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TIME-DEPENDENT NEUTRAL STOCHASTIC DELAY PARTIAL

DIFFERENTIAL EQUATIONS DRIVEN BY ROSENBLATT

PROCESS IN HILBERT SPACE

E. LAKHEL AND A. TLIDI

Abstract. In this paper, we investigate a class of time-dependent neutral sto-
chastic functional differential equations with finite delay driven by Rosenblatt

process in a real separable Hilbert space. We prove the existence of unique

mild solution by the well-known Banach fixed point principle. At the end we
provide a practical example in order to illustrate the viability of our result.

1. Introduction

The theory of the stochastic evolution equations have attracted great interest due
to its many real applications in several areas such as biology, medicine, physics,
finance, electrical engineering, telecommunication networks. For further details,
the reader may refer to the works of [5]. As many phenomena exhibit a memory
effect or aftereffect, there has been a real need for developing stochastic evolution
systems with delay which incorporate the effect of delay on state equations. The
neutral functional differential equations are often used to fulfill this aim, specially
in natural phenomena such as extreme weather and natural disasters which often
display long-term memory as well as in many stochastic dynamical systems which
depend not only on present and past, but also contain the derivatives with delays.

Recently, there has been a growing interest on the stochastic functional dif-
ferential equations driven by fractional Brownian motion (here after, fBm). The
reader is referred to the works of [3, 4, 6], among others. The literature concerning
the existence and qualitative properties of solutions of time-dependent functional
stochastic differential equations is very restricted.

The fBm has several properties such as self-similarity, stationarity of increments
and long-range dependence. Due to these nice properties, the fBm is of interest
in real application and it is generally prefered among other processes because it is
Gaussian and the calculus is easier. However, in some situations specially when
the gaussianity property is not satisfied, the Rosenblatt process is often used in-
stead. Although introduced during the 60s and 70s [13, 15] in the literature, the
Rosenblatt processes has been developed only during the last decade due to their

Date: July 8, 2018, accepted.

2010 Mathematics Subject Classification. 60H15, 60G15, 60H20.
Key words and phrases. Neutral stochastic evolution equations, Evolution operator, Rosenblatt

process, Wiener integral, Banach fixed-point theorem.

88



TIME-DEPENDENT NEUTRAL STOCHASTIC 89

appearance in the Non-Central Limit Theorem and to its desirable properties cited
above i.e self-similarity, stationarity of increments and long-range dependence. The
Rosenblatt processes can also be an input in models where self-similarity is observed
in empirical data which appears to be non-Gaussian. In the literature, there exists
a numerous studies that focuses on different theoretical aspects of the Rosenblatt
processes. Leonenko and Ahn [8] studied the rate of convergence to the Rosenblatt
process in the Non Central Limit Theorem. Tudor [16] analysed the Rosenblatt pro-
cess. Maejima & Tudor [9] gave the distribution of the Rosenblatt process. Lakhel
[7] established the existence of the unique solution for a class of neutral stochastic
differential equation with delay and Poisson jumps driven by Rosenblatt process in
Hilbert space.

To the best of our knowledge, there are no studies on time-dependent neutral sto-
chastic functional differential equations with delays driven by Rosenblatt process.
The aim of this paper is to fill this gap by providing the existence and uniqueness of
mild solutions for a class of time-dependent neutral functional stochastic differential
equations driven by non-Gaussian noises. This class is described as follow:
(1.1){

d[x(t) + g(t, x(t− τ))] = [A(t)x(t) + f(t, x(t− τ))]dt+ σ(t)dZH(t), 0 ≤ t ≤ T,
x(t) = ϕ(t), −τ ≤ t ≤ 0,

In a real Hilbert space X with inner product < ., . > and norm ‖.‖, where {A(t), t ∈
[0, T ]} is a family of linear closed operators from a space X into X that generates
an evolution system of operators {U(t, s), 0 ≤ s ≤ t ≤ T}. ZH is a Rosenblatt
process on a real and separable Hilbert space Y , and f, g : [0,+∞)×X → X, σ :
[0,+∞)→ L0

2(Y,X), are appropriate functions. Here L0
2(Y,X) denotes the space

of all Q-Hilbert-Schmidt operators from Y into X.
The rest of the paper is structured as follows: Section 2 is devoted to basic nota-

tions and concepts and results about Rosenblatt process as well as Wiener integral
with respect to Hilbert space and recall some results about evolution operator. New
technical lemma for the L2−estimate of stochastic convolution integral is proved.
Section 3 gives sufficient conditions for the existence and uniqueness of the problem
(1.1). Section 4 gives an example to illustrate the efficiency of the obtained result.
Section 5 concludes.

2. Preliminaries

In this section we recall some basic results about evolution family, and we introduce
the Rosenblatt process as well as the Wiener integral with respect to it. We also
establish some important results which will be needed throughout the paper. At
first, we introduce the notion of evolution family.

