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Squared radial Ornstein-Uhlenbeck processes and
inverse Laplace transforms of products of con�uent

hypergeometric functions
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Abstract

In this paper, we consider the squared radial Ornstein-Uhlenbeck pro-
cess and associated Kolmogorov backward equation (the Laguerre heat
equation). For this process, we obtain the Green function of the Laplace
transform of the transition density function in terms of the con�uent
hypergeometric functions and present new representations for the in-
verse Laplace transform of the products of con�uent hypergeometric
functions.
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1. Introduction

The so-called Ornstein-Uhlenbeck (OU) process Vt is de�ned by the following 2-
parameter Langevin equation

(1.1) dVt = −λVtdt+ γdBt, λ, γ > 0,

where Bt is the n-dimensional Brownian motion. The OU and associated processes
are intensively applied in the study of stochastic processes [2, 17, 25], astrophysics [10],
neurophysiology [16], �nancial mathematics [9,20,26], and the �rst passage time problems
[18].
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As a derivation of another stochastic process, by settingWt = ‖Vt‖2 in the OU process,
we can derive the squared radial Ornstein-Uhlenbeck process (SROU) of n-dimension as
follows

(1.2) dWt = 2γ
√
WtdBt + (γ2n− 2λWt)dt.

For this type of stochastic process, see [15, 19, 21, 29] for some properties and di�erent
applications.

In this paper, we intend to consider the transition distribution as P (w, t|w0) =
Pr{W (t) ≤ w|W (0) = w0} and study the associated partial di�erential equation (as Kol-
mogorov backward equation). This partial di�erential equation which can be presented
as a heat equation with the Laguerre type operator, is derived from SROU process for
the transition density function p(w, t|w0) = ∂

∂w
P (w, t|w0) and γ = λ = 1, [19]

(1.3) w0
∂2p

∂w2
0

+ (α+ 1− w0)
∂p

∂w0
=
∂p

∂t
, α =

n

2
− 1,

with an initial condition with respect to the Dirac delta function δ(.)

(1.4) p(w, t|w0) = δ(w − w0), t = 0.

The motivation of this paper is to �nd the Laplace transform of transition density
p(w, t|w0) and relate it to the con�uent hypergeometric functions. In this sense, we
present some new representations for the inverse Laplace transform of the products of
con�uent hypergeometric functions.

For this purpose, in Section 2 we recall some properties of the con�uent hypergeo-
metric functions, and in Section 3 we consider the exponential operators for solving the
Kolmogorov backward equation and obtaining its formal solution. Section 4 contains a
brief summary of the Green function of Kolmogorov backward equation (the Laguerre
heat equation). In Section 5, using the recurrence relations of con�uent hypergeometric
functions, we show some relations for the inverse Laplace transforms of the products of
con�uent hypergeometric functions.

2. The Con�uent hypergeometric functions

The con�uent hypergeometric functions (Kummer functions) are given as the inde-
pendent solutions of Kummer's equation

(2.1) z
d2w

dz2
+ (b− z)dw

dz
− aw = 0, a, b ∈ R,

in the following form

(2.2) w = c1M(a, b, z) + c2U(a, b, z).

The function M(a, b, z) was introduced by Kummer in the year 1837 [24, p. 322, eq.
(13.2.1)]

(2.3) M(a, b, z) =

∞∑
n=0

(a)n
(b)n

zn

n!
, (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), (a)0 = 1,

and in the year 1947, the function U(a, b, z) was introduced by Francesco Tricomi

(2.4) U(a, b, z) =
π

sin(πb)

[ M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

]
.

At this point, we mention some properties of the con�uent hypergeometric functions that
are used in the next sections.
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i): The Wronskian of the con�uent hypergeometric functions is shown by [24, p.
324, eq. (13.2.24)]

(2.5) W
{

M(a, b, z),U(a, b, z)
}

= −Γ(b)z−bez

Γ(a)
.

ii): Two recurrence relations for the con�uent hypergeometric function are given
by [24, p. 325], [1]

(2.6) (a+ 1)zM(a+ 2, b+ 2, z) + (b+ 1)(b− z)M(a+ 1, b+ 1, z)− b(b+ 1)M(a, b, z) = 0,

(2.7) (a+ 1)zU(a+ 2, b+ 2, z) + (z − b)U(a+ 1, b+ 1, z)−U(a, b, z) = 0.

iii): The following relations are derivative and integral formulas for the functions
M and U, [24, pp. 325, 326, 332]

(2.8)
d

dz
M(a, b, z) =

a

b
M(a+ 1, b+ 1, z),

(2.9)
d

dz
U(a, b, z) = −aU(a+ 1, b+ 1, z),

(2.10)

∫
M(a, b, z) =

b− 1

a− 1
M(a− 1, b− 1, z),

(2.11)

∫
U(a, b, z) = − 1

a− 1
U(a− 1, b− 1, z).

