\tau G}$ and $HT \leq K$.

2.2. Lemma ([8, Theorem 1.4]). Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with (|G|, p-1) = 1. Then G is p-nilpotent if and only if every maximal subgroup of P is partially τ -quasinormal in G.

2.3. Lemma ([10, Theorem A]). If H is an S-quasinormal p-subgroup of G for some prime p, then $N_G(H) \ge O^p(G)$.

2.4. Lemma. If H is a τ -quasinormal p-subgroup of G for some prime p and $O_{p'}(G) = 1$, then HQ = QH for every Sylow q-subgroup of $G \ (p \neq q)$.

Proof. Since $O_{p'}(G) = 1$, it follows that $p||Q^G|$. Consequently, HQ = QH from the definition of τ -quasinormal subgroup.

2.5. Lemma ([11, Theorem C]). Let E be a normal subgroup of G. If every G-chief factor of $F^*(E)$ is cyclic, then every G-chief factor of E is also cyclic.

2.6. Lemma ([8, Theorem 1.6]). Let E be a normal subgroup of G. Suppose that for each $p \in \pi(E)$, every maximal subgroup of non-cyclic Sylow p-subgroup P of E is partially τ -quasinormal in G. Then every G-chief factor of E is cyclic.

2.7. Lemma ([7, Lemma 2.6]). Assume that G is p-supersoluble and P a Sylow psubgroup of G. Then $PO_{p'}(G)$ is normal in G.

2.8. Lemma ([1, Lemma 2.10]). Let p be a prime divisor of |G|.

(1) $Soc(G) \le F_p^*(G)$. (2) $O_{p'}(G) \le F_p^*(G)$.

In fact, $F^*(G/O_{p'}(G)) = F_p^*(G/O_{p'}(G)) = F_p^*(G)/O_{p'}(G).$ (3) If $F_p^*(G)$ is *p*-soluble, then $F_p^*(G) = F_p(G).$

2.9. Lemma ([8, Lemma 2.10]). Let N be a non-identity normal p-subgroup of G. If N is elementary and every maximal subgroup of N is partially τ -quasinormal in G, then some maximal subgroup of N is normal in G.

3. Results On *p*-supersolubility

3.1. Theorem. Let L be a normal subgroup of G such that G/L is p-supersoluble, where p is a prime divisor of |L| with (p-1,|L|) = 1. Suppose that for a Sylow p-subgroup P of L, all maximal subgroups of P are partially τ -quasinormal in G. Then G is p-supersoluble.

Proof. Suppose that this theorem is false and consider a counterexample (G, L) for which |G||L| is minimal.

(1) L is p-nilpotent.

By Lemma 2.1, it is easy to see that all maximal subgroups of P are partially τ -quasinormal in L. Applying Lemma 2.2, L is p-nilpotent.

(2) P = L.

According to Step (1), we know $O_{p'}(L)$ is the normal Hall p'-subgroup of L. Assume that $O_{p'}(L) \neq 1$. In view of Lemma 2.1, the hypothesis holds for $(G/O_{p'}(L), L/O_{p'}(L))$. Hence, by the minimal choice of (G, L), the theorem is true for $(G/O_{p'}(L), L/O_{p'}(L))$ and so $G/O_{p'}(L)$ is *p*-supersoluble. Consequently, G is *p*-supersoluble. This contradiction shows that $O_{p'}(L) = 1$. Hence L is a normal *p*-subgroup of G.

(3) The final contradiction.

Applying Lemma 2.6, all G-chief factors of L are cyclic. From the p-supersolubility of G/L, we have G is p-supersoluble, a contradiction.

We can choose L to get some results of special interest. For example, if we choose L = G' or $L = G^{U_p}$, then we obtain the following criteria for *p*-supersolubility of groups, where U_p is the class of all *p*-supersoluble groups and G^{U_p} is the U_p -residual of G, i.e., the intersection of all normal subgroups N of G with $G/N \in U_p$.

3.2. Corollary. Let p be a prime divisor of $|G^{U_p}|$ with $(p-1, |G^{U_p}|) = 1$. Suppose that for a Sylow p-subgroup P of G^{U_p} , all maximal subgroups of P are partially τ -quasinormal in G. Then G is p-supersoluble.

3.3. Corollary. Let p be a prime divisor of |G'| with (p-1, |G'|) = 1. Suppose that for a Sylow p-subgroup P of G', all maximal subgroups of P are partially τ -quasinormal in G. Then G is p-supersoluble.

