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Abstract 
 

The aim of the present study is to evaluate the effects of phosphorus-enriched biochar on growth and 
phosphorus uptake of iceberg lettuce (Lactuca sativa L.). Hazelnut husk biochar (FZB) was combined with triple 
superphosphate (TSP) and KH₂PO₄ as phosphorus sources and applied at four different rates of 0, 3, 6, and 12 
kg P₂O₅ da⁻¹ in a randomized block design with three replications. Analysis of variance revealed significant 
effects of phosphorus source, application rate, and their interaction on plant dry matter and phosphorus 
uptake, with a significance level of p<0.05. Lettuce treated with KH₂PO₄-enriched biochar showed a dose-
dependent increase in dry matter, reaching 44.7 g per plant at the highest application rate of 12 kg P₂O₅ da⁻¹, 
corresponding to approximately 80% higher than the control. P uptake also increased substantially under 
KH₂PO₄ treatments, attaining a maximum of 154.7 mg plant-1,while TSP-enriched biochar resulted in only 
modest increases in dry matter and phosphorus uptake, reaching 28.2 g per plant and 82.7 mg plant-1, 
respectively. These findings suggest that biochar acts as an effective carrier for phosphorus fertilizers, 
enhancing nutrient use efficiency and improving crop performance. Overall, KH₂PO₄-enriched biochar shows 
strong potential to increase phosphorus availability, stimulate biomass production, and support sustainable 
fertilization strategies in vegetable cultivation. 
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Fosforla Zenginleştirilmiş Biyoçarın Iceberg Marulun Gelişimi ve Fosfor (P) 
Alımı Üzerine Etkileri 

 

Öz 
 

Bu çalışmanın amacı fosfor ile zenginleştirilmiş biyoçar’ın iceberg marulun (Lactuca sativa L.) gelişimi ve P 
alınımı üzerine etkilerini değerlendirmektir. Fındık zurufu biyoçarı (FZB), fosfor kaynağı olarak triple süper 
fosfat (TSP) ve KH₂PO₄ ile kombine edilerek 0, 3, 6 ve 12 kg P₂O₅ da⁻¹ dozlarında, üç tekerrürlü tesadüf blokları 
deneme desenine göre uygulanmıştır. Varyans analizi, fosfor kaynağı, uygulama dozu ve bunların etkileşiminin 
bitki kuru maddesi ve fosfor alımı üzerinde istatistiksel olarak anlamlı etkileri olduğunu (p<0.05) göstermiştir. 
KH₂PO₄ ile zenginleştirilmiş biyoçar uygulanan marulda doz artışına bağlı olarak kuru madde miktarında 
belirgin bir artış gözlenmiş ve en yüksek doz olan 12 kg P₂O₅ da⁻¹’de bitki başına 44.7 g kuru maddeye ulaşılmış, 
bu değer kontrol grubuna kıyasla yaklaşık %80 artış göstermiştir. Toplam fosfor alımı da KH₂PO₄ 
uygulamalarında belirgin şekilde artmış ve maksimum 154.7 mg bitki-1 değerine ulaşmıştır. Buna karşın TSP ile 
zenginleştirilmiş biyoçar uygulamaları, kuru madde ve fosfor alımında sınırlı artış göstermiş, sırasıyla 28.2 g ve 
82.7 mg bitki-1 değerlerine ulaşmıştır. Bu bulgular, biyoçarın fosfor gübreleri için etkili bir taşıyıcı olduğunu, 
besin kullanım verimliliğini artırdığını ve bitki verimliliğini desteklediğini göstermektedir. Genel olarak, KH₂PO₄ 
ile zenginleştirilmiş biyoçar, fosfor kullanılabilirliğini artırma, biyokütle üretimini teşvik etme ve sebze 
yetiştiriciliğinde sürdürülebilir gübreleme stratejilerini destekleme potansiyeli taşımaktadır. 
 

