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EXISTENCE OF POSITIVE SOLUTIONS OF NONLINEAR

FRACTIONAL QUADRATIC DIFFERENTIAL EQUATIONS

K. HILAL, Y. ALLAOUI, AND K. GUIDA

Abstract. In this work, we prove the existence as well as approximations

of the positive solutions for an initial value problem of nonlinear fractional

quadratic differential equations. We use some properties of the Mittag-Leffler
functions and its relationship with fractional calculus. Also we obtain some

results regarding the existence of positive solutions using the Dhage iterative

method embodied in a recent hybrid fixed point theorem of Dhage in partially
ordered normed linear spaces.

1. Introduction

Fractional differential equations have received increasing attention during recent
years due to their application in various fields of science and engineering, such as vis-
coelasticity, electrochemistry, porous media and electromagnetism [7],[9],[10],[11].
For more details on this theory and application, we refer the readers to I.Podlubny
[14], Miller and Ross [13], Kilbas and all [8] and Zhou [16].

Very recently, the study of existence and approximation of the solutions for the
hybrid differential equations is initiated in Dhage [3] and Dhage and all [1],[2] via
hybrid fixed point theory.
C.Dhage and B.Dhage [3] discussed the following quadratic differential equations.

d

dt

[
x(t)

f(t, x(t))

]
+ λ

[
x(t)

f(t, x(t))

]
= g(t, x(t)), t ∈ J = [t0, t0 + a]

x(t0) = x0 ∈ R,

for λ ∈ R+ where f : J × R −→ R∗ and g : J × R −→ R are a continuous
functions. They established the existence of positive solutions using the Dhage
iterative method.
From this work, we develop the theory of fractional quadratic differential equations
involving Caputo differential operators of order 0 < α < 1. We prove the existence
of positive solutions of the following fractional quadratic differential equations (for
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short FQDE):

Dα

[
x(t)

f(t, x(t))

]
− λ
[

x(t)

f(t, x(t))

]
= g(t, x(t)), t ∈ J = [0, 1](1.1)

x(0) = x0 ∈ R,(1.2)

where Dα denotes the Caputo fractional derivative of order α, where 0 < α < 1,
λ > 0, f : J × R −→ R∗ is a continuous function and g : J × R −→ R is a
L1 − Caratheodory function.

We note that the (FQDE) (1) − (2) with λ = 0 is considered by Hilal and Ka-
jouni [5], [6].
The rest of this paper is organized as follows: In section 2, we give some prelimi-
naries which are used in the sequal. In section 3 we prove our main results.

2. Preliminaries

In this section, we introduce some definitions and results which are used through-
out this paper.

Definition 2.1. [15] Let x ∈ Cn[0,∞) and n − 1 < α < n, where n ∈ N∗, the
Caputo’s derivative of order α for function x : [0,∞) −→ R can be written as

(2.1) Dαx(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1x(n)(s)ds.

Definition 2.2. [15] The fractional integral of order α is defined as

(2.2) Iαx(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds,

which is called the Riemann-Liouville integral.

We give a useful lemma which plays an important role in the fractional calculus.

Definition 2.3. [12, 4] Let α, β > 0. The two-parameters Mittag-Leffler function
Eα,β(t) is defined by the series expansion

Eα,β(t) =

∞∑
i=0

ti

Γ(αi+ β)
.

Especially, if β = 1, Eα,1(t) becomes the one-parameter Mittag-Leffler function
Eα(t), i.e., Eα,1(t) = Eα(t).

Lemma 2.4. [12]
Let 0 < α < 1, and λ ∈ R. Then for any t ∈ [0, T ], we have

(1)- Let 0 < α < 1, and K,U ∈ Rn×n. Then for any t ∈ [0, T ], it has∫ t

0

(t−τ)α−1Eα,α(−K(t−τ)α)U(Dαx)(τ)dτ = Ux(t)−Eα(λα)Ux(0)−K
∫ t

0

(t−s)α−1Eα,α(−K(t−s)α)Ux(s)ds

(2)-

Dα
0

[∫ t

0

f(t− s)g(s)ds
]
(t) =

∫ t

0

Dα
0 [f(t)](s)g(t− s)ds+ g(t) lim

t→0+
[tI

1−α
0+

f ](t).
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Lemma 2.5. [8, 4]

(a)- Dα
a+Eα[λ(t− a)α](x) = λEα[λ(x− a)α], (Re(α) > 0, λ ∈ C)

(b)-
(
Iα

′

a+(t− a)β−1Eµ,β [λ(t− a)µ]
)

(x) = (x− a)α
′+β−1Eµ,α′+β [λ(x− a)µ],

with α′ > 0, β > 0 and µ > 0.