2.1. Evolution families.

Definition 2.1. A set {U(t, s) : 0 ≤ s ≤ t ≤ T} of bounded linear operators on a
Hilbert space X is called an evolution family if

(a) U(t, s)U(s, r) = U(t, r), U(s, s) = I if r ≤ s ≤ t,
(b) (t, s)→ U(t, s)x is strongly continuous for t > s.

Let {A(t), t ∈ [0, T ]} be a family of closed densely defined linear unbounded
operators on the Hilbert space X under a domain D(A(t)) which is independent of
t and satisfies the following conditions introduced by [1].
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There exist constants λ0 ≥ 0, θ ∈ (π2 , π), L, K ≥ 0, and µ, ν ∈ (0, 1] with
µ+ ν > 1 such that

(2.1) Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ‖R(λ,A(t)− λ0)‖ ≤ K

1 + |λ|
and

(2.2) ‖(A(t)− λ0)R(λ,A(t)− λ0)
[
R(λ0, A(t))−R(λ0, A(s))

]
‖ ≤ L|t− s|µ|λ|−ν ,

for t, s ∈ R, λ ∈ Σθ where Σθ :=
{
λ ∈ C− {0} : | arg λ| ≤ θ

}
.

It is well known, that this assumption implies that there exists a unique evolution
family {U(t, s) : 0 ≤ s ≤ t ≤ T} on X such that (t, s) → U(t, s) ∈ L(X) is
continuous for t > s, U(·, s) ∈ C1((s,∞),L(X)), ∂tU(t, s) = A(t)U(t, s), and

(2.3) ‖A(t)kU(t, s)‖ ≤ C(t− s)−k

for 0 < t− s ≤ 1, k = 0, 1, 0 ≤ α < µ, x ∈ D((λ0 − A(s))α), and a constant C de-
pending only on the constants in (2.1)-(2.2). Moreover, ∂+s U(t, s)x = −U(t, s)A(s)x

for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)). We say that A(·) generates
{U(t, s) : 0 ≤ s ≤ t ≤ T}. Note that U(t, s) is exponentially bounded by (2.3) with
k = 0.

Remark 2.2. If {A(t), t ∈ [0, T ]} is a second order differential operator A, that is
A(t) = A for each t ∈ [0, T ], then A generates a C0−semigroup {eAt, t ∈ [0, T ]}.

For further details on evolution system and their properties, the reader may refer
to [11].

2.2. Rosenblatt process. In this section, we collect some definitions and lemmas
on Wiener integrals with respect to an infinite dimensional Rosenblatt process and
we recall some basic results about analytical semi-groups and fractional powers of
their infinitesimal generators, which will be used throughout the whole of this pa-
per.
For details of this section, we refer the reader to [16, 11] and references therein.

Let (Ω,F ,P) be a complete probability space. Selfsimilar processes are invariant
in distribution under suitable scaling. They are of considerable interest in practice
since aspects of the selfsimilarity appear in different phenomena like telecommuni-
cations, turbulence, hydrology or economics. A self-similar processes can be defined
as limits that appear in the so-called Non-Central Limit Theorem (see [15]). We
briefly recall the Rosenblatt process as well as the Wiener integral with respect to
it.
Let us recall the notion of Hermite rank. Denote by Hj(x) the Hermite polynomial

of degree j given by Hj = (−1)je
x2

2
dj

dxj e
−x2

2 and let g be a function on R such that

E[g(ζ0)] = 0 and E[g(ζ0)2] < ∞. Assume that g has the following expansion in
Hermite polynomials

g(x) =
∑
j≥0

cjHj(x),

where cj = 1
j!E(g(ζ0Hj(ζ0))). The Hermite rank of g is defined by

k = min{j|cj 6= 0}.
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Since E[g(ζ0)] = 0, we have k ≥ 1. Consider (ζn)n∈Z a stationary Gaussian sequence
with mean zero and variance 1 which exhibits long range dependence in the sense
that the correlation function satisfies

r(n) = E(ζ0ζn) = n
2H−2

k L(n),

with H ∈ ( 1
2 , 1) and L is a slowly varying function at infinity. Then the following

family of stochastic processes

1

nH

[nt]∑
j=1

g(ζj)

converges as n −→ ∞, in the sense of finite dimensional distributions, to the self-
similar stochastic process with stationary increments

(2.4) ZkH(t) = c(H, k)

∫
Rk

∫ t

0

k∏
j=1

(s− yj)
−( 1

2+
1−H

k )
+ ds

 dB(y1)...dB(yk),

where x+ = max(x, 0). The above integral is a Wiener-Itô multiple integral of
order k with respect to the standard Brownian motion (B(y))y∈R and the constant
c(H, k) is a normalizing constant that ensures E(ZkH(1))2 = 1.