Anahtar Kelimeler: biyokömür, organik atıklar, P’lu gübreleme, P kullanım etkinliği 
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Introduction 

Global projections estimate that the world population will reach 9.7 billion by 2050, and this 
increasing population is expected to raise industrial demands and agricultural food requirements by 
approximately 70% (Raghavan, 2025). In recent years, environmental pollution has accelerated due 
to uncontrolled population growth, intensified industrial activities, improved living standards, 
technological developments, and indiscriminate use of chemical substances and agricultural 
practices, becoming a critical global issue requiring urgent solutions. Among these environmental 
challenges, global warming, land degradation, and heavy metal contamination notably constrain 
human living standards (Korkmaz, 2007). Agriculture, while being one of the economic sectors most 
vulnerable to climate change, also contributes significantly to it (Tubiello et al., 2021). It is reported 
that greenhouse gas (GHG) emissions from food systems constitute 39% of the global anthropogenic 
total, and 75% of these emissions originate from agricultural activities (Mohammed et al., 2021). 
Considering increasing population, rising food demand, and climate change, ensuring food security 
represents one of the major challenges facing human societies (Fróna et al., 2019). Therefore, 
enhancing yield per unit area is crucial for meeting the food needs of the growing population. 
Fertilization is one of the primary strategies for increasing yield per unit area; however, uncontrolled 
fertilizer use causes serious environmental problems (Kılıç & Korkmaz, 2012). 

Increasing environmental concerns have prompted research into more sustainable approaches in 
crop production, aiming to reduce chemical fertilizer use. In this context, replacing chemical 
fertilizers, which are among the most significant pollutants after detergents, with organic materials 
can be a crucial strategy. Globally, the quantity of organic wastes with various forms and properties 
continues to rise. According to the Turkish Biomass Potential Atlas (BEPA), approximately 62.5 million 
tons of plant-derived waste will be generated annually in Turkey by 2025 (Anonymous, 2025). 
Improper disposal or lack of necessary precautions for these wastes can lead to air pollution, visual 
pollution, proliferation of pests and pathogens, and other issues adversely affecting human and 
environmental health. Utilizing these wastes through environmentally friendly approaches and 
incorporating them into soils can improve soil physical, chemical, and biological properties 
depending on the type and chemical characteristics of the waste, while enhancing soil fertility. 
However, recent studies indicate that even when these organic wastes undergo composting or other 
fermentation processes, significant amounts of greenhouse gases are released into the atmosphere 
due to decomposition (Korkmaz, 2007). Similarly, burning agricultural residues releases large 
quantities of carbon, contributing substantially to global warming. Therefore, applying more stable 
organic materials that remain in soils for longer periods and are less prone to decomposition can 
provide an effective solution for reducing carbon emissions from agricultural residues. When organic 
materials are incorporated into soils, they rapidly decompose with the help of microorganisms, 
releasing CO₂ as one of the main decomposition products, which contributes to global warming. 
Maintaining and stabilizing existing soil organic carbon is critical both for sustaining soil fertility and 
preventing emissions of greenhouse gases. Biochar applications are considered among the most 
suitable organic materials for this purpose (Vanini et al., 2021). Biochar is inexpensive, 
environmentally friendly, and has been studied for various applications, including soil improvement, 
waste management, GHG mitigation, and energy production (Cha et al., 2016). Moreover, biochar 
possesses several heavy metal immobilization properties due to its microporous structure, active 
functional groups, high pH, and cation exchange capacity (Chen & Lin, 2001). 

Biochar, also referred to as “biocoal” is produced by pyrolyzing plant residues, wood, and similar 
organic biomasses in oxygen-limited or anaerobic conditions (<700°C) (Akkurt et al., 2020). During 
pyrolysis, the carbohydrate structures of biomass convert to carbon, forming organic matter that 
remains in soil for an estimated 1.300–4.000 years. Its porous structure, with surface area up to 500 
m² g-1, enhances water retention and cation exchange capacity, thereby increasing nutrient 
availability in soils (Tan et al., 2017). Fryda and Visser (2015) describe biochar as a long-term carbon 
sequestration technology aimed at mitigating climate change. Technology contributes to reducing 
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greenhouse gas emissions by retaining carbon, offering a significant strategy to mitigate climate 
change (Cui et al., 2011; Lehmann et al., 2006). Applying biochar to soil is crucial for improving soil 
health and quality, mitigating pollution, increasing water retention, and retaining carbon due to its 
recalcitrant properties (Mukherjee & Lal, 2013; Abbas et al., 2018). Targeted biochar applications can 
enhance soil physical properties (Agbede et al., 2020), reduce limitations to soil fertility (Acir & 
Erdem, 2020), stimulate biological processes (Wang et al., 2015), and thereby improve crop 
performance. Beyond environmental benefits, biochar can serve as a nutrient carrier for fertilizer 
matrices due to its high porosity and functional surface groups, particularly when modified or 
enriched (Barbosa et al., 2022; Pogorzelski et al., 2020). 

