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CONTROLLED FUZZY EVOLUTION EQUATIONS

S. MELLIANI, A. EL ALLAOUI, AND L. S. CHADLI

Abstract. This paper is concerned with controlled fuzzy nonlinear evolution

equations of the form

u′(t) = Au(t) + f
(
t, u(t), u(ρ(t))

)
+B(t)c(t), t ∈ [t0, t1]; u(t0) = u0

. Where c(t) ∈ E1 is a control, A generate a fuzzy semigroup and B :

[t0, t1] −→ L(E1). We use the fuzzy strongly continuous semigroups theory to

prove the existence, uniqueness and some properties of mild solutions.

Introduction

The theory of fuzzy sets has lately years been an object of increasing interest
because of its vast applicability in several fields include mechanics, electrical engi-
neering, processing signals and in more and more fields. Therefore, it draws a wide
attention of the researchers in the recent years.

In this paper, we consider the controlled fuzzy nonlinear evolution equations of
the form {

u′(t) = Au(t) + f
(
t, u(t), u(ρ(t))

)
+B(t)c(t), t ∈ I

u(t0) = u0
(1)

where I = [t0, t1] be an interval of the real line and E1 be the fuzzy metric space.
provided some conditions on the functions f : I × E1 × E1 → E1, ρ : I −→ I ,
c(t) ∈ E1 a control, B ∈ C(I,L(E1)) and A is the generator of a strongly continuous
fuzzy semigroup. The aim of our paper is to study the existence of mild solution
of (1) based on fuzzy strongly continuous semigroups theory (see [3, 10]).

Note that Kaleva [9] discussed the properties of differentiable fuzzy set-valued
mappings by means of the concept of H−differentiability due to Puri and Ralescu
[14], gave the existence and uniqueness theorem for a solution of the fuzzy differ-
ential equation

u′(t) = f
(
t, u(t)

)
; u(0) = u0

when f : I × En → En satisfies the Lipschitz condition.
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In [10], Said Melliani, El Hassan Eljaoui and Lalla Saadia Chadli studied, with
more details, the existence and uniqueness of mild solution for the fuzzy differential
equation

u′(t) = Au(t) + f(t, u(h(t))); u(0) = u0 + (−1)g(u)

In [4] Bhaskar Dubey and Raju K. George studied the linear time-invariant systems
with fuzzy initial condition

u′(t) = Au(t) +Bc(t), u(t0) = u0.

where c(t) ∈ (E1)m a control and A, B, are n×n, n×m real matrices, respectively,
t0 ≥ 0. ather parallel resuls [5, 6].

1. Preliminaries

Let PK(Rn) denote the family of all nonempty compact convex subsets of Rn
and define the addition and scalar multiplication in PK(Rn) as usual. Let A and B
be two nonempty bounded subsets of Rn. The distance between A and B is defined
by the Hausdorf metric,

d(A,B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
where ‖‖ denotes the usual Euclidean norm in Rn.

Then it is clear that (PK(Rn), d) becomes a complete and separable metric space
(see [14] ).
Denote

En = {u : Rn −→ [0, 1] | u satisfies (i)-(iv) below } ,
where

(i) u is normal i.e there exists an x0 ∈ Rn such that u(x0) = 1,
(ii) u is fuzzy convex,

(iii) u is upper semicontinuous,
(iv) [u]0 = cl{x ∈ Rn/u(x) > 0} is compact.

For 0 < α ≤ 1, denote [u]
α

= {t ∈ Rn / u(t) ≥ α}. Then from (i)-(iv), it follows
that the α-level set [u]α ∈ PK(Rn) for all 0 ≤ α ≤ 1.

According to Zadeh’s extension principle, we have addition and scalar multipli-
cation in fuzzy number space En as follows :

[u+ v]α = [u]α + [v]α, [ku]α = k[u]α

where u, v ∈ En, k ∈ Rn and 0 ≤ α ≤ 1.
Define D : En × En → R+ by the equation

D(u, v) = sup
0≤α≤1

d
(

[u]α , [v]α
)

where d is the Hausdorff metric for non-empty compact sets in Rn.
Then it is easy to see that D is a metric in En. Using the results in [14], we

know that

(1) (En, D) is a complete metric space;
(2) D(u+ w, v + w) = D(u, v) for all u, v, w ∈ En;
(3) D(k u, k v) = |k| D(u, v) for all u, v ∈ En and k ∈ Rn.