The process (ZkH(t))t≥0 is called the Hermite process. When k = 1 the process
given by (2.4) is nothing else that the fractional Brownian motion (fBm) with Hurst
parameter H ∈ ( 1

2 , 1). For k = 2 the process is not Gaussian. If k = 2 then the
process (2.4) is known as the Rosenblatt process. It was introduced by Rosenblatt
in [13] and was given its name by Taqqu in [14]. The fractional Brownian motion
is of course the most studied process in the class of Hermite processes due to its
significant importance in modelling. A stochastic calculus with respect to it has
been intensively developed in the last decade. The Rosenblatt process is, after fBm,
the most well known Hermite process.

We also recall the following properties of the Rorenblatt process:

• The process ZkH is H-selfsimilar in the sense that for any c > 0,

(2.5) (ZkH(ct)) =(d) (cHZkH(t)),

where ” =(d) ” means equivalence of all finite dimensional distributions. It has
stationary increments and all moments are finite.

• From the stationarity of increments and the self-similarity, it follows that,
for any p ≥ 1

E|ZH(t)− ZH(s)|p ≤ |E(ZH(1))|p|t− s|pH .

As a consequence the Rosenblatt process has Hölder continuous paths of order γ
with 0 < γ < H.

Self-similarity and long-range dependence make this process a useful driving noise
in models arising in physics, telecommunication networks, finance and other fields.
Consider a time interval [0, T ] with arbitrary fixed horizon T and let {ZH(t), t ∈
[0, T ]} the one-dimensional Rosenblatt process with parameter H ∈ (1/2, 1). By
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Tudor [16], it is well known that ZH has the following integral representation:

(2.6) ZH(t) = d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]
dB(y1)dB(y2),

where B = {B(t) : t ∈ [0, T ]} is a Wiener process, H ′ = H+1
2 and KH(t, s) is the

kernel given by

KH(t, s) = cHs
1
2−H

∫ t

s

(u− s)H− 3
2uH−

1
2 du,

for t > s, where cH =
√

H(2H−1)
β(2−2H,H− 1

2 )
and β(, ) denotes the Beta function. We put

KH(t, s) = 0 if t ≤ s and d(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant.

The covariance of the Rosenblatt process {ZH(t), t ∈ [0, T ]} satisfies, for every
s, t ≥ 0,

RH(s, t) := E(ZH(t)ZH(s)) =
1

2
(t2H + s2H − |t− s|2H).

The basic observation is the fact that the covariance structure of the Rosenblatt
process is similar to the one of the fractional Brownian motion and this allows the
use of the same classes of deterministic integrands as in the fractional Brownian
motion case whose properties are known.

Now, we introduce Wiener integrals with respect to the Rosenblatt process. We
refer to [16] for additional details on the Rosenblatt process .
By formula (2.6) we can write

ZH(t) =

∫ t

0

∫ t

0

I(1[0,t])(y1, y2)dB(y1)dB(y2),

where by I we denote the mapping on the set of functions f : [0, T ] −→ R to the
set of functions f : [0, T ]2 −→ R

I(f)(y1, y2) = d(H)

∫ T

y1∨y2
f(u)

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.

Let us denote by E the class of elementary functions on R of the form

f(.) =

n∑
j=1

aj1(tj ,tj+1](.), 0 ≤ tj < tj+1 ≤ T, aj ∈ R, i = 1, ..., n.

For f ∈ E as above, it is natural to define its Wiener integral with respect to the
Rosenblatt process ZH by
(2.7)∫ T

0

f(s)dZH(s) :=

n∑
j=1

aj [ZH(tj+1)− ZH(tj)] =

∫ T

0

∫ T

0

I(f)(y1, y2)dB(y1)dB(y2).

Let H be the set of functions f such that

H =

{
f : [0, T ] −→ R : ‖f‖H :=

∫ T

0

∫ T

0

(I(f)(y1, y2))
2
dy1dy2 <∞

}
.
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It hold that (see Maejima and Tudor [10])

‖f‖H = H(2H − 1)

∫ T

0

∫ T

0

f(u)f(v)|u− v|2H−2dudv,

and, the mapping

(2.8) f −→
∫ T

0

f(u)dZH(u)

provides an isometry from E to L2(Ω). On the other hand, it has been proved in
[12] that the set of elementary functions E is dense in H. As a consequence the
mapping (2.8) can be extended to an isometry from H to L2(Ω). We call this ex-
tension as the Wiener integral of f ∈ H with respect to ZH .

Let us consider the operator K∗H from E to L2([0, T ]) defined by

(K∗Hϕ)(y1, y2) =

∫ T

y1∨y2
ϕ(r)

∂K

∂r
(r, y1, y2)dr,

where K(., ., .) is the kernel of Rosenblatt process in representation (2.6)

K(r, y1, y2) = 1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.

We refer to [16] for the proof of the fact that K∗H is an isometry between H and
L2([0, T ]). It follows from [16] that H contains not only functions but its elements
could be also distributions. In order to obtain a space of functions contained in H,
we consider the linear space |H| generated by the measurable functions ψ such that

‖ψ‖2|H| := αH

∫ T

0

∫ T

0

|ψ(s)||ψ(t)||s− t|2H−2dsdt <∞,

where αH = H(2H − 1). The space |H| is a Banach space with the norm ‖ψ‖|H|
and we have the following inclusions (see [16]).