Phosphorus (P) is the second most limiting nutrient after nitrogen in agricultural systems, playing a 
crucial role in plant development. It is a key component of DNA, RNA, ATP, and phospholipids and is 
essential for life globally. Plants absorb phosphorus primarily as H₂PO₄⁻ and HPO₄²⁻ ions (Korkmaz et 
al., 2021). Chemically, P is highly stable; fertilizers rapidly react with soil, limiting mobility and 
availability (İbrikci et al., 2005; Korkmaz et al., 2009). In acidic soils, P binds with Fe and Al oxides, 
while in alkaline soils, it forms insoluble complexes with Ca and carbonates, rendering 80–85% 
unavailable to plants (Korkmaz & İbrikci, 2010). Worldwide, 30–40% of arable soils have low P 
content (Kirkby & Johnston, 2008). Concerns about phosphorus reserves have led to widespread, 
uncontrolled application of mineral fertilizers, including P fertilizers, since the Green Revolution of 
the 1950s-1960s. According to the United States Geological Survey (USGS) (2021), economically 
recoverable phosphate rock reserves globally are 71 billion tons, which would be depleted in 
approximately 260 years at current consumption rates (Walan et al., 2014). P scarcity or price 
increases can result in inorganic fertilizer shortages, impacting global food production and causing 
yield losses (Amundson et al., 2015; Heckenmüller et al., 2014). These challenges necessitate 
developing novel approaches to sustainably manage P by utilizing organic wastes that can enhance P 
availability, supplement conventional fertilizers, or reduce P losses (Dai et al., 2016). Reducing 
synthetic P fertilizer use offers both environmental and economic benefits. Recent research suggests 
that biochar, a carbon-rich solid produced through thermochemical conversion of biomass under 
minimal or no oxygen, can serve as a slow-release P fertilizer (Glaser & Lehr, 2019; Gwenzi et al., 
2018; Li et al., 2020; Pogorzelski et al., 2020). Biochar application provides clear advantages over 
conventional disposal practices, as it not only reduces waste volume but also mitigates risks from 
pathogens, organic contaminants, and heavy metals, while enhancing carbon stability and thereby 
contributing to lower greenhouse gas emissions (Lehmann et al., 2006). Although the nutrient 
composition and availability of biochar depend on feedstock and pyrolysis conditions (Elkhlifi et al., 
2023), its slow-release properties can enhance P availability in soils and act as a controlled-release 
fertilizer (Cui et al., 2011). Slow-release fertilizers provide nutrients throughout the growing season, 
reducing labor and fertilizer costs. Several studies indicate that P uptake by plants increases in the 
presence of biochar (DeLuca et al., 2009; Novak et al., 2009). Biochar may enhance P availability 
directly via anion exchange or indirectly by affecting cation interactions (DeLuca et al., 2009). The P 
content of biochar varies, with typical P2O5 values between 2.6% and 13.5%, while most biochars 
have low inherent P content (<1%) (Ducey et al., 2017). However, due to its porous structure, biochar 
can adsorb P and improve soil P availability. Various studies report that biochars derived from 
sugarcane, Miscanthus, pine, and maize straw can adsorb significant amounts of P (Trazzi et al., 2016; 
Yao et al., 2013; Zhao et al., 2017). Biochar application can also alter soil pH, which affects P 
adsorption and solubility, particularly in acidic soils (Curaqueo et al., 2014; Nelson et al., 2011; Yuan 
& Xu, 2011). Additionally, biochar can improve soil physical structure, root growth, nutrient uptake, 
and mycorrhizal activity (Hossain et al., 2020). The proportion of inorganic and mineral-bound P in 
biochar contributes to enhanced P bioavailability when applied to soils (Zhai et al., 2015). The P 
content and properties of biochar depend on feedstock and production conditions (Sepúlveda-
Cadavid et al., 2021; Wang et al., 2012). Therefore, selecting suitable conditions and evaluating 
different organic materials is critical for producing biochar with desired characteristics (Weber & 
Quicker, 2018). In this study, hazelnut husk-derived biochar was chosen due to its availability in the 
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Black Sea region of Turkey, where hazelnuts are a major crop. Post-harvest residues, including 
hazelnut husks, accumulate in orchards, posing environmental problems. Annually, approximately 
350,000 tons of such residues are left in orchards, facilitating disease spread and reducing 
subsequent crop yield and quality. Although these residues are sometimes burned, this practice 
contributes to carbon emissions and environmental pollution. Therefore, converting these wastes 
into environmentally friendly, value-added products is essential. The aim of this study was to 
produce biochar from hazelnut husks, develop an organic-based phosphate fertilizer, and investigate 
its effects on the growth of iceberg lettuce. 