If we denote ‖u‖F = D
(
u, 0̃
)
, u ∈ En, then ‖u‖F has the properties of an usual

norm on En (see [7]),
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(1) ‖u‖F = 0 iff u = 0̃;
(2) ‖λu‖F = |λ|‖u‖F for all u ∈ En, λ ∈ R;
(3) ‖u+ v‖F ≤ ‖u‖F + ‖v‖F for all u, v ∈ En;
(4) D(αu, βu) ≤ |α− β|D(u, 0̃), for all α, β ≥ 0 or α, β ≤ 0, u ∈ En.

On En, we can define the substraction �, called the H-difference (see [8])as follows
u� v has sense if there exists w ∈ En such that u = v + w.

Denote C (I, En) = {f : I −→ En; f is continuous onI}, endowed with the metric

H(u, v) = sup
t∈I

D(u(t), v(t))

Then (C, H) is a complete metric space.
Lets a, b ∈ R, f ∈ C(I, En), if we denote ‖f‖ = H

(
f, 0̃
)
, then ‖f‖ has the

properties of an usual norm on En (see [7]),

(1) ‖f‖ = 0 if f = 0̃;
(2) ‖λf‖ = |λ|‖f‖ for all f ∈ C(I, En), λ ∈ R;
(3) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ C(I, En);
(4) H(αf, βf) ≤ |α− β|H(f, 0̃), for all α, β ≥ 0 or α, β ≤ 0, f ∈ C(I, En).

Definition 1.1. A mapping F : I → En is Hukuhara differentiable at t0 ∈ I if
there exists a F ′(t) ∈ En such that the following limits

lim
h→0+

F (t+ h)� F (t)

h
and lim

h→0+

F (t)� F (t− h)

h

exist and equal to F ′(t).

we recall some measurability, integrability properties for fuzzy set-valued map-
pings (see [9]).

Definition 1.2. A mapping F : I → En is strongly mesurable if for all α ∈ [0, 1]
the set-valued function Fα : I → PK(Rn) defined by Fα(t) = [F (t)]α is Lebesgue
mesurable.

A mapping F : I → En is called integrably bounded if there exists an integrable
function k such that ||x|| ≤ k(t) for all x ∈ F0(t).

Definition 1.3. Let F : I → En. Then the integral of F over I denoted by∫
I

F (t)dt or

∫
I

F (t)dt, is defined by the equation[∫
I

F (t)dt

]α
=

∫
I

Fα(t)dt =

{∫
I

f(t)dt/f : I → Rn is a mesurable selection for Fα

}
for all α ∈]0, 1].

Also, a strongly mesurable and integrably bounded mapping F : I → En is said
to be integrable over I if ∫

I

F (t)dt ∈ En

Proposition 1. (Aumann [1]). If F : I → En is strongly measurable and inte-
grably bounded, then F is intergrable.

Proposition 2. ([9]) Let F,G : I → En be integrable and λ ∈ R. Then

(i)

∫
I

(F (t) +G(t))dt =

∫
I

F (t)dt+

∫
I

G(t)dt ,
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(ii)

∫
I

λF (t)dt = λ

∫
I

F (t)dt,

(iii) D(F,G) is integrable,

(iv) D(

∫
I

F (t)dt,

∫
I

G(t)dt) ≤
∫
I

D(F,G)(t)dt.

1.1. Operator theory. We give here a definition of linear operator, which is sim-
ilar to that given by C. G. Gal and S. G. Gal in [7].

Definition 1.4. A : En −→ En is a linear operator if{
A(x+ y) = Ax+Ay
A(λx) = λA(x)

for all x, y ∈ En, λ ∈ R.

Remark 1.5. If A : En −→ En is linear and continuous at 0̃ ∈ En, then the latter
does not imply the continuity of A at each x ∈ En, because in general, we cannot
write x0 = (x0 � x) + x.

However, we can prove the following theorems, which is similar to that given in
[7].