(c)-
∫ z
0
tβ−1Eα,β(λtα)dt = zβEα,β+1(λzα).

(d) |Eα,β(z)| ≤ C1exp(σ |z|ρ), for all σ > 1 and ρ =
1

Re(α)
.

The following definitions are useful in the sequel.
We conserve the same definitions given in Dhage [3].

Let E denotes a partially ordered real-normed linear space with an order relation
≤ and the norm ‖ . ‖.

Definition 2.6. [3] A mapping T : E −→ E is called nondecreasing if it preserves
the order relation ≤, that is if x ≤ y implies T x ≤ T y for all x, y ∈ E.

Definition 2.7. [3] A mapping T : E −→ E is called partially continuous at a
point a ∈ E if for ε > 0 there exists a δ > 0 such that ‖ T x − T a ‖< ε whenever
x is comparable to a and ‖ x − a ‖< δ.T called partially continuous on E if it is
partially continuous at every point of it.It is clear that if T is partially continuous
on E, then it is continuous on every chain C contained in E.

Definition 2.8. [3] A mapping T : E −→ E is called partially bounded if T (C)
is bounded for every chain C in E. T is uniformly partially bounded if all chain
T (C) in E are bounded by a unique constant.
T is called bounded if T (E) is a bounded subset of E.

Definition 2.9. [3] A mapping T : E −→ E is called partially compact if T (C) is
a relatively compact subset of E for all totally ordered sets or chain C in E. T is
uniformly partially compact if T (C) is a uniformly partially bounded and partially
compact on E.T is called partially totally bounded if for any totally ordered and
bounded subset C of E, T (E) is a relatively compact subset of E. If T is partially
continuous and partially totally bounded, then it is called partially completely
continuous on E.

Definition 2.10. [3] An upper semi-continuous and nondecreasing function ψ :
R+ −→ R+ is called a D − function, provided ψ(0) = 0. Let (E,≤, ‖ . ‖) be a
partially ordered normed linear space. A mapping T : E −→ E is called partially
nonlinear D − Lipschitz if there exists a D − function ψ : R+ −→ R+ such that

(2.3) ‖ T x− T y ‖≤ ψ(‖ x− y ‖),
for all comparable elements x, y ∈ E. If ψ(r) = kr, k > 0, then T is called a
partially Lipschitz with a Lipschitz constant k.

Let (E,≤, ‖ . ‖) be a partially ordered normed linear algebra. We denote

E+ = {x ∈ E | x ≥ θ, where θ is the zero element of E},
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K = {E+ ⊂ E | uv ∈ E+ for all u, v ∈ E+},
and Pch(E) is the set of all subsets of E.

The elements of the set K are called the positive vectors in E. The following
lemma follows immediately from the definition of the set K, which is oftentimes used
in the hybrid fixed point theory of Banach algebras and applications to nonlinear
differential and integral equations.

Lemma 2.11. [3] If u1,u2,v1,v2 ∈ K are such that u1 ≤ v1 and u2 ≤ v2 then
u1u2 ≤ v2v2.

Definition 2.12. [3]
An operator T : E → E is said to be positive if the range R(T ) of T is such that

R(T ) ⊆ K.