3. The Laguerre heat equation

In this section, we intend to �nd a formal solution for the Kolmogorov backward
equation (1.3). This equation, can be interpreted as the Laguerre heat equation which is
derived from the squared radial Ornstein-Uhlenbeck processW = {Wt, t ≥ 0} with initial
value W (0) = w0. For this purpose, we recall the de�nition of exponential operators

(3.1) exp
(
λ[q(x)

d

dx
+ v(x)]

)
f(x) = f(x(λ))g(λ),

where x(λ) and g(λ) satisfy the following system with �rst-order di�erential equations
as follows {

d
dλ
x(λ) = q(x(λ)), x(0) = x,

d
dλ
g(λ) = v(x(λ))g(λ), g(0) = 1.

(3.2)

This type of di�erential operator, has many applications in the di�erent �elds of applied
mathematics, such as fractional calculus and mathematical physics [3�8], [11�14,23].

3.1. Theorem. The solution of Kolmogorov backward equation

(3.3) w0
∂2p

∂w2
0

+ (α+ 1− w0)
∂p

∂w0
=
∂p

∂t
, t > 0, w0 ∈ R,

with initial condition

p(w, t|w0) = δ(w − w0), t = 0,

is given by

p(w, t|w0) = etα

π

∫ +∞
0

e
−k2w(1−e−t)

e−2t+k2(−1+e−t)2

(
e−2t + k2(e−t − 1)2

)α−1
2

× cos

(
k(w0 − we−t

e−2t+k2(−1+e−t)2 ) + (α− 1) arctan(−k(e−t−1)

e−t )

)
dk.

(3.4)
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Figure 1. The graph of function p(w, t|w0) for w = α = 0.

Proof. The proof will be divided into three steps. First, we recall the de�nition of Fourier
transform of transition density

(3.5) F(p(w, t|w0), k) = F (k) =
1√
2π

∫ +∞

−∞
e−ikw0p(w, t|w0)dw0,

and apply the Fourier transform on the Laguerre heat equation (1.3), to get

(3.6) (ik − ikα+ 1)F (k) + (ik2 + k)
∂

∂k
F (k) = Ft.

In the second step, we solve the �rst order di�erential equation (3.6) and incorporate its
initial condition to obtain

(3.7) F (k) =
1√
2π
e

(
ik−ikα+1+(ik2+k) ∂

∂k

)
t
[
e−iwk

]
.

Now, according to the functions q(x) = ix2 +x and v(x) = ix− ixα+1 in equation (3.2),
the Fourier transform of the transition density is

(3.8) F (k) = F(p(w, t|w0), k) =
1√
2π
etα
(
ik − ike−t + e−t

)(α−1)

e
−iw( ket

ik(1−et)−1
)
.

Finally, by applying the of inverse Fourier transform on the above relation

(3.9) p(w, t|w0) = F
−1(F (k), w0) =

1√
2π

∫ +∞

−∞
eikw0F (k)dk,

we get the relation (3.4). The graph of this solution has been plotted in Figure 1 for
w = α = 0. �
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4. The Green function of Laguerre di�erential equation

We consider the Laplace transform of transition density function p(w, t|w0) in the
SROU process

(4.1) p̄(w, s|w0) =

∫ +∞

0

e−stp(w, t|w0)dt, <(s) > 0,

and apply this transform on the Kolmogorov backward equation (1.3), to get the following
Laguerre di�erential equation

(4.2) w0
d2p̄(w, s|w0)

dw2
0

+ (α+ 1− w0)
dp̄(w, s|w0)

dw0
− sp̄(w, s|w0) = −δ(w − w0).

According to [24], two linear independent solutions of equation (4.2) are the con�uent
hypergeometric functions M(s, α + 1, w0) and U(s, α + 1, w0). Now, we use the idea of
Veestraeten's papers [27, 28] and state the following theorem for obtaining the Green
function of the Laguerre di�erential equation.