Materials and Methods 

Production of Biochar and Biochar-Based Slow-Release Phosphorus Fertilizers 

Hazelnut husks were used as the raw material for biochar production. The biomass was air-dried at 
room temperature (30 ± 2 °C) for 48 h, ground, and sieved through a 2 mm mesh before undergoing 
slow pyrolysis under limited oxygen conditions. The pyrolysis temperature was gradually increased at 
a rate of 10 °C per minute until reaching 400 °C and then cooled to room temperature within the 
furnace (Korkmaz et al., 2023). The resulting hazelnut husk biochar (FZB) was aerated for 24 h, sieved 
again (<2 mm), and stored in airtight containers. For the preparation of biochar-based slow-release 
phosphorus fertilizers (BBSR-P), FZB was immersed in a saturated KH₂PO₄ solution at a solid-to-
solution ratio of 1:40 for 48 h, following a P adsorption isotherm approach (López et al., 2020), and 
continuously agitated at 100 rpm to facilitate phosphorus loading. A similar procedure was carried 
out using ground and dissolved Triple Superphosphate (TSP) to produce two distinct biochar-based P 
fertilizers. The materials were then dried at 65 °C to remove the liquid phase while retaining 
phosphorus within the biochar. In the pot trial, TSP and KH₂PO₄ were used as phosphate sources and 
combined with FZB to produce the fertilizer treatments. 

Greenhouse Experiment 

A pot experiment was conducted at the greenhouse of the Department of Soil Science, Faculty of 
Agriculture, Ordu University, to evaluate the effects of biochar-based slow-release organo-mineral P 
fertilizers on plant growth. Two kilograms of soil (air-dry weight basis) were placed in each pot. 
Iceberg lettuce (Bombala variety), obtained from certified seeds (AG Seed Company), was used as the 
test plant. The experiment included four P application rates (0, 3, 6, and 12 kg P₂O₅ da-1) applied as 
FZB-based fertilizers prepared with KH₂PO₄ or TSP. One lettuce plant was transplanted per pot, and 
the experiment was arranged in a randomized complete block design with three replicates. Following 
transplantation, basal fertilization was applied based on soil analysis (Table 1), including 200 mg N kg-

1 as NH₄NO₃, 125 mg K kg-1 as K₂SO₄ (adjusted for K supplied by KH₂PO₄), and 2.5 mg Zn kg-1 as 
ZnSO₄·7H₂O. Plants were watered daily with deionized water. After 120 days, plants were harvested, 
washed with deionized water, oven-dried at 65 °C for 48 h, ground, and prepared for analysis. 

Soil, Biochar and Plant Analyses 

Soil analyses included the determination of texture (Bouyoucos, 1951), pH, and electrical 
conductivity (EC) (Richards, 1954), organic matter (Walkley & Black, 1934), and total nitrogen 
(Bremner, 1965). Available phosphorus and potassium were quantified according to Bray and Kurtz 
(1945) and Pratt (1965), respectively. Micronutrients (Fe, Cu, Mn, and Zn) were extracted using 
DTPA–CaCl₂–TEA solution and measured by atomic absorption spectrophotometry (Lindsay & 
Norvell, 1978). 