Lemma 2.3.

L2([0, T ]) ⊆ L1/H([0, T ]) ⊆ |H| ⊆ H,
and for any ψ ∈ L2([0, T ]), we have

‖ψ‖2|H| ≤ 2HT 2H−1
∫ T

0

|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the space
of bounded linear operator from Y to X. For the sake of convenience, we shall
use the same notation to denote the norms in X,Y and L(Y,X). Let Q ∈ L(Y, Y )
be an operator defined by Qen = λnen with finite trace trQ =

∑∞
n=1 λn < ∞.

where λn ≥ 0 (n = 1, 2...) are non-negative real numbers and {en} (n = 1, 2...) is a
complete orthonormal basis in Y . We define the infinite dimensional Q−Rosenblatt
process on Y as

(2.9) ZH(t) = ZQ(t) =

∞∑
n=1

√
λnenzn(t),

where (zn)n≥0 is a family of real independent Rosenblatt process.
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Note that the series (2.9) is convergent in L2(Ω) for every t ∈ [0, T ], since

E|ZQ(t)|2 =

∞∑
n=1

λnE(zn(t))2 = t2H
∞∑
n=1

λn <∞.

Note also that ZQ has covariance function in the sense that

E〈ZQ(t), x〉〈ZQ(s), y〉 = R(s, t)〈Q(x), y〉 for all x, y ∈ Y and t, s ∈ [0, T ].

In order to define Wiener integrals with respect to the Q-Rosenblatt process, we
introduce the space L0

2 := L0
2(Y,X) of all Q-Hilbert-Schmidt operators ψ : Y → X.

We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator, if

‖ψ‖2L0
2

:=

∞∑
n=1

‖
√
λnψen‖2 <∞,

and that the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
=
∑∞
n=1〈ϕen, ψen〉

is a separable Hilbert space.
Now, let φ(s); s ∈ [0, T ] be a function with values in L0

2(Y,X), such that
∑∞
n=1 ‖K∗φQ

1
2 en‖2L0

2
<

∞. The Wiener integral of φ with respect to ZQ is defined by
(2.10)∫ t

0

φ(s)dZQ(s) =

∞∑
n=1

∫ t

0

√
λnφ(s)endzn(s) =

∞∑
n=1

∫ t

0

∫ t

0

√
λnK

∗
H(φen)(y1, y2)dB(y1)dB(y2).

Now, we end this subsection by stating the following result which is fundamental
to prove our result.

Lemma 2.4. If ψ : [0, T ]→ L0
2(Y,X) satisfies

∫ T
0
‖ψ(s)‖2L0

2
ds <∞ then the above

sum in (2.10) is well defined as a X-valued random variable and we have

E‖
∫ t

0

ψ(s)dZH(s)‖2 ≤ 2Ht2H−1
∫ t

0

‖ψ(s)‖2L0
2
ds.

Proof. By Lemma 2.3, we have

E‖
∫ t

0

ψ(s)dZH(s)‖2 =

∞∑
n=1

E‖
∫ t

0

∫ t

0

√
λnK

∗
H(ψen)(y1, y2)dBn(y1)dBn(y2)‖2

≤
∞∑
n=1

2Ht2H−1
∫ t

0

λn‖ψ(s)en‖2ds

= 2Ht2H−1
∫ t

0

‖ψ(s)‖2L0
2
ds.

�

2.3. Definition and assumption. Henceforth we will assume that the family
{A(t), t ∈ [0, T ]} of linear operators generates an evolution system of operators
{U(t, s), 0 ≤ s ≤ t ≤ T}.

Definition 2.5. An X-valued stochastic process {x(t), t ∈ [−τ, T ]}, is called a
mild solution of equation (1.1) if

i) x(.) ∈ C([−τ, T ],L2(Ω, X)),
ii) x(t) = ϕ(t), −τ ≤ t ≤ 0.
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iii) For arbitrary t ∈ [0, T ], x(t) satisfies the following integral equation:

x(t) = U(t, 0)(ϕ(0) + g(0, ϕ(−τ)))− g(t, x(t− τ))

−
∫ t

0

U(t, s)A(s)g(s, x(s− τ))ds+

∫ t

0

U(t, s)f(s, x(s− τ))ds

+

∫ t

0

U(t, s)σ(s)dZQ(s) P− a.s

We introduce the following assumptions:

(H.1) i) The evolution family is exponentially stable, that is, there exist two
constants β > 0 and M ≥ 1 such that

‖U(t, s)‖ ≤Me−β(t−s), for all t ≥ s,
ii) There exist a constant M∗ > 0 such that

‖A−1(t)‖ ≤M∗ for all t ∈ [0, T ].