4.1. Theorem. The Green function of the Laguerre di�erential equation (4.2) is given
by

(4.3)

{
p̄(w, s|w0)|−∞≤w0≤w = Γ(s)

Γ(α+1)
e−wwαU(s, α+ 1, w)M(s, α+ 1, w0),

p̄(w, s|w0)|w≤w0≤+∞ = Γ(s)
Γ(α+1)

e−wwαM(s, α+ 1, w)U(s, α+ 1, w0).

Proof. According to the properties of the Green function, we claim that the Green func-
tion of the equation (4.2) is

G(w,w0) = G(w,w0)|−∞≤w0≤w +G(w,w0)|w≤w0≤+∞,

where {
G(w,w0)|−∞≤w0≤w = AM(s, α+ 1, w0),
G(w,w0)|w≤w0≤+∞ = BU(s, α+ 1, w0),

(4.4)

and A and B are two unknown coe�cients that should be determined by the following
boundary conditions [22]

(4.5)

{
G(w,w0)|−∞≤w0≤w = G(w,w0)|w≤w0≤+∞, w = w0,
dG(w,w0)
dw0

|w≤w0≤+∞ − dG(w,w0)
dw0

|−∞≤w0≤w = − 1
w
, w = w0.

After applying the boundary conditions and incorporating the Wronskian of con�uent
hypergeometric functions given by (2.5), the coe�cients A and B can be easily obtained
as

A =
Γ(s)

Γ(α+ 1)
e−wwαU(s, α+ 1, w),(4.6)

B =
Γ(s)

Γ(α+ 1)
e−wwαM(s, α+ 1, w).(4.7)

Finally, by substituting the coe�cients A and B into (4.4) we derive the result (4.3). �
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Now, we intend to de�ne the new function p1(w, t|w1) which is obtained from integra-
tion of the transition density p(w, t|w0) as follows

p1(w, t|w1) =

∫ w1

0

p(w, t|w0)dw0

=
etα

π

∫ +∞

0

e
k2w(−1+e−t)

e−2t+k2(−1+e−t)2

(
e−2t + k2(−1 + e−t)2

)α−1
2

× 1

k

{
sin

(
kw1 −

kwe−t

e−2t + k2(−1 + e−t)2
+ (α− 1) arctan(k(et − 1))

− sin

(
−kwe−t

e−2t + k2(−1 + e−t)2
+ (α− 1) arctan(k(et − 1))

)}
dk.(4.8)

Also, the Laplace transform of p1(w, t|w1) is

p̄1(w, s|w0) =

∫ +∞

0

e−stp1(w, t|w1)dt

=

∫ w1

0

p̄(w, s|w0)dw0,(4.9)

which by setting the relation (4.3) in the latter integral, we get the Laplace transform of
p1(w, t|w1) as

(4.10) p̄1(w, s|w1) =
Γ(s− 1)

Γ(α)
e−wwαU(s, α+ 1, w)

[
M(s− 1, α, w1)− 1

]
.

5. The inverse Laplace transform of the products of Con�uent

hypergeometric functions

In this section, we use the recurrence relations of the con�uent hypergeometric func-
tions to show new relations for the inverse Laplace transforms of the products of con-
�uent hypergeometric functions. For this purpose, we consider the inverse transforms
of the functions p̄(w, s|w0) and p̄1(w, s|w1) and for simplicity of the formulas (3.4) and
(4.8), we set the change of variables x = −1 + e−t, y = e−2t + k2(−1 + e−t)2 and
q = (α− 1) arctan(k(et − 1)). Therefore, we have

(5.1) L
−1

{
Γ(s)U(s, α+ 1, w)M(s− 1, α, w1)

}
=

Γ(α)ew+tαw−α

π

∫ +∞

0

e
k2wx
y y

α−1
2

{
cos

(
kw1 − kw

(x+ 1)

y
+ q

)
+ cos

(
− k
y
w(x+1)+q

)
− 1

k
sin

(
k(w1−w

(x+ 1)

y
)+q

)
+

1

k
sin

(
−kw (x+ 1)

y
+q

)}
dk,

and

(5.2) L
−1

{
Γ(s)U(s, α+ 1, w)M(s, α+ 1, w0)

}
=

Γ(α+ 1)ew+tαw−α

π

∫ +∞

0

e
k2wx
y y

α−1
2 cos

(
k(w0 − w

(x+ 1)

y
) + q

)
dk.