Theorem 2.13. [3] Let (E,≤, ‖ . ‖) be a regular partially ordered complete normed
linear algebra such that the order relation ≤ and the norm ‖ . ‖ in E are compatible
in every compact chain of E. Let A,B −→ K be two nondecreasing operators such
that

(a) A is partially bounded and partially nonlinear D − Lipschitz with D −
function ψA,

(b) B is partially continuous and uniformly partially compact,
(c) MψA(r) < r, r > 0, where M = sup{‖ B(C) ‖: C ∈ Pch(E)}, and
(d) there exists an element x0 ∈ X such that x0 ≤ Ax0Bx0 or x0 ≥ Ax0Bx0

then the operator equation
AxBx = x

has a positive solution x∗ in E and the sequence {xn} of successive iterations defined
by xn+1 = AxnBxn, n = 0, 1, ...; converges monotonically to x∗.

Let C(J × R,R) be the class of functions g : J × R −→ R such that

(i) the map t −→ g(t, x) is measurable for each x ∈ R, and
(ii) the map x −→ g(t, x) is continuous for each t ∈ J .

The class C(J × R,R) is called the Caratheodory class of functions on J × R
which are Lebesgue integrable when bounded by a Lebesgue integrable function on
J.

L1(J,R) denotes the space of Lebesgue integrable real-valued functions on J
equipped with the norm ‖ . ‖L1 defined by

‖ x ‖L1=

∫ 1

0

| x(s) | ds.

3. Main results:

Definition 3.1. By a solution of the FQDE, we mean a function x ∈ C1(J,R) that
satisfies
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(i) t −→ x
f(t,x) is a continuously differentiable function for each x ∈ R and

(ii) x satisfies the equations (1), (2) on J .

We consider the FQDE in the space C(J,R) of continuous real-valued functions
defined on J . We define a norm ‖ . ‖ and the order relation ≤ in C(J,R) by

(3.1) ‖ x ‖= sup
t∈J
|x(t)|,

and

(3.2) x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ J.

Clearly, C(J,R) is a Banach algebra with respect to above supremum norm and
is also partially ordered with respect to the above partially order relation ≤. It is
known that the partially ordered Banach algebra C(J,R) has some nice properties
with respect to the above order relation in it. The following lemma follows by an
application of Arzela-Ascoli theorem.

Lemma 3.2. [3] Let (C(J,R),≤, ‖ . ‖) be a partially ordered Banach space with
the norm ‖ . ‖ and the order relation ≤ defined by (3.1)-(3.2), respectively.Then,
‖ . ‖ and ≤ are compatible in every partially compact subset of C(J,R).

Definition 3.3. A function u ∈ C1(J,R) is said to be a lower solution of the FQDE

if the function t −→ u(t)
f(t,u(t)) is continuously differentiable and satisfies

Dα[
u(t)

f(t, u(t))
]− λ[

u(t)

f(t, u(t))
] ≤ g(t, u(t)), t ∈ J

u(0) ≤ x0.
Similarly, a function v ∈ C1(J,R) is said to be upper solution of FQDE if satis-

fies the above property and inequalities with reverse sign.

Consider the following assumptions:

(A0) The map x −→ x
f(t,x) is increasing in R for each t ∈ J .

(A1) f defines a function f : J × R −→ R+.
(A2) There exists a constant Mf > 0 such that 0 < f(t, x) < Mf for all t ∈ J

and x ∈ R.
(A3) There exists a D − function φ, such that

0 ≤ f(t, x)− f(t, y) ≤ φ(x− y),

for all t ∈ J and x, y ∈ R, x ≥ y.
(B1) g defines a function g : J × R −→ R+.
(B2) There exists a function h ∈ L1(J,R) such that g(t, x) ≤ h(t) for all t ∈ J

and x ∈ R.
(B3) g(t, x) is nondeceasing in x for all t ∈ J .
(B4) The FQDE has a lower solution u ∈ C1(J,R).

Lemma 3.4. Suppose that hypothesis A0 hold. Then a function x ∈ C1(J,R) is a
solution of the FQDE
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
Dα

[
x(t)

f(t,x(t))

]
− λ
[

x(t)
f(t,x(t))

]
= g(t)

x(0) = x0 ∈ R,

if and only if it is a solution of the nonlinear integral equation

x(t) = f(t, x(t))

(
x0

f(0, x0)
Eα(λtα) +

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s)ds

)
,

for all t ∈ J .

Proof. Consider the problem Dα

[
x(t)

f(t,x(t))

]
− λ
[

x(t)
f(t,x(t))

]
= g(t).