Theorem 1.6. If A : En −→ En is linear, then it is continuous at 0̃ ∈ En if and
only if there exists M > 0 such that

‖A(x)‖F ≤M‖x‖F , ∀x ∈ En.

Now, for A : En −→ En linear and continuous at 0̃, let us denote

MA := {M > 0; ‖A(x)‖F ≤M‖x‖F ,∀x ∈ En}
Furthermore, in the both cases, denote |‖A‖|F = inf

M
MA.

We have the following :

Theorem 1.7. If A : En −→ En is linear and continuous at 0̃, then

‖A(x)‖F ≤ |‖A‖|F‖x‖F .
for all x ∈ En and

|‖A‖|F = sup {‖A(x)‖F ;x ∈ En, ‖x‖F ≤ 1} .

Corollary 1.8. If A : En −→ En is additive, positive homogeneous and continuous
at 0̃, then

‖A(x)‖F ≤ |‖A‖|F‖x‖F , ∀x ∈ En.

Next, let us denote

L+
0 (En) =

{
A : En −→ En;A is additive, positive homogeneous and continuous at 0̃

}
,

L+(En) =
{
A ∈ L+

0 (En);A is continuous at each x ∈ En
}
,

L0(En) =
{
A : En −→ En;A is linear and continuous at 0̃

}
,

and

L(En) = {A ∈ L0(En);A is continuous at each x ∈ En} ,
We consider the metric Φ : L+

0 (En)× L+
0 (En) −→ R+ by

Φ(A,B) = sup {D(A(x), B(x)); ‖x‖F ≤ 1} , A,B ∈ L+
0 (En).
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Then it is easy to see that Φ(A, Õ) = |‖A‖|F , A ∈ L+
0 (En), where Õ : En −→ En

is given by Õ(x) = 0̃, ∀x ∈ En.
We can prove the following theorem, which is similar to that given by C. G. Gal

and S. G. Gal in [7].

Theorem 1.9. (1)
(
L+
0 (En),Φ

)
, (L0(En),Φ), (L+(En),Φ) and (L(En),Φ)

are complete metric spaces.
(2) Φ (A+B,C +D) ≤ Φ(A,C) + Φ(B,D),
(3) Φ(kA, kB) = |k|Φ(A,B),
(4) Φ(A,B) ≤ |‖A‖|F + |‖B‖|F ,
(5) Φ(A+B,C) ≤ Φ(A,C) + Φ(B,C),

(6) Φ(A+B, Õ) ≤ |‖A‖|F + |‖B‖|F .
for all A,B,C ∈ L+

0 (En).

1.2. Fuzzy strongly continuous semigroups. We give here a definition of a
fuzzy semigroups, which is similar to that given in [2, 10, 13].

Definition 1.10. A family {T (t), t ≥ 0} of operators from En into itself is a fuzzy
strongly continuous semigroup if

(i) T (0) = i , the identity mapping on En,
(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0,
(iii) the function g : [0,∞[→ En, defined by g(t) = T (t)x is continuous at t = 0

for all x ∈ En i.e

lim
t→0+

T (t)x = x

(iv) There exist two constants R > 0 and ω such that

D
(
T (t)x, T (t)y

)
≤ ReωtD(x, y), for t ≥ 0, x, y ∈ En

In particular if R = 1 and ω = 0, we say that {T (t), t ≥ 0} is a contraction
fuzzy semigroup.

Remark 1.11. The condition (iii) implies that the function t −→ T (t)x is continuous
on [0,∞[ for all x ∈ En.

Definition 1.12. Let {T (t), t ≥ 0} be a fuzzy strongly continuous semigroup on
En and x ∈ En. If for h > 0 sufficiently small, the Hukuhara difference T (h)x� x
exits, we define

Ax = lim
h→0+

T (h)x� x
h

whenever this limit exists in the metric space (En, D). Then the operator A defined
on

D(A) =

{
x ∈ En : lim

h→0+

T (h)x� x
h

exists

}
⊂ En

is called the infinitesimal generator of the fuzzy semigroup {T (t), t ≥ 0}.

