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This study proposes a hybrid artificial intelligence approach for
detecting surface defects in industrial piston components by
combining deep learning based feature extraction with traditional
machine learning classifiers. The experimental analysis was
performed using the piston dataset, which includes both defected and
perfect samples of industrial pistons. Four classification algorithms,
namely Support Vector Machine, Artificial Neural Network, k
Nearest Neighbors, and Random Forest, were implemented and
compared based on their classification accuracy. The Support Vector
Machine achieved the highest performance with an accuracy of
99.84%, demonstrating superior capability in distinguishing between
defected and non-defected piston surfaces. The Artificial Neural
Network followed closely with an accuracy of 99.69%, showing
highly stable and consistent behavior. The k Nearest Neighbors
model reached an accuracy of 98.75%, while the Random Forest
achieved an accuracy of 94.84%, indicating a comparatively lower
generalization performance. The results confirm that the hybrid
combination of deep feature extraction and conventional
classification methods significantly improves accuracy and
robustness in defect detection. The proposed framework contributes
to the industry 4.0 vision by providing a reliable, efficient, and
intelligent quality control solution suitable for real-time
manufacturing systems, supporting digital transformation in modern
industrial environments.

Keywords: Piston; InceptionV3; Artificial Neural Network; Support Vector
Machine; k-Nearest Neighbors; Random Forest

1. Introduction
Ensuring the

reliability of mechanical

free of defects to guarantee optimal
performance and safety. Traditional inspection
methods often rely on manual expertise, which

components is a crucial requirement in modern
industry. Pistons, as one of the most critical
parts of internal combustion engines, must be

is time-consuming, costly, and prone to human
error. With the increasing complexity of
manufacturing processes and the demand for
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higher precision, manual inspection alone has
become insufficient. This situation has
accelerated the integration of intelligent
systems into industrial quality control, aiming
to minimize errors while improving efficiency.
Recent advancements in computer vision and
deep learning have enabled automated defect
detection systems that are both faster and more
reliable than  conventional approaches.
Convolutional Neural Networks (CNNs) have
shown outstanding performance in image-
based classification tasks due to their ability to
extract rich hierarchical features [1]. However,
CNNs s typically require large-scale datasets to
achieve strong generalization capability, which
may not always be available in industrial
contexts where defect images are scarce. To
address this limitation, researchers have
increasingly adopted transfer learning and
hybrid frameworks, in which pretrained CNN
models are employed as feature extractors and
the extracted representations are classified
using machine learning algorithms.

Such  hybrid strategies combine the
representational strength of deep networks
with the efficiency of classical classifiers, thus
reducing overfitting risks in small-sample
problems. For instance, [2] demonstrated that
ResNet features combined with Support
Vector Machines (SVM) provided superior
accuracy in steel surface defect detection