By the relations (4.1.65) and (4.1.66) in [8], the integral equation has the solution

(3.3)
x(t)

f(t, x(t))
=

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)g(s)ds+
x(0)

f(0, x(0))
Eα(λtα).

According to the condition (1.2), we get

x(t) = f(t, x(t))

(
x0

f(0, x0)
Eα(λtα) +

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s)ds

)
.

Conversely, if we have

x(t) = f(t, x(t))

(
x0

f(0, x0)
Eα(λtα) +

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s)ds

)
,

then

Dα

(
x(t)

f(t, x(t))

)
= Dα

(∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s)ds

)
+Dα

(
x0

f(0, x0)
Eα(λtα)

)
.

Substituting x = t and a = 0 in the relation (a) in lemma 2.2, we have

DαEα(λtα) = λEα(λtα).
This implies that:

Dα(
x0

f(0, x0)
Eα(λtα)) =

x0
f(0, x0)

λEα(λtα).

Setting F (u) := uα−1Eα,α(λuα).

According to the relation (2) in lemma 2.1, we have



SHORT TITLE 251

Dα
[∫ t

0
F (t− s)g(s)ds

]
=
∫ t
0
Dα[sα−1Eα,α(λsα)]g(t− s)ds] + g(t) lim

t→0+
I1−αF (t)

=
∫ t
0
λsα−1Eα,α(λsα)g(t− s)ds] + g(t) lim

t→0+
I1−αF (t).

Setting t− s = u, then we have

Dα
[∫ t

0
F (t− s)g(s)ds

]
(t) =

∫ t
0
λ(t−u)α−1Eα,α(λ(t−u)α)g(u)du+g(t) lim

t→0+
I1−αF (t).

In the other hand, For α′ = 1− α , µ = β = α, a = 0 and t = x, in the relation
(b), lemma 2.2, we have

I1−αtα−1Eα,α[λtα] = Eα,1[λtα], wish implies

g(t) lim
t→0+

I1−αF (t) = g(t) lim
t→0+

Eα,1[λtα] = g(t).

In conclusion:

Dα

(
x(t)

f(t, x(t))

)
=

x0
f(0, x0)

λEα(λtα)+
∫ t
0
λ(t−u)α−1Eα,α(λ(t−s)α)g(s)ds+g(t)

Dα

(
x(t)

f(t, x(t))

)
− λ

(
x(t)

f(t, x(t))

)
= g(t).

Finally, for t = 0 in the relation (3.3) and by the hypothesis (A0) which gives
us x(0) = x0 we get

x(0)

f(0, x(0))
=

x0
f(0, x0)

,

This completes the proof.

Theorem 3.5. Assume that hypothesis (A0) − (A3) and (B1) − (B4) hold. Fur-
thermore, assume that(

C1exp(2λ
ρ)

(
‖ h ‖L1 +

∣∣∣∣ x0
f(0, x0)

∣∣∣∣))φ(r) < r, r > 0,

then, the FQDE has a positive solution x∗ defined on J and the sequence {xn}∞n=1

of successive approximations defined by
(3.4)

xn+1(t) = [f(t, xn(t)]

(
x0

f(0, x0)
Eα(λtα)+

∫ t

0

(t−s)α−1Eα,α(λ(t−s)α)g(s, xn(s))ds

)
,

for t ∈ R, where x1 = u, converges monotonically to x∗.
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Proof
Set E = C(J,R), then, by lemma 3.1, every compact chain in E possesses the

compatibility property with respect to the norm ‖ . ‖ and the order relation ≤ in
E. By an application of lemma 3.2, the FQDE (1),(2) is equivalent to the nonlinear
integral equation,

(3.5) x(t) = [f(t, x(t)]

(
x0

f(0, x0)
Eα(λt

α) +

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)g(s, x(s))ds
)
.

Define two operators A and B on E by

(Ax)(t) = f(t, x(t)), t ∈ J ,

and

(Bx)(t) =
x0

f(0, x0)
Eα(λtα) +

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s, x(s))ds.

We shall show that the operators A and B satisfy all the conditions of the theo-
rem 2.1. This is achieved in the series of following steps.