Prior to analysis, biochar samples were ground and sieved to <2 mm. The pH and EC were measured 
in a 1:5 (w/v) biochar-to-distilled water suspension. Total N was analyzed by the Kjeldahl method, P 
colorimetrically, and K using flame photometry. Organic matter was determined by dry combustion, 
while Fe, Cu, Mn, and Zn were quantified by atomic absorption spectrophotometry following acid 
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digestion, as described by Sg et al. (2021). The main physicochemical characteristics of the soil and 
biochar are presented in Table 1.  

Plant samples were oven-dried to a constant weight for biomass determination, ground, and 
analyzed for nutrient content. Total N was determined using the Kjeldahl method (Bremner, 1965), P 
colorimetrically, K by flame photometry, and Fe, Cu, Zn, and Mn by atomic absorption 
spectrophotometry following the procedures of Kacar and İnal (2008). All experimental data were 
subjected to analysis of variance (ANOVA) using the SAS statistical package, and significant 
differences between treatments were determined using Duncan’s multiple range test at p < 0.05. 

Table 1. Some Physical and Chemical Properties of the Biochar and Soil used in the Experiment 

 Texture pH EC OM N P K Fe Cu Mn Zn 
   (µS m-1) % mg kg-1 

Biochar  7.24 168.1 86.7 0.057 161.0 8101.7 271.0 11.2 45.2 41.5 
Soil SL 6.41 245.0 0.9 0.011 7.1 101.0 44.0 1.7 20.0 0.4 

Results 

Effect of Biochar-Based Phosphorus Fertilizers on Dry Weight of Iceberg Lettuce 

Analysis of variance indicated that both the phosphorus source and application rate, as well as their 
interaction, significantly affected (p < 0.05) the dry weight of iceberg lettuce (Table 2). In the control 
treatment (0 kg P₂O₅ da-1), the lowest dry weight was recorded at 24.7 g plant-1. Increasing P rates, 
particularly in the FZB-KH₂PO₄ treatment, resulted in a marked increase in dry weight. Specifically, 3 
and 6 kg P₂O₅ da-1 doses produced 32.0 g and 33.7 g plant-1, respectively, while the highest dose of 
12 kg P₂O₅ da-1 resulted in 44.7 g plant-1. In contrast, FZB-TSP showed minimal increases across doses, 
remaining between 28.1 and 28.2 g plant-1. The average dry weight across P sources was significantly 
higher in FZB-KH₂PO₄ (33.9 g) compared to FZB-TSP (27.3 g). The dose × source interaction was 
significant (p<0.001), with the FZB-KH₂PO₄ × 12 kg P₂O₅ da-1 combination achieving approximately 
80 % higher dry weight than the FZB-TSP × 0 kg P₂O₅ da-1 control. FZB-TSP showed only a 14 % 
increase at the highest dose, highlighting the superior effect of FZB-KH₂PO₄ on plant biomass. 

Table 2. Effect of Biochar-Based P Fertilizers on Dry Weight of Iceberg Lettuce (g plant-1) 

  P Rates (P205 da-1)   
Fertilizer 0 3 6 12 Mean 
FZB-TSP 24.7 d 28.1 cd 28.1 cd 28.2 c 27.3 B 

FZB-KH2PO4 25.2 cd 32.0 b 33.7 b 44.7 a 33.9 A 
Mean 25.0 C 30.0 B 30.9 B 36.5 A  

Different letters indicate significant differences according to Duncan’s multiple range test at p<0.05. 