(H.2) The maps f, g : [0, T ] × X → X are continuous functions and there exist
two positive constants C1 and C2, such that for all t ∈ [0, T ] and x, y ∈ X:
i) ‖f(t, x)− f(t, y)‖ ∨ ‖g(t, x)− g(t, y)‖ ≤ C1‖x− y‖.
ii) ‖f(t, x)‖2 ∨ ‖Ak(t)g(t, x)‖2 ≤ C2(1 + ‖x‖2), k = 0, 1.

(H.3) i) There exists a constant 0 < L∗ <
1
M∗

such that

‖A(t)g(t, x)−A(t)g(t, y)‖ ≤ L∗‖x− y‖,
for all t ∈ [0, T ] and x, y ∈ X.

ii) The function g is continuous in the quadratic mean sense: for all x(.) ∈
C([0, T ], L2(Ω, X)), we have

lim
t−→s

E‖g(t, x(t))− g(s, x(s))‖2 = 0.

(H.4) i) The map σ : [0, T ] −→ L0
2(Y,X) is bounded, that is : there exists a

positive constant L such that ‖σ(t)‖L0
2(Y,X) ≤ L uniformly in t ∈ [0, T ].

ii) Moreover, we assume that the initial data ϕ = {ϕ(t) : −τ ≤ t ≤ 0}
satisfies ϕ ∈ C([−τ, 0],L2(Ω, X)).

3. Existence and Uniqueness of Mild Solutions

In this section we study the existence and uniqueness of mild solutions of equa-
tion (1.1). First, it is of great importance to establish the basic properties of the
stochastic convolution integral of the form

X(t) =

∫ t

0

U(t, s)σ(s)dZQ(s), t ∈ [0, T ],

where σ(s) ∈ L0
2(Y,X) and {U(t, s), 0 ≤ s ≤ t ≤ T} is an evolution system of

operators.
The properties of the process X are crucial when regularity of the mild solution to
stochastic evolution equation is studied, see [5] for asystematic account of the theory
of mild solutions to infinite-dimensional stochastic equations. Unfortunately, the
process X is not a martingale, and standard tools of the martingale theory, yielding
e.g. continuity of the trajectories or L2−estimates are not available. The following
result on the stochastic convolution integral X holds.



96 E. LAKHEL AND A. TLIDI

Lemma 3.1. Suppose that σ : [0, T ]→ L0
2(Y,X) satisfies supt∈[0,T ] ‖σ(t)‖2L0

2
<∞,

and suppose that {U(t, s), 0 ≤ s ≤ t ≤ T} is an evolution system of operators
satisfying ‖U(t, s)‖ ≤ Me−β(t−s), for some constants β > 0 and M ≥ 1 for all
t ≥ s. Then, we have

1. The stochastic integral X : t −→
∫ t
0
U(t, s)σ(s)dZQ(s) is well-defined and

we have

E‖
∫ t

0

U(t, s)σ(s)dZQ(s)‖2 ≤ CHM2t2H( sup
t∈[0,T ]

‖σ(t)‖L0
2
)2.

2. The stochastic integral X : t −→
∫ t
0
U(t, s)σ(s)dZQ(s) is continuous.

Proof. 1. Let {en}n∈N be the complete orthonormal basis of Y and {zn}n∈N is a
sequence of independent, real-valued Rosenblatt process each with the same pa-
rameter H ∈ ( 1

2 , 1). Thus, using isometry property one can write

E‖
∫ t

0

U(t, s)σ(s)dZQ(s)‖2 =

∞∑
n=1

E‖
∫ t

0

U(t, s)σ(s)endzn(s)‖2

= H(2H − 1)

∫ t

0

{‖U(t, s)σ(s)‖

×
∫ t

0

‖U(t, r)σ(r)‖|s− r|2H−2dr}ds

≤ H(2H − 1)M2

∫ t

0

{e−β(t−s)‖σ(s)‖L0
2

×
∫ t

0

e−β(t−r)|s− r|2H−2‖σ(r)‖L0
2
dr}ds.

Since σ is bounded, one can then conclude that

E‖
∫ t

0

U(t, s)σ(s)dZH(s)‖2 ≤ H(2H − 1)M2( sup
t∈[0,T ]

‖σ(t)‖L0
2
)2
∫ t

0

{e−β(t−s)

×
∫ t

0

e−β(t−r)|s− r|2H−2dr}ds.

Make the following change of variables, v = t−s for the first integral and u = t−r
for the second. One can write

E‖
∫ t

0

U(t, s)σ(s)dZH(s)‖2 ≤ H(2H − 1)M2( sup
t∈[0,T ]

‖σ(t)‖L0
2
)2
∫ t

0

{e−βv

×
∫ t

0

e−βu|u− v|2H−2du}dv

≤ H(2H − 1)M2( sup
t∈[0,T ]

‖σ(t)‖L0
2
)2
∫ t

0

∫ t

0

|u− v|2H−2dudv.