3.4. Theorem. Let p be a fixed prime divisor of |G| and L a p-soluble normal subgroup of G such that G/L is p-supersoluble. If all maximal subgroups of $F_p(L)$ containing $O_{p'}(L)$ are partially τ -quasinormal in G, then G is p-supersoluble.

Proof. In fact, $F_p(L) = O_{p'p}(L)$. Firstly, assume that $O_{p'}(L) \neq 1$. We consider the factor group $G/O_{p'}(L)$. Obviously, $(G/O_{p'}(L))/(L/O_{p'}(L)) \cong G/L$ is *p*-supersoluble. Since $O_{p'}(L/O_{p'}(L)) = 1$, we have $F_p(L/O_{p'}(L)) = O_p(L/O_{p'}(L)) = F_p(L)/O_{p'}(L)$. Let $M/O_{p'}(L)$ be a maximal subgroup of $F_p(L/O_{p'}(L))$. Then *M* is a maximal subgroup of $F_p(L)$ containing $O_{p'}(L)$. Since *M* is partially τ -quasinormal in *G*, we have $M/O_{p'}(L)$ is partially τ -quasinormal in $G/O_{p'}(L)$ satisfies the hypotheses of the theorem. By induction, $G/O_{p'}(L)$ is *p*-supersoluble and so is *G*.

Secondly, assume that $O_{p'}(L) = 1$. Consequently, $F_p(L) = O_p(L)$. By hypothesis, all maximal subgroups of $O_p(L)$ are partially τ -quasinormal in G. By virtue of Lemma

2.6, it follows that all G-chief factors of $O_p(L)$ are cyclic. Since L is p-soluble, we have $F^*(L) = F_p^*(L) = F_p(L) = O_p(L)$ by Lemma 2.8 and so every G-chief factor of $F^*(L)$ is cyclic. Applying Lemma 2.5, every G-chief factor of L is cyclic. Since G/L is p-supersoluble, we have G is p-supersoluble \Box

3.5. Corollary. Let G be a p-soluble group, where p is a fixed prime divisor of |G|. Then G is p-supersoluble if and only if all maximal subgroups of $F_p(G^{U_p})$ containing $O_{p'}(G^{U_p})$ are partially τ -quasinormal in G.

3.6. Corollary. Let G be a p-soluble group, where p is a fixed prime divisor of |G|. If all maximal subgroups of $F_p(G)$ containing $O_{p'}(G)$ are partially τ -quasinormal in G, then G is p-supersoluble.

Using the arguments as in the proof of Theorem 3.4, we can prove the following Theorem.

3.7. Theorem. Let p be a fixed prime dividing the order of G and L a p-soluble normal subgroup of G such that G/L is p-supersoluble. If all maximal subgroups of Sylow p-subgroups of $F_p(L)$ are partially τ -quasinormal in G, then G is p-supersoluble.

3.8. Corollary. Let G be a p-soluble group, where p is a fixed prime divisor of |G|. If all maximal subgroups of Sylow p-subgroups of $F_p(G)$ are partially τ -quasinormal in G, then G is p-supersoluble.

3.9. Theorem. Let p be a fixed prime divisor of |G| and L a p-soluble normal subgroup of G such that G/L is p-supersoluble. If there exists a Sylow p-subgroup P of L such that every maximal subgroup of P is partially τ -quasinormal in G, then G is p-supersoluble.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

(1) G is p-soluble.

This follows directly from the *p*-solubility of *L* and the *p*-supersolubility of G/L. (2) $O_{p'}(G) = 1$.

Denote $T = O_{p'}(G)$. If $T \neq 1$, we consider the factor group G/T. Obviously, PT/T is a Sylow *p*-subgroup of LT/T and $(G/T)/(LT/T) \cong G/LT \cong (G/L)/(LT/L)$ is *p*-supersoluble by the *p*-supersolubility of G/L. Let M/T be a maximal subgroup of PT/T. We may assume that $M = P_1T$, where P_1 is a maximal subgroup of *P*. Since P_1 is partially τ -quasinormal in *G*, it follows that P_1T/T is partially τ -quasinormal in G/T by Lemma 2.1(3). The minimal choice of *G* yields that G/T is *p*-supersoluble, and so is *G*, a contradiction.

(3) If N is a minimal normal subgroup of G, then N is an elementary abelian p-group. This follows from Steps (1) and (2).