Lemma 1.13. Let A be the generator of a fuzzy semigroup {T (t), t ≥ 0} on En,
then for all x ∈ En such that T (t)x ∈ D(A) for all t ≥ 0, the mapping t → T (t)x
is differentiable and

d

dt

(
T (t)x

)
= AT (t)x, ∀t ≥ 0
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Example 1.14. We define on En the family of operator {T (t), t ≥ 0} by

T (t)x = ektx, k ∈ R.
For k ≥ 0, {T (t), t ≥ 0} is a fuzzy strongly continuous semigroup on En, and the
linear operator A defined by Ax = kx is the infinitesimal generator of this fuzzy
semigroup.

Proposition 3. Let {T (t), t ≥ 0} be a fuzzy strongly continuous semigroup on
En. Then for all t ≥ 0 we have T (t) ∈ L(En).

Proof. Lets x, y ∈ En, the condition (iv) in the definition 2.5 implies that, there
exist two constants M > 0 and ω such that

D
(
T (t)x, T (t)y

)
≤ ReωtD(x, y)

Or, D(x, y) −→ 0 as x→ y. Then D
(
T (t)x, T (t)y

)
−→ 0 as x→ y.

which implies T (t) ∈ L(En), for all t ≥ 0. �

2. Main Results

To begin our discussion, we need to introduce the concept of mild solution for the
problem (1), provided f : [t0, t1] × E1 → E1, ρ : [t0, t1] −→ [t0, t1], B : [t0, t1] −→
L(E1), A is the generator of a strongly continuous fuzzy semigroup. the input
c(t) ∈ E1 for each t ∈ [t0, t1] and c(.) is fuzzy-integrable (see [9, ?]) in [t0, t1].
Therefore, it is important to understand the structure of the solutions of (1).

Definition 2.1. We say that u is a mild solution of the equation (1) if

(i) u ∈ C([t0, t1], E1), u(t) ∈ D(A) for all t ∈ [t0, t1] ;

(ii) and u(t) = T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s)) +B(s)c(s)

)
ds,

for all t ∈ [t0, t1].

We give here a definition of the Controllability, which is similar to that given by
Bhaskar Dubey, Raju K. George in [4].

Definition 2.2. The problem (1) with fuzzy initial condition u(0) = u0 ∈ E1 is
said to be controllable to a fuzzy-state u1 ∈ E1 at t2 > t0 if there exists a fuzzy-
integrable control c(t) ∈ E1 for t ∈ [t0, t1] such that the solution of problem (1)
with this control satisfies u(t2) = u1.

Let N = sup
t∈[t0,t1]

Reωt.

We first study the existence and uniqueness of mild solutions using the fixed point
argument.
Suppose the assumptions:
(H0) A is the infinitesimal generator of a strongly continuous fuzzy semigroup
{T (t), t ≥ 0} on E1.
(H1). f : [t0, t1]×E1 → E1 is continuous and there exist two constants L1, L2 > 0
such that

D
(
f(t, x, y), f(t, x′, y′)

)
≤ L1D(x, y) + L2D(x′, y′), ∀t ∈ [t0, t1], x, y, x′, y′ ∈ E1.

(H2). ρ : [t0, t1] −→ [t0, t1] is continuous and ρ(t) ≤ t for all t ∈ [t0, t1].
(H3). for t ∈ [t0, t1], c(t) ∈ E1 is a control and c(.) is fuzzy-integrable.
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(H4). B : [t0, t1] −→ L(E1)is continuous.
(H5). There exist a constant M > 0 such that
D(B(t)x,B(t)y) ≤MD(x, y) for all x, y ∈ E1, t ∈ [t0, t1].

Theorem 2.3. Assume that the conditions (H0)− (H4) are satisfied. Then for all
u0 ∈ E1 such that T (t)u0 ∈ E1 for all t ≥ 0, the problem (1) has a unique mild
solution on [t0, t1].

Proof. Transform the problem (1) into a fixed point problem. Consider the operator
Γ : C([t0, t1];E1) −→ C([t0, t1];E1) defined as

Γu(t) = T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s))) +B(s)u(s)

)
.