Effect of Biochar-Based Phosphorus Fertilizers on P Concentration of Iceberg Lettuce 

The P concentration in lettuce was significantly influenced (p<0.05) by P source, dose, and their 
interaction (Table 3). Control treatments (0 kg P₂O₅ da-1) exhibited the lowest P concentrations, 
0.259 % for FZB-TSP and 0.263 % for FZB-KH₂PO₄. Increasing P doses led to a pronounced rise in P 
concentration, particularly under FZB-KH₂PO₄. At 3, 6, and 12 kg P₂O₅ da-1, P concentrations reached 
0.326 %, 0.380 %, and 0.346 %, respectively, corresponding to an approximate 45 % increase 
compared to the control.  
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Table 3. Effect of Biochar-Based P Fertilizers on P Concentration (%) of Iceberg Lettuce 

  P rates (P205 da-1) 
  Fertilizers 0 3 6 12 Mean 

FZB-TSP 0.259 d 0.268 d 0.272 d 0.293 cd 0.273 B 

FZB-KH2PO4 0.263 d 0.326 bc 0.380 a 0.346 ab 0.329 A 
Mean 0.261 B 0.297 A 0.326 A 0.320 A 

 Different letters indicate significant differences according to Duncan’s multiple range test at p < 0.05. 

FZB-TSP applications showed only minor increases (0.268–0.293 %), with a maximum of 13 % relative 
to the control. Average values confirmed that FZB-KH₂PO₄ (0.329 %) was significantly higher than 
FZB-TSP (0.273 %). Across P doses, the lowest and highest P concentrations were 0.261 % (control) 
and 0.326–0.320 % (6–12 kg P₂O₅ da-1), respectively. These results indicate that the form of biochar-
based P fertilizer affects lettuce P accumulation, with FZB-KH₂PO₄ being more effective at higher 
doses. 

Effect of Biochar-Based Phosphorus Fertilizers on P Uptake of Iceberg Lettuce 

The amount of P removed by lettuce was significantly affected (p < 0.05) by P source, dose, and their 
interaction (Table 4). In the control (0 kg P₂O₅ da-1), P uptake was 63.9 mg plant-1 for FZB-TSP and 
66.4 mg plant-1 for FZB-KH₂PO₄. Increasing P doses enhanced P uptake for both sources, but the 
effect was more pronounced in FZB-KH₂PO₄. For instance, P uptake under FZB-KH₂PO₄ was 103.9 mg 
plant-1 at 3 kg, 128.3 mg at 6 kg, and 154.7 mg plant-1 at 12 kg P₂O₅ da-1, corresponding to 57–133 % 
increases over the control. In contrast, FZB-TSP showed more limited gains, with P uptake ranging 
from 75.1 to 82.7 mg plant-1 and a maximum increase of ~30 % compared to the control. The average 
P uptake was significantly higher in FZB-KH₂PO₄ (113.3 mg plant-1) than in FZB-TSP (74.6 mg plant-1). 
The interaction between P source and dose was particularly notable. P uptake increased linearly with 
increasing doses under FZB-KH₂PO₄, reaching the highest value of 154.7 mg plant-1 at 12 kg P₂O₅ da-1. 
Conversely, FZB-TSP showed limited response to increasing doses, with a maximum uptake of 
82.7 mg plant-1. These results indicate that biochar enriched with KH₂PO₄ is more effective in 
enhancing P uptake by lettuce. Overall, the findings highlight the critical role of the source × dose 
interaction in determining plant nutrient acquisition when different P sources are applied via biochar. 

Table 4. Effect of Biochar-Based Phosphorus Fertilizers on P Uptake of Iceberg Lettuce (mg plant-1) 

  P rates (P205 da-1)  
Fertilizers 0 3 6 12 Mean 
FZB-TSP 63.9 e 75.1 de 76.5 de 82.7 d 74.6 B 

FZB-KH2PO4 66.4 e 103.9 c 128.3 b 154.7 a 113.3 A 
Mean 65.2 B 89.6 C 102.4 B 118.7 A  
Different letters indicate significant differences according to Duncan’s multiple range test at p<0.05. 