(4) G has a unique minimal normal subgroup N contained in L such that G/N is p-supersoluble.

Let N be a minimal normal subgroup of G contained in L. Obviously, $N \leq P$ and P/N is a Sylow p-subgroup of L/N. Let P_1/N be a maximal subgroup of P/N. Then P_1 is a maximal subgroup of P. By hypothesis, P_1 is partially τ -quasinormal in G and so P_1/N is partially τ -quasinormal in G/N by Lemma 2.1(2). Since $(G/N)/(L/N) \cong G/L$ is p-supersoluble, G/N satisfies all the hypotheses of our theorem. It follows that G/N is p-supersoluble by the minimality of G. Noticing that the class of all p-supersoluble groups is a saturated formation, we have N is the unique minimal normal subgroup of G contained in L.

(5) N is not cyclic.

If N is cyclic, then G is p-supersoluble from the p-supersolubility of G/N, a contradiction.

392

(6) The final contradiction.

If N is contained in all maximal subgroups of G, then $N \leq \Phi(G)$. Since G/N is p-supersoluble, we have $G/\Phi(G)$ is p-supersoluble. Noticing that the class of all p-supersoluble groups is a saturated formation, it follows that G is p-supersoluble. This contradiction shows that there exists a maximal subgroup M of G such that G = NM and $N \cap M = 1$. Let G_p be a Sylow p-subgroup of G containing P. Then $G_p = N(G_p \cap M)$ and $G_p \cap M < G_p$. Take a maximal subgroup G_1 of G_p containing $G_p \cap M$ and set $P_1 = G_1 \cap P$. Then $|P : P_1| = |P : G_1 \cap P| = |PG_1 : G_1| = |G_p : G_1| = p$ and so P_1 is a maximal subgroup of P. By hypothesis, P_1 is partially τ -quasinormal in G. In view of Lemma 2.1(4), G has a normal subgroup T such that P_1T is S-quasinormal in $G, P_1 \cap T \leq (P_1)_{\tau G}$ and $P_1T \leq L$.

Firstly, we have $N \nsubseteq P_1$. If not, $P = P \cap G_p = P \cap NG_1 = N(G_1 \cap P) = NP_1 = P_1$, a contradiction.

Secondly, we have $N \cap P_1 \neq 1$. If not, $|N: P_1 \cap N| = |NP_1: P_1| = |P: P_1| = p$ and so $P_1 \cap N$ is a maximal subgroup of N. Therefore |N| = p, which contradicts Step (5).

Thirdly, we have T > 1. If not, T = 1 and P_1 is S-quasinormal in G. By Lemma 2.3, $O^p(G) \leq N_G(P_1)$. Since $P = G_p \cap L$, we have $P \leq G_p$ and so $P_1 = G_1 \cap P \leq G_p$. Hence P_1 is normal in $G_p O^p(G) = G$. Consequently, $P_1 \cap N \leq G$. Step (4) shows that $P_1 \cap N = 1$ or $N \leq P_1$, a contradiction.

Finally, we have $N \leq T$ by Step (4). Then $P_1 \cap N = (P_1)_{\tau G} \cap N$ from $P_1 \cap T \leq (P_1)_{\tau G}$. For any Sylow q-subgroup G_q of G $(p \neq q)$, $(P_1)_{\tau G}G_q = G_q(P_1)_{\tau G}$ by Lemma 2.4. Then $(P_1)_{\tau G} \cap N = (P_1)_{\tau G}G_q \cap N \leq G_q(P_1)_{\tau G}$. Obviously, $P_1 \cap N \leq G_p$. Therefore $P_1 \cap N$ is normal in G, a same contradiction as above.

3.10. Corollary. A *p*-soluble group G is *p*-supersoluble if and only if all maximal subgroups of any Sylow *p*-subgroup of G^{U_p} are partially τ -quasinormal in G.

3.11. Corollary. Let P be a Sylow p-subgroup of a p-soluble group G, where p is a fixed prime divisor of |G|. If all maximal subgroups of P are partially τ -quasinormal in G, then G is p-supersoluble.

4. Results On *p*-nilpotency

4.1. Theorem. Let p be a prime dividing the order of G and P a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and all maximal subgroups of P are partially τ -quasinormal in G, then G is p-nilpotent.

Proof. It is easy to see that the theorem holds when p = 2 by [8, Theorem 1.4], so it suffices to prove the theorem for the case of odd prime. Suppose that the theorem is false and let G be a counterexample of minimal order.