By using the equality,

RH(t, s) = H(2H − 2)

∫ t

0

∫ s

0

|u− v|2H−2dudv,
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we get that

E‖
∫ t

0

U(t, s)σ(s)dZQ(s)‖2 ≤ CHM2t2H( sup
t∈[0,T ]

‖σ(t)‖L0
2
)2.

2. Let h > 0 small enough, we have

E‖
∫ t+h

0

U(t+ h, s)σ(s)dZQ(s)−
∫ t

0

U(t, s)σ(s)dZQ(s)‖2 ≤ 2‖
∫ t

0

(U(t+ h, s)− U(t, s))σ(s)dZQ(s)‖2

+ 2‖
∫ t+h

t

U(t+ h, s)σ(s)dZH(s)‖2

≤ 2[E‖I1(h)‖2 + E‖I2(h)‖2].

By Lemma 2.4, we get that

E‖I1(h)‖2 ≤ 2Ht2H−1
∫ t

0

‖[U(t+ h, s)− U(t, s)]σ(s)‖2L0
2
ds.

Since

lim
h→0
‖[U(t+ h, s)− U(t, s)]σ(s)‖2L0

2
= 0,

and

‖(U(t+ h, s)− U(t, s))σ(s)‖L0
2
≤MLe−β(t−s)e−βh+1 ∈ L1([0, T ], ds),

we conclude, by the dominated convergence theorem that,

lim
h→0

E‖I1(h)‖2 = 0.

Again by Lemma 2.4, we get that

E‖I2(h)‖2 ≤ 2Ht2H−1LM2(1− e−2βh)

2β
.

Thus,

lim
h→0

E‖I2(h)‖2 = 0.

�

Remark 3.2. Thanks to Lemma 3.1, the stochastic integral X(t) is well-defined and
it belongs to the space C([−τ, 0],L2(Ω, X)).

We have the following theorem on the existence and uniqueness of mild solutions
of equation (1.1).

Theorem 3.3. Suppose that (H.1)-(H.4) hold. Then, for all T > 0, the equation
(1.1) has a unique mild solution on [−τ, T ].

Proof. Fix T > 0 and let BT := C([−τ, T ],L2(Ω, X)) be the Banach space of all
continuous functions from [−τ, T ] into L2(Ω, X), equipped with the supremum norm

‖x‖2BT
= sup
−τ≤t≤T

E‖x(t, ω)‖2.

Let us consider the set

ST (ϕ) = {x ∈ BT : x(s) = ϕ(s), for s ∈ [−τ, 0]}.
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ST (ϕ) is a closed subset of BT provided with the norm ‖.‖BT
.

We transform (1.1) into a fixed-point problem. Consider the operator ψ on ST (ϕ)
defined by ψ(x)(t) = ϕ(t) for t ∈ [−τ, 0] and for t ∈ [0, T ]

ψ(x)(t) = U(t, 0)(ϕ(0) + g(0, ϕ(−τ)))− g(t, x(t− τ))

−
∫ t

0

U(t, s)A(s)g(s, x(s− τ))ds+
∫ t

0

U(t, s)f(s, x(s− τ))ds

+

∫ t

0

U(t, s)σ(s)dZQ(s)

=

5∑
i=1

Ii(t).

Clearly, the fixed points of the operator ψ are mild solutions of (1.1). The fact
that ψ has a fixed point will be proved in several steps. We will first prove that the
function ψ is well defined.
Step 1: For arbitrary x ∈ ST (ϕ), we are going to show that each function t→ Ii(t)
is continuous on [0, T ] in the L2(Ω, X)-sense.

For the first term I1(h), by Definition 2.1, we obtain

lim
h−→0

(U(t+ h, 0)− U(t, 0))(ϕ(0) + g(0, ϕ(−τ))) = 0.

From (H.1), we have

‖(U(t+h, 0)−U(t, 0))(ϕ(0)+g(0, ϕ(−τ)))‖ ≤Me−βt(e−βh+1)‖ϕ(0)+g(0, ϕ(−τ))‖ ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

E‖I1(t+ h)− I1(t)‖2 = 0.

For the second term I2(h), assumption (H.2) ensures that

lim
h−→0

E‖I2(t+ h)− I2(t)‖2 = 0.

To show that the third term I3(h) is continuous, we suppose h > 0 (similar
calculus for h < 0). We have

‖I3(t+ h)− I3(t)‖ ≤
∥∥∥∥∫ t

0

(U(t+ h, s)− U(t, s))A(s)g(s, x(s− τ))ds

∥∥∥∥
+

∥∥∥∥∥
∫ t+h

t

U(t, s)g(s, x(s− τ))ds

∥∥∥∥∥
≤ I31(h) + I32(h).

By Hölder’s inequality, we have

E‖I31(h)‖ ≤ tE
∫ t

0

‖(U(t+ h, s)− U(t+ h, s))A(s)g(s, x(s− τ)‖2ds.

By Definition 2.1, we obtain

lim
h−→0

(U(t+ h, s)− U(t, s))A(s)g(s, x(s− τ)) = 0.