At this point, we use the recurrence relation (2.6) for the con�uent hypergeometric func-
tion M(a, b, z) and establish a table for the inverse Laplace transform of the products of
con�uent hypergeometric functions. For this purpose, we �x the con�uent hypergeomet-
ric function U(s, α+ 1, w) and consider the relation

zsΓ(s)M(s+ 1, α+ 2, z)U(s, α+ 1, w) = −(α+ 1)(α− z)Γ(s)M(s, α+ 1, z)U(s, α+ 1, w)

+α(α+ 1)Γ(s)M(s− 1, α, z)U(s, α+ 1, w).(5.3)
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We combine the inverse Laplace transforms (5.1) and (5.2) with the recurrence relation
(5.3) to get

(5.4) L
−1

{
zΓ(s+ 1)U(s, α+ 1, w)M(s+ 1, α+ 2, z)

}

=
Γ(α+ 2)ew+tαw−α

π

∫ +∞

0

e
k2wx
y y

α−1
2

({
(z − α) cos

(
k(z − w (x+ 1)

y
) + q

)}
+

{
cos

(
k(z − w (x+ 1)

y
) + q

)
+ cos

(
− k

y
w(x+ 1) + q

)
− 1

k
sin

(
k(z − w (x+ 1)

y
) + q

)
+

1

k
sin

(
− kw (x+ 1)

y
+ q

)})
dk.

Similarly, we show our results for di�erent orders of the product of con�uent hypergeo-
metric functions in Table 1, where

Table 1. The inverse Laplace transform of the products of con�uent
hypergeometric functions

Laplace transform Function

Γ(s)U(s, α+ 1, w)M(s, α+ 1, z) Γ(α+ 1)f
Γ(s)U(s, α+ 1, w)M(s− 1, α, z) Γ(α)(f + h− j + r)

Γ(s+ 1)U(s, α+ 1, w)M(s+ 1, α+ 2, z) Γ(α+2)
z

{
(z − α+ 1)f + h− j + r

}
Γ(s)U(s, α+ 1, w)M(s− 2, α− 1, z)

{
− z

α(α−1)
(n− h+ f)

+(α− 1− z)Γ(α− 1)(f + h− j + r)

}
Γ(s)U(s, α+ 1, w)M(s− 3, α− 2, z) 1

(α−1)(α−2)

{
z(f − 2j + 2r)

+ (α−2−z)
α

(
h− f − n+ (α− 1− z)

×Γ(α+ 1)(f + h− j + r)

)}

(5.5) f(t, α, z, w) =
e(w+tα)w−α

π

∫ +∞

0

e
k2w( x

y
)
y
α−1
2 cos

(
k(z − w (x+ 1)

y
) + q

)
dk,

(5.6) h(t, α, w) =
e(w+tα)w−α

π

∫ +∞

0

e
k2w( x

y
)
y
α−1
2 cos

(
− k

y
w(x+ 1) + q

)
dk,

(5.7) m(t, α, z, w) =
e(w+tα)w−α

π

∫ +∞

0

e
k2w( x

y
)
y
α−1
2 sin

(
k(z − w (x+ 1)

y
) + q

)
dk,

(5.8) n(t, α, z, w) =
e(w+tα)w−α

π

∫ +∞

0

e
k2w( x

y
)
y
α−1
2
k

y
sin

(
k

y
(z − w(x+ 1)) + q

)
dk,

(5.9) r(t, α, w) =
e(w+tα)w−α

π

∫ +∞

0

e
k2w( x

y
)
y
α−1
2

1

k
sin

(
− k

y
w(x+ 1) + q

)
dk,

(5.10) j(t, α, z, w) =
e(w+tα)w−α

π

∫ +∞

0

e
k2w( x

y
)
y
α−1
2

1

k
sin

(
k(z − w (x+ 1)

y
) + q

)
dk.
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5.1. Remark. If we �x the con�uent hypergeometric function M(s, α + 1, z) and use
the recurrence relation (2.7), then we can get new relations for the inverse Laplace trans-
form of other products of con�uent hypergeometric functions such as Γ(s)U(s − 2, α −
1, z)M(s, α+ 1, w).
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