Discussion 

The effects of hazelnut husk-derived P-enriched biochar fertilizers on iceberg lettuce growth, dry 
matter accumulation, tissue P concentration, and total P uptake were statistically significant with 
respect to P dose, fertilizer source, and their interactions (p<0.05). Across all P doses, FZB-KH₂PO₄ 
treatments consistently outperformed FZB-TSP applications in terms of dry matter accumulation. 
Particularly, the 12 kg P₂O₅ da-1 dose (equivalent to 1 t biochar da-1) under FZB-KH₂PO₄ resulted in an 
approximate 80% increase in dry matter compared to the control, representing the highest observed 
yield. This enhanced growth can be attributed not only to the readily available PO₄³⁻ ions in the 
KH₂PO₄-enriched biochar but also to the synergistic contribution of K⁺ ions, which are known to 
enhance metabolic processes and osmotic regulation in plants (Li et al., 2020). In contrast, FZB-TSP 
applications induced a more moderate increase in biomass, with a maximum enhancement of 
approximately 30% at the same P dose, indicating the superior efficacy of biochar-based P fertilizers 
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over conventional mineral sources in promoting lettuce growth. A similar trend was observed for 
both tissue P concentration and total P uptake. Under FZB-KH₂PO₄ treatments, increasing P doses led 
to a linear rise in P removed by lettuce, reaching a peak of 154.7 mg plant-1 at 12 kg P₂O₅ da-1. 
Conversely, FZB-TSP treatments showed limited P removal, with the maximum uptake not exceeding 
82.7 mg plant-1, even at the highest dose. These findings indicate that KH₂PO₄- enriched biochar is 
more effective than TSP-based applications in enhancing P acquisition, which aligns with previous 
reports using wheat straw (Xu et al., 2014), acacia species (Rashmi et al., 2020), and maize residues 
(Li et al., 2020). 

The observed differences in P efficiency cannot be solely explained by the P content of biochar. The 
high surface area and abundance of functional groups on biochar surfaces facilitate the masking of 
active sites of Fe³⁺ and Al³⁺ in soil, reducing P fixation and maintaining longer-term availability for 
plant uptake (Song et al., 2007). Organic functional groups, including phenolic and amino moieties, 
can be protonated under acidic conditions, creating positively charged sites that bind 
orthophosphate ions via ionic interactions and van der Waals forces. Consequently, P adsorbed on 
biochar is gradually released, providing a slow-release mechanism that maintains plant-available P 
throughout the growing season. In contrast, conventional mineral fertilizers rapidly dissolve, and 
their P can be quickly immobilized in soil fractions, reducing bioavailability (Hosseini et al., 2019; 
Mukherjee et al., 2020). Furthermore, the superior performance of FZB-KH₂PO₄ can be attributed to 
the dual effect of direct PO₄³⁻ availability and the synergistic role of K⁺ ions in enhancing plant 
metabolic efficiency. This effect was particularly pronounced at medium and high doses, contributing 
significantly to lettuce productivity. These findings highlight the potential of hazelnut husk-derived 
biochar-based P fertilizers as a slow-release alternative that enhances nutrient use efficiency while 
reducing the environmental risks associated with conventional fertilizers. The combination of 
controlled P release and reduced soil fixation suggests that biochar amendments can be particularly 
effective in acidic soils, where P availability is often limited. Moreover, the utilization of agricultural 
residues such as hazelnut husks not only mitigates waste-related environmental issues but also adds 
value by converting organic by-products into agronomically beneficial fertilizers (Li et al., 2020; 
Rashmi et al., 2020; Xu et al., 2014). Overall, these findings support the integration of P-enriched 
biochar into sustainable nutrient management strategies, highlighting its role in enhancing crop 
productivity, improving P use efficiency, and promoting environmentally responsible agriculture. 

Conclusions 

Phosphorus-enriched biochar derived from hazelnut husks significantly enhanced dry matter 
production, P concentration, and P uptake in iceberg lettuce. In particular, biochar-based FZB-KH₂PO₄ 
application at 12 kg P₂O₅ da-1 resulted in the highest P uptake and dry matter accumulation, 
achieving approximately an 80% increase in yield compared to the control. FZB-TSP applications also 
had a positive effect, but the increases were more limited. These findings support the use of biochar 
as a carrier for P fertilizers, offering a valuable alternative for both environmental sustainability and 
agricultural productivity. Overall, this study demonstrates the effectiveness of hazelnut husk-derived 
biochar in P delivery and highlights the potential of KH₂PO₄- based biochar applications at optimal 
doses to provide long-term plant-available P and enhance crop yield. 
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