Γ is well defined and maps C([t0, t1];E1) into itself. Indeed
For u ∈ E1, t ∈ [t0, t1] and h very small, we have

D(Γu(t+ h),Γu(t)) = D

(
T (t+ h− t0)u0 +

∫ t+h

t0

T (t+ h− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds ,

T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds

)
≤ D (T (t+ h− t0)u0, T (t− t0)u0)

+D

(∫ t+h

t0

T (t+ h− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds ,∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds

)
≤ ND (T (h)u0, u0) +

∫ t0+h

t0

D
(
T (t− h+ s)

(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds, 0̃

)
ds

+N

∫ t

t0

D
(
f(s+ h, u(s+ h), u(ρ(s+ h)), f(s, u(s), u(ρ(s)))

)
ds

+N

∫ t

t0

D
(
B(s+ h)c(s+ h), B(s)c(s)

)
ds.

It is obviously that

D (T (h)u0, u0)→ 0,

∫ t0+h

t0

D
(
T (t− h+ s)

(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds, 0̃

)
ds→ 0.

And by the dominated convergence theorem we have

∫ t

t0

D
(
f(s+ h, u(s+ h), u(ρ(s+ h)), f(s, u(s), u(ρ(s)))

)
ds→ 0, .

and

∫ t

t0

D
(
B(s+ h)c(s+ h), B(s)c(s)

)
ds→ 0

From above, we infer that Γu ∈ C([t0, t1];E1), for all u ∈ C([t0, t1];E1).



162 S. MELLIANI, A. EL ALLAOUI, AND L. S. CHADLI

For t ∈ [t0, t1], u, v ∈ E1, we have

D(Γu(t),Γv(t)) = D

(
T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds,

T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, v(s), v(ρ(s))) +B(s)c(s)

)
ds

)
≤ D

(∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds,∫ t

t0

T (t− s)
(
f(s, v(s), v(ρ(s))) +B(s)c(s)

)
ds

)
≤ N

∫ t

t0

D
(
f(s, u(s), u(ρ(s))) +B(s)c(s), f(s, v(s), v(ρ(s))) +B(s)c(s)

)
ds

≤ N

∫ t

t0

D
(
f(s, u(s), u(ρ(s))), f(s, v(s), v(ρ(s)))

)
ds

≤ N

∫ t

t0

(
L1D(u(s), v(s)) + L2D(u(ρ(s)), v(ρ(s)))

)
ds

≤ (L1 + L2)N(t− t0)H(u, v).

Therefore, we have

D(Γ2u(t),Γ2v(t)) ≤ N

∫ t

t0

(
L1D(Γu(s),Γv(s)) + L2D(Γu(ρ(s)),Γv(ρ(s)))

)
ds

≤ N

∫ t

t0

(
L1(L1 + L2)N(s− t0)H(u, v) + L2(L1 + L2)N(ρ(s)− t0)H(u, v)

)
ds

≤ (L1 + L2)N(t− t0)H(u, v).

Since ρ(s) ≤ s, then

D(Γ2u(t),Γ2v(t)) ≤ N

∫ t

t0

(
L1D(Γu(s),Γv(s)) + L2D(Γu(ρ(s)),Γv(ρ(s)))

)
ds

≤ N

∫ t

t0

(
L1(L1 + L2)N(s− t0)H(u, v) + L2(L1 + L2)N(s− t0)H(u, v)

)
ds

= (L1 + L2)2N2H(u, v)

∫ t

t0

(s− t0)ds

=
(L1 + L2)2N2(t− t0)2

2
H(u, v).

By inference, we have for all m > 0

D (Γmu(t),Γmv(t)) ≤

(
(L1 + L2)N(t− t0)

)m
m!

H(u, v),∀t ∈ [t0, t1].

Which means that

H (Γmu,Γmv) ≤

(
(L1 + L2)N(t− t0)

)m
m!

H(u, v),∀t ∈ [t0, t1].

Since

lim
m→+∞

(
(L1 + L2)N(t− t0)

)m
m!

= 0.

Then there exists p > 0 such that(
(L1 + L2)N(t− t0)

)p
p!

< 1.
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which shows that Γp is a contraction. So there exists a unique fixed point u ∈ C([t0, t1];E1)
such that Γpu = u.
Which implies that Γp(Γu) = Γ(Γpu) = Γu. Since u is unique, then Γu = u. It follows
that u is the unique mild solution of the problem (1). �

The next theorem provides a correspondence between the continuity of solution
and the continuity of control.