(1) G is not p-supersoluble.

If G is p-supersoluble, then $PO_{p'}(G)$ is normal in G in view of Lemma 2.7. It follows that

$$G/O_{p'}(G) = N_{G/O_{p'}(G)}(PO_{p'}(G)/O_{p'}(G)) = N_G(P)O_{p'}(G)/O_{p'}(G).$$

Since $N_G(P)$ is *p*-nilpotent, we have $G/O_{p'}(G)$ is also *p*-nilpotent. Consequently, G is *p*-nilpotent, a contradiction.

(2) G is not p-soluble.

By hypothesis, all maximal subgroups of P are partially τ -quasinormal in G. If G is p-soluble, then G is p-supersoluble by Corollary 3.11, contrary to Step (1).

(3) If K is a proper subgroup of G with $P \leq K < G$, then K is p-nilpotent.

It is easy to see that $N_K(P) \leq N_G(P)$ and hence $N_K(P)$ is *p*-nilpotent. By Lemma 2.1(1), all maximal subgroups of P are partially τ -quasinormal in K. Hence K satisfies the hypothesis of our theorem. The minimal choice of G implies that K is *p*-nilpotent. (4) $O_p(G) \neq 1$.

Let J(P) be the Thompson subgroup of P. Then $N_G(P) \leq N_G(Z(J(P))) \leq G$. If $N_G(Z(J(P))) < G$, then, in view of Step (3), $N_G(Z(J(P)))$ is p-nilpotent and so G is p-nilpotent by [3, Theorem 8.3.1], a contradiction. Hence $N_G(Z(J(P))) = G$, which shows that Z(J(P)) is a normal p-subgroup of G and so $O_p(G) \neq 1$.

(5) The final contradiction.

It is easy to see that the factor group $G/O_p(G)$ satisfies the hypothesis of our theorem. Now, by the minimality of G, we see that $G/O_p(G)$ is *p*-nilpotent. In particular, $G/O_p(G)$ is *p*-soluble and so is G, which contradicts Step (2).

4.2. Corollary. Let p be a prime dividing the order of G and L a normal subgroup of G such that G/L is p-nilpotent. Suppose that there exists a Sylow p-subgroup P of L such that all maximal subgroups of P are partially τ -quasinormal in G and $N_G(P)$ is p-nilpotent. Then G is p-nilpotent.

Proof. It is obvious that $N_L(P)$ is p-nilpotent and all maximal subgroups of P are partially τ -quasinormal in L. Applying Theorem 4.1, L is p-nilpotent. Let $L_{p'}$ be the normal Hall p'-subgroup of L. Obviously, $L_{p'}$ is a normal subgroup of G. If $L_{p'} \neq 1$, we consider the factor group $G/L_{p'}$. Firstly, $(G/L_{p'})/(L/L_{p'}) \cong G/L$ is p-nilpotent and all maximal subgroups of $PL_{p'}/L_{p'}$ are partially τ -quasinormal in $G/L_{p'}$ by Lemma 2.1(3). Secondly, $N_{G/L_{p'}}(PL_{p'}/L_{p'}) = N_G(P)L_{p'}/L_{p'}$ is p-nilpotent. Hence $G/L_{p'}$ satisfies the hypothesis of our corollary. By induction, $G/L_{p'}$ is p-nilpotent and so is G, as desired. Hence we may assume $L_{p'} = 1$, i.e., L = P. By hypothesis, $N_G(P) = G$ is p-nilpotent.

4.3. Theorem. Let p be a prime dividing the order of G and P a Sylow p-subgroup of G. If every maximal subgroup P_1 of P is partially τ -quasinormal in G and $N_G(P_1)$ is p-nilpotent, then G is p-nilpotent.

Proof. Assume that the assertion is false and let G be a counterexample of minimal order. Then:

(1) If $P \leq K < G$, then K is p-nilpotent.

By Lemma 2.1(1), every maximal subgroup P_1 of P is partially τ -quasinormal in K. Obviously, $N_K(P_1) \leq N_G(P_1)$. By hypothesis, we have $N_K(P_1)$ is *p*-nilpotent. Therefore, K satisfies the hypothesis of the theorem, and so K is *p*-nilpotent by the choice of G.