From (H.1) and (H.2), we have

‖(U(t+h, s)−U(t, s))A(s)g(s, x(s−τ))‖ ≤ C2Me−β(t−s)(e−βh+1)‖A(s)g(s, x(s−τ))‖ ∈ L2(Ω).
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Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

E‖I31(h)‖2 = 0.

So, estimating as before. By using (H.1) and (H.2), we get

E‖I32(h)‖2 ≤ M2C2(1− e−2βh)

2β

∫ t+h

t

(1 + E‖x(s− τ)‖2)ds.

Thus,
lim
h−→0

E‖I32(h)‖2 = 0.

For the fourth term I4(h), we suppose h > 0 (similar calculus for h < 0). We
have

‖I4(t+ h)− I4(t)‖ ≤
∥∥∥∥∫ t

0

(U(t+ h, s)− U(t, s))f(s, x(s− τ))ds

∥∥∥∥
+

∥∥∥∥∥
∫ t+h

t

U(t, s)f(s, x(s− τ))ds

∥∥∥∥∥
≤ ‖I41(h)‖+ ‖I42(h)‖.

By Hölder’s inequality, we have

E‖I41(h)‖ ≤ tE
∫ t

0

‖(U(t+ h, s)− U(t, s))f(s, x(s− τ))‖2ds.

Again exploiting properties of Definition 2.1, we obtain

lim
h−→0

(U(t+ h, s)− U(t, s))f(s, x(s− τ)) = 0,

and

‖(U(t+h, s)−U(t, s))f(s, x(s−τ))‖ ≤Me−β(t−s)(e−βh+1)‖f(s, x(s−τ))‖ ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

E‖I41(h)‖2 = 0.

On the other hand, by (H.1) , (H.2), and the Hölder’s inequality, we have

E‖I42(h)‖ ≤ M2C2(1− e−2βh)

2β

∫ t+h

t

(1 + E‖x(s− τ)‖2)ds.

Thus
lim
h→0

E‖I42(h)‖2 = 0.

Now, for the term I5(h), we have

E‖I5(t+ h)− I5(t)‖2 ≤ 2E‖
∫ t

0

(U(t+ h, s)− U(t, s))σ(s)dZQ(s)‖2

+ 2E‖
∫ t+h

t

U(t+ h, s)σ(s)dZQ(s)‖2.

By Lemma 3.1 we get
lim
h→0
‖I5(t+ h)− I5(t)‖2 = 0.

The above arguments show that lim
h→0

E‖ψ(x)(t+ h)− ψ(x)(t)‖2 = 0. Hence, we

conclude that the function t→ ψ(x)(t) is continuous on [0, T ] in the L2-sense.
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Step 2: Now, we are going to show that ψ is a contraction mapping in ST1
(ϕ)

with some T1 ≤ T to be specified later. Let x, y ∈ ST (ϕ), by using the inequality

(a+ b+ c)2 ≤ 1

ν
a2 +

2

1− ν
b2 +

2

1− ν
c2,

where ν := L∗M∗ < 1, we obtain for any fixed t ∈ [0, T ]

‖ψ(x)(t) − ψ(y)(t)‖2

≤ 1

ν
‖g(t, x(t− τ))− g(t, y(t− τ))‖2

+
2

1− ν
‖
∫ t

0

U(t, s)A(s)(g(s, x(s− τ))− g(s, y(s− τ)))ds‖2

+
2

1− ν
‖
∫ t

0

U(t, s)(f(s, x(s− τ))− f(s, y(s− τ)))ds‖2

=

3∑
k=1

Jk(t).

By using the fact that the operator ‖(A−1(t))‖ is bounded, combined with the
condition (H.3), we obtain that

E‖J1(t)‖ ≤ 1

ν
‖A−1(t)‖2E|A(t)g(t, x(t− τ))−A(t)g(t, y(t− τ))‖2

≤ L2
∗M

2
∗

ν
E‖x(t− τ)− y(t− τ)‖2

≤ ν sup
s∈[−τ,t]

E‖x(s)− y(s)‖2.

By hypothesis (H.3) combined with Hölder’s inequality, we get that

E‖J2(t)‖ ≤ E‖
∫ t

0

U(t, s) [A(t)g(t, x(t− τ))−A(t)g(t, y(t− τ))] ds‖

≤ 2

1− ν

∫ t

0

M2e−2β(t−s)ds

∫ t

0

E‖x(s− τ)− y(s− τ)‖2ds

≤ 2M2L2
∗

1− ν
1− e−2βt

2β
t sup
s∈[−τ,t]

E‖x(s)− y(s)‖2.