Theorem 2.4. Let {cn, n ≥ 0} ⊂ E1 be a sequence of controls as in (H3) such
that lim

n→+∞
cn = c. Suppose that the conditions (H0) − (H5) hold. Let ucn be the

mild solution for (1) corresponding to cn and uc be the mild solution corresponding
to c. If N(L1 + L2)(t1 − t0) < 1, then lim

n→+∞
ucn = uc.

Proof. For t ∈ [t0, t1] we have

D (ucn(t), uc(t)) = D

(
T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, ucn(s), ucn(ρ(s))) +B(s)cn(s)

)
ds,

T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, uc(s), uc(ρ(s))) +B(s)c(s)

)
ds

)
≤ D

(∫ t

t0

T (t− s)
(
f(s, ucn(s), ucn(ρ(s))) +B(s)cn(s)

)
ds,∫ t

t0

T (t− s)
(
f(s, uc(s), uc(ρ(s))) +B(s)c(s)

)
ds

)
≤ N

∫ t

t0

D (f(s, ucn(s), ucn(ρ(s))) +B(s)cn(s), f(s, uc(s), uc(ρ(s))) +B(s)c(s)) ds

≤ N

∫ t

t0

(
L1D (ucn(s), uc(s)) + L2D (ucn(ρ(s)), uc(ρ(s)))

)
ds

+N

∫ t

t0

D
(
B(s)cn(s), B(s)c(s)

)
ds

≤ N(L1 + L2)(t1 − t0)H(ucn , uc) +MN(t1 − t0)H(cn, c).

Which implies that

H(ucn , uc) ≤ MN(t1 − t0)

1−N(L1 + L2)(t1 − t0)
H(cn, c).

Since cn → c, hence ucn → uc as n→ +∞. �

we establish the following result about continuous dependence of a mild Solution.

Theorem 2.5. Suppose that the conditions (H0)−(H4) hold. Lets u and v be mild
solutions of (1) on [t0, t1] corresponding to u0 and v0 respectively.

If L2N(t1 − t0)eL1N(t1−t0) < 1, then

H(u, v) ≤ N

eL1N(t0−t1) + L2N(t0 − t1)
D(u0, v0).
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Proof. for t ∈ [t0, t1], we have

D (u(t) , v(t)) = D

(
T (t− t0)u0 +

∫ t

t0

T (t− s)
(
f(s, u(s), u(ρ(s))) +B(s)c(s)

)
ds ,

T (t− t0)v0 +

∫ t

t0

T (t− s)
(
f(s, v(s), v(ρ(s))) +B(s)c(s)

))
ds

≤ ND(u0, v0) +N

∫ t

t0

D
(
f(s, u(s), u(ρ(s))), f(s, v(s), v(ρ(s)))

)
ds

≤ ND(u0, v0) +N

∫ t

t0

(
L1D(u(s), v(s)) + L2D(u(ρ(s)), v(ρ(s)))

)
ds

≤ ND(u0, v0) + L2N(t1 − t0)H(u, v) + L1N

∫ t

t0

D(u(s), v(s))ds

By using Gronwall inequality, we find that

D (u(t) , v(t)) ≤
(
ND(u0, v0) + L2N(t1 − t0)H(u, v)

)
eL1N(t−t0)

≤
(
ND(u0, v0) + L2N(t1 − t0)H(u, v)

)
eL1N(t1−t0), ∀t ∈ [t0, t1].

which implies that

H(u, v) ≤
(
ND(u0, v0) + L2N(t1 − t0)H(u, v)

)
eL1N(t1−t0).

Finally, we get

H(u, v) ≤ N

eL1N(t0−t1) + L2N(t0 − t1)
D(u0, v0).

�

Conclusion

In order to describe a random evolution of the temperature of the rode using
a control, we consider a controlled fuzzy evolution equation. By using operator
semigroup of fuzzy sets theory, we obtain existence results. In addition, future work
includes expanding the idea signalized in this work and introducing obsevability and
generalize other works [11, 12]. This is a fertile field with vast research projects,
which can lead to numerous theories and applications. We plan to devote significant
attention to this direction. And we intend to investigate the applications which are
based on experimental data (real world problems) of the proposed theory.
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