Step I : A and B are nondecreasing on E.

Let x,y ∈ E be such that x ≥ y. Then by hypothesis (A3), we obtain

(Ax)(t) = f(t, x(t)) ≥ f(t, y(t)) = (Ay)(t),

for all t ∈ J . This shows that A is nondcreasing operator on E into E. Sim-
ilarly using hypothesis (B3), it is shown that the operator B is also nondcreasing
on E into itself. Thus, A and B are nondcreasing positive operators on E into itself.

Step II: A is partially bounded and partially D-Lipschitz on E.

Let x ∈ E be arbitrary. Then by (A2),

|(Ax)(t)| = f(t, x(t)) ≤Mf , for all t ∈ J .

Taking supremum over t, we obtain ‖Ax‖ ≤ Mf and so, A is bounded. This
further implies that A is partially bounded on E.

Let x, y ∈ E be such that x ≥ y. Then,

|(Ax)(t)− (Ay)(t)| = f(t, x(t))− f(t, y(t)) ≤ φ(|x(t)− y(t)|) ≤ φ(‖x− y‖)

for all t ∈ J . Taking supremum over t, we obtain ‖Ax − Ay‖ ≤ φ(‖x − y‖) for
all x, y ∈ E, x ≥ y.
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Hence, A is partially nonlinear D-lipschitz on E which further implies that A is
partially continuous on E.

Step III : B is partially continuous on E.

Let {xn}n∈N be a sequence in a chain C of E such that xn −→ x. Then, by the
Lebesgue dominated convergence theorem, for all t ∈ J

lim
n→∞

(Bxn)(t) = lim
n→∞

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s, xn(s))ds+ lim

n→∞

x0
f(0, x0)

Eα(λtα)

=
∫ t
0
(t− s)α−1Eα,α(λ(t− s)α) lim

n→∞
g(s, xn(s))ds+

x0
f(0, x0)

Eα(λtα)

=
∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s, x(s))ds+

x0
f(0, x0)

Eα(λtα)

= (Bx)(t).

This shows that Bxn converges monotonically to Bx pointwise on J .

Next, we will prove that {Bxn} is an equicontinuous sequence of functions in E.
Let t1, t2 ∈ J with t1 < t2.

Setting ψ(t) =
∫ t
0
h(s)ds. Then

|(Bxn)(t2)− (Bxn)(t1)| ≤ |
∫ t2
0 (t2 − s)α−1Eα,α(λ(t2 − s)α)g(s, xn(s))ds−

∫ t1
0 (t1 − s)α−1Eα,α(λ(t1 − s)α)g(s, xn(s))ds|

+
∣∣Eα(λtα2 )− Eα(λtα1 )

∣∣ ∣∣∣∣ x0

f(0, x0)

∣∣∣∣
≤

∣∣∣∫ t10

[
(t2 − s)α−1Eα,α(λ(t2 − s)α)− (t1 − s)α−1Eα,α(λ(t1 − s)α)

]
g(s, xn(s))ds

∣∣∣
+
∣∣∣∫ t2t1 (t2 − s)α−1Eα,α(λ(t2 − s)α)g(s, xn(s))ds

∣∣∣+
∣∣Eα(λtα2 )− Eα(λtα1 )

∣∣ ∣∣∣∣ x0

f(0, x0)

∣∣∣∣
≤

∣∣∣∫ t10

∣∣(t2 − s)α−1Eα,α(λ(t2 − s)α)− (t1 − s)α−1Eα,α(λ(t1 − s)α)
∣∣ |g(s, xn(s))| ds

∣∣∣
+
∣∣∣∫ t2t1 (t2 − s)α−1Eα,α(λ(t2 − s)α) |g(s, xn(s))| ds

∣∣∣+
∣∣Eα(λtα2 )− Eα(λtα1 )

∣∣ ∣∣∣∣ x0

f(0, x0)

∣∣∣∣
≤ ‖ h ‖L1

∫ t1
0 (t2 − s)α−1Eα,α(λ(t2 − s)α)− (t1 − s)α−1Eα,α(λ(t1 − s)α)ds

+C1exp(2λρ)
∫ t2
t1
h(s)ds+

∣∣Eα(λtα2 )− Eα(λtα1 )
∣∣ ∣∣∣∣ x0

f(0, x0)