(2) $O_{p'}(G) = 1.$

If $O_{p'}(G) \neq 1$, we consider the factor group $G/O_{p'}(G)$. Obviously, $PO_{p'}(G)/O_{p'}(G)$ is a Sylow *p*-subgroup of $G/O_{p'}(G)$. Let $M/O_{p'}(G)$ be a maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$. We may assume that $M = P_1O_{p'}(G)$, where P_1 is a maximal subgroup of P. Since P_1 is partially τ -quasinormal in G, it follows that $P_1O_{p'}(G)/O_{p'}(G)$ is partially τ -quasinormal in $G/O_{p'}(G)$ by Lemma 2.1(3). It is easy to see that

$$N_{G/O_{p'}(G)}(P_1O_{p'}(G)/O_{p'}(G)) = N_G(P_1)O_{p'}(G)/O_{p'}(G)$$

is p-nilpotent. Hence $G/O_{p'}(G)$ satisfies the hypothesis of our theorem. The minimal choice of G yields that $G/O_{p'}(G)$ is p-nilpotent and so is G, a contradiction. (3) F(G) = P.

(5) I'(G) = I .

If $N_G(P) < G$, then $N_G(P)$ is *p*-nilpotent by Step (1). Applying Theorem 4.1, *G* is *p*-nilpotent. This contradiction implies *P* is normal in *G*. By Step (2), $F(G) = P = O_p(G)$.

(4) G is p-soluble.

This follows from Step (3) directly.

(5) Let N be a minimal normal subgroup of G. Then N < P.

In view of Steps (2) and (4), $N \leq P$. Assume that N = P. By hypothesis, every maximal subgroup of N is partially τ -quasinormal in G. By Lemma 2.9, |N| = p. This shows that the maximal subgroup of P is 1. By hypothesis, $G = N_G(1)$ is p-nilpotent, a contradiction.

(6) Final contradiction.

If N is a maximal subgroup of P, then, by hypothesis, $G = N_G(N)$ is p-nilpotent, a contradiction. Hence we may assume that $|P:N| \ge p^2$. By Lemma 2.1(2), it is easy to see that G/N satisfies the hypothesis of the theorem. Hence G/N is p-nilpotent by the minimal choice of G. Since the class of all p-nilpotent groups is a saturated formation, it follows that N is a unique minimal subgroup of G and $\Phi(G) = 1$. Consequently, F(G) = N. By Step (3), N = P, which contradicts step (5).

4.4. Corollary. Let p be a prime dividing the order of G and L a normal subgroup of G such that G/L is p-nilpotent. Suppose that there exists a Sylow p-subgroup P of L such that every maximal subgroup P_1 of P is partially τ -quasinormal in G and $N_G(P_1)$ is p-nilpotent. Then G is p-nilpotent.

Proof. Using the arguments as in the proof of Corollary 4.2, we may assume that L = P. Let V/P be the normal *p*-complement of G/P. By the Schur-Zassenhaus Theorem, there exists a Hall *p'*-subgroup $V_{p'}$ of *V* such that $V = P \rtimes V_{p'}$. Since *V* is *p*-nilpotent by Lemma 2.1(1) and Theorem 4.3, $V = P \times V_{p'}$. This induces that $V_{p'}$ is the normal *p*-complement of *G*. Therefore, *G* is *p*-nilpotent.

References

[1] A. Ballester-Bolinches, L. M. Ezquerro and A. N. Skiba, Local embeddings of some families of subgroups of finite group, Acta Math. Sin. (Engl. Ser.), 25 (2009), 869–882.

[2] K. Doerk and T. Hawkes, Finite solvable Groups, Walter de Gruyter, Berlin-New York, 1992.

[3] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.

[4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-New York, 1967.

[5] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin-New York, 1982.

[6] O. H. Kegel, Sylow Gruppen and subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221.

[7] B. Li, Finite groups with Π-supplemented minimal subgroups, Commun. Algebra, 41 (2013), 2060-2070.

[8] C. Li, X. Zhang and X. Yi, On partially τ -quasinormal subgroups of finite groups, Hacet. J. Math. Stat., 43 (2014), 953-961.

[9] V. O. Lukyanenko and A. N. Skiba, On weakly τ -quasinormal subgroups of finite groups, Acta Math. Hungar., 125 (2009), 237-248.

[10] P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285– 293.

 [11] A. N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, 215 (2011), 257-261.

[12] Y. Wang, C-normality and groups and its properties, J. Algebra, 180 (1996), 954-965.