Moreover, by hypothesis (H.2) combined with Hölder’s inequality, we can con-
clude that

E‖J3(t)‖ ≤ E‖
∫ t

0

U(t, s) [f(s, x(s− τ))− f(s, y(s− τ))] ds‖2

≤ 2C2
1

1− ν

∫ t

0

M2e−2β(t−s)ds

∫ t

0

E‖x(s− τ)− y(s− τ)‖2ds

≤ 2M2C2
1

1− ν
1− e−2βt

2β
t sup
s∈[−τ,t]

E‖x(s)− y(s)‖2.
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Hence

sup
s∈[−τ,t]

E‖ψ(x)(s)− ψ(y)(s)‖2 ≤ γ(t) sup
s∈[−τ,t]

E‖x(s)− y(s)‖2,

where

γ(t) = ν + [L2
∗ + C2

1 ]
2M2

1− ν
1− e−2βt

2β
t

By condition (H.3), we have γ(0) = ν = L∗M∗ < 1. Then there exists 0 < T1 ≤ T
such that 0 < γ(T1) < 1 and ψ is a contraction mapping on ST1(ϕ) and therefore has
a unique fixed point, which is a mild solution of equation (1.1) on [−τ, T1]. This
procedure can be repeated in order to extend the solution to the entire interval
[−τ, T ] in finitely many steps. This completes the proof. �

4. An Example

In recent years, the interest in neutral systems has been growing rapidly due to
their successful applications in practical fields such as physics, chemical technol-
ogy, bioengineering, and electrical networks. We consider the following stochastic
partial neutral functional differential equation with finite delay τ (0 ≤ τ < ∞, ),
driven by a Rosenblatt process

(4.1)

d [u(t, ζ) +G(t, u(t− τ, ζ))] =
[
∂2

∂2ζu(t, ζ) + b(t, ζ)u(t, ζ) + F (t, u(t− τ, ζ))
]
dt

+ σ(t)dZH(t), 0 ≤ t ≤ T, 0 ≤ ζ ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T

u(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0], 0 ≤ ζ ≤ π,

where ZH is a Rosenblatt process, b(t, ζ) is a continuous function and is uniformly
Hölder continuous in t, F , G : R+ × R −→ R are continuous functions.
To study this system, we consider the space X = L2([0, π]), Y = R and the operator
A : D(A) ⊂ X −→ X given by Ay = y′′ with

D(A) = {y ∈ X : y′′ ∈ X, y(0) = y(π) = 0}.

It is well known that A is the infinitesimal generator of an analytic semigroup
{T (t)}t≥0 onX. Furthermore, A has discrete spectrum with eigenvalues−n2, n ∈ N
and the corresponding normalized eigenfunctions given by

en :=

√
2

π
sinnx, n = 1, 2, ....

In addition (en)n∈N is a complete orthonormal basis in X and

T (t)x =

∞∑
n=1

e−n
2t < x, en > en,

for x ∈ X and t ≥ 0.
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Now, we define an operator A(t) : D(A) ⊂ X −→ X by

A(t)x(ζ) = Ax(ζ) + b(t, ζ)x(ζ).

By assuming that b(., .) is continuous and that b(t, ζ) ≤ −γ (γ > 0) for every t ∈ R,
ζ ∈ [0, π], it follows that the system{

u′(t) = A(t)u(t), t ≥ s,
u(s) = x ∈ X,

has an associated evolution family given by

U(t, s)x(ζ) =
[
T (t− s) exp

∫ t
s
b(τ,ζ)dτ x

]
(ζ).

From this expression, it follows that U(t, s) is a compact linear operator and that
for every s, t ∈ [0, T ] with t > s

‖U(t, s)‖ ≤ e−(γ+1)(t−s)

In addition, A(t) satisfies the assumption H1 (see [2]).
To rewrite the initial-boundary value problem (4.1) in the abstract form we assume
the following:

i) The substitution operator f : [0, T ] × X −→ X defined by f(t, u)(.) =
F (t, u(.)) is continuous and we impose suitable conditions on F to verify
assumption H2.

ii) The substitution operator g : [0, T ] × X −→ X defined by g(t, u)(.) =
G(t, u(.)) is continuous and we impose suitable conditions on G to verify
assumptions H2 and H3.

iii) The function σ : [0, T ] −→ L0
2(L2([0, π]),R) is bounded, that is, there exists

a positive constant L such that ‖σ(t)‖L0
2
≤ L <∞, uniformly in t ∈ [0, T ],

where L := supt∈[0,T ]e
−t.

If we put

(4.2)

{
u(t)(ζ) = u(t, ζ), t ∈ [0, T ], ζ ∈ [0, π]
u(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0], ζ ∈ [0, π],

then, the problem (4.1) can be written in the abstract form{
d[x(t) + g(t, x(t− τ))] = [A(t)x(t) + f(t, x(t− τ))]dt+ σ(t)dZH(t), 0 ≤ t ≤ T,
x(t) = ϕ(t), −τ ≤ t ≤ 0.

Furthermore, if we assume that the initial data ϕ = {ϕ(t) : −τ ≤ t ≤ 0} satisfies
ϕ ∈ C([−τ, 0],L2(Ω, X)), thus all the assumptions of Theorem 3.3 are fulfilled.
Therefore, we conclude that the system (4.1) has a unique mild solution on [−τ, T ].
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