∣∣∣∣ .
In the other hand, we have∫ t1

0
(t2 − s)α−1Eα,α(λ(t2 − s)α)ds = −

∫ t2−t1
t2

uα−1Eα,α(λ(u)α)du =
∫ t2
t2−t1 u

α−1Eα,α(λ(u)α)du

=
∫ t2
0
uα−1Eα,α(λ(u)α)du−

∫ t2−t1
0

uα−1Eα,α(λ(u)α)du.



254 K. HILAL, Y. ALLAOUI, AND K. GUIDA

According to the relation (c) in lemma 2.2, with β = α, we obtain

(3.6)∫ t1

0

(t2−s)α−1Eα,α(λ(t2−s)α)ds = tα2Eα,α+1(λtα2 )− (t2− t1)αEα,α+1(λ(t2− t1)α).

Similarly, we have:

(3.7)

∫ t1

0

(t1 − s)α−1Eα,α(λ(t1 − s)α)ds = tα1Eα,α+1(λtα1 ).

Finally,

|(Bxn)(t2)− (Bxn)(t1)| ≤ |Eα(λtα2 )− Eα(λtα1 )|
∣∣∣∣ x0
f(0, x0)

∣∣∣∣
+ ‖ h ‖L1 [tα2Eα,α+1(λt

α
2 )− tα1Eα,α+1(λt

α
1 ) + (t2 − t1)αEα,α+1(λ(t2 − t1)α)]

+ C1exp(2λ
ρ)|ψ(t2)− ψ(t1).|

This implies that |(Bxn)(t2)− (Bxn)(t1)| → 0 as t2 − t1 → 0,
uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform

and hence B is partially continuous on E.

Step IV : B is uniformly partially compact operator on E.

Let C be an arbitrary chain in E. We prove that B(C) is a uniformly bounded
and equicontinuous set in E. First, we prove that B(C) is uniformly bounded. Let
y ∈ B(C) be any element. Then, there is an element x ∈ C, such that y = Bx. By
hypothesis (B2), for all t ∈ J ,

|y(t)| ≤
∣∣∣∣∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)g(s, x(s))ds

∣∣∣∣+

∣∣∣∣ x0
f(0, x0)

Eα(λtα)

∣∣∣∣
≤ C1exp(2λ

ρ)

∫ 1

0

h(s)ds+

∣∣∣∣ x0
f(0, x0)

∣∣∣∣C1exp(2λ
ρ)

≤ C1exp(2λ
ρ)

(
‖ h ‖L1 +

∣∣∣∣ x0
f(0, x0)

∣∣∣∣) = M,(3.8)

Thanks to the relation (d) in lemma 2.2.

Taking supremum over t, we obtain ‖ y ‖ = ‖ Bx ‖ ≤ M for all y ∈ B(C).
Hence, B(C) is a uniformly bounded subset of E. Moreover, ‖ B(C) ‖ ≤ M for all
chains C in E. Hence, B is a uniformly partially bounded operator on E.
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Next, we will prove that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J with

t1 < t2 and ψ(t) =
∫ t
0
h(s)ds. Then, for any y ∈ B(C), one has

|y(t2)− y(t1)| ≤
∣∣∣∫ t20

(t2 − s)α−1Eα,α(λ(t2 − s)α)g(s, x(s))ds−
∫ t1
0

(t1 − s)α−1Eα,α(λ(t1 − s)α)g(s, x(s))ds
∣∣∣

+ |Eα(λtα2 )− Eα(λtα1 )|
∣∣∣∣ x0
f(0, x0)

∣∣∣∣
≤

∣∣∣∫ t10

[
(t2 − s)α−1Eα,α(λ(t2 − s)α)− (t1 − s)α−1Eα,α(λ(t1 − s)α)

]
g(s, x(s))ds

∣∣∣
+
∣∣∣∫ t2t1 (t2 − s)α−1Eα,α(λ(t2 − s)α)g(s, x(s))ds

∣∣∣+ |Eα(λtα2 )− Eα(λtα1 )| ∣∣∣∣ x0
f(0, x0)

∣∣∣∣
≤

∣∣∣∫ t10

∣∣(t2 − s)α−1Eα,α(λ(t2 − s)α)− (t1 − s)α−1Eα,α(λ(t1 − s)α)
∣∣ |g(s, x(s))| ds∣∣∣

+
∣∣∣∫ t2t1 (t2 − s)α−1Eα,α(λ(t2 − s)α) |g(s, x(s))| ds

∣∣∣+ |Eα(λtα2 )− Eα(λtα1 )| ∣∣∣∣ x0
f(0, x0)

∣∣∣∣
≤ ‖ h ‖L1

∫ t1
0

(t2 − s)α−1Eα,α(λ(t2 − s)α)− (t1 − s)α−1Eα,α(λ(t1 − s)α)ds

+C1exp(2λ
ρ)
∫ t2
t1
h(s)ds+ |Eα(λtα2 )− Eα(λtα1 )|

∣∣∣∣ x0
f(0, x0)

∣∣∣∣ .
Finally, according to the relation (3.6) and (3.7), we have

|y(t2)− y(t1)| ≤ |Eα(λtα2 )− Eα(λtα1 )|
∣∣∣∣ x0
f(0, x0)

∣∣∣∣
+ ‖ h ‖L1 [tα2Eα,α+1(λt

α
2 )− tα1Eα,α+1(λt

α
1 ) + (t2 − t1)αEα,α+1(λ(t2 − t1)α)]

+ C1exp(2λ
ρ)|ψ(t2)− ψ(t1)|

This implies that |y(t2)− y(t1)| → 0 as t2 − t1 → 0,
uniformly for all y ∈ B(C). Hence B(C) is an equicontinuous subset of E. B(C)

is a uniformly bounded and equicontinuous set of functions in E, so it is compact.
Consequently, B is a uniformly partially compact operator on E into itself.

Step V: u satisfies the operator inequality u ≤ AuBu.

By hypothesis (B4), the FQDE (1),(2) has a lower solution u defined on J . Then,
we have

Dα

(
u(t)

f(t, u(t)

)
− λ

(
u(t)

f(t, u(t)

)
≤ g(t, u(t)), for all t ∈ J,

and
u(0) ≤ x0.
Multiplying the above inequality by the integrating factor Eα,α, we obtain for all
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t ∈ J ,

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)

(
Dα

(
u(t)

f(t, u(t)

)
− λ

(
u(t)

f(t, u(t)

))
ds ≤

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)g(s, u(s))ds .

Using the relation (1) in lemma 2.1, with n = 1, U = 1 and K = −λ one has∫ t

0

(t−s)α−1Eα,α(λ(t−s)α)Dαu(s)ds = u(t)−Eα(λtα)u(0)+λ

∫ t

0

(t−s)α−1Eα,α(λ(t−s)α)u(s)ds.

Then we obtain:

u(t)

f(t, u(t))
≤ Eα(λtα)

u(0)

f(0, u(0))
+

∫ t

0

(t− s)α−1Eα,α(λ(t− s)α)g(s, u(s))ds,

for all t ∈ J . From the definitions of the operators A and B, it follows that
u(t) ≤ (Au)(t)(Bu)(t), for all t ∈ J . Hence u ≤ AuBu.
Step VI: The D-function φ satisfies the growth condition MφA(r), r > 0.

The D-function φ of the operator A satisfies the inequality given in hypothesis
(c) of theorem 2.1. From the estimate (3.8), it follows that

MφA(r) =

(
C1exp(2|λ|ρ)

(
‖ h ‖L1 +

∣∣∣∣ x0
f(0, x0)

∣∣∣∣))φ(r) < r, for all r > 0.

Thus, A and B satisfy all the conditions of theorem 2.13 and we apply it to con-
clude that the operator equation AxBx = x has a positive solution. Consequently,
the integral equation (3.5) and the FQDE has a positive solution x∗ defined on J .
Furthermore, the sequence {xn}∞n=1 of successive approximations defined by (3.4)
converges monotonically to x∗. This completes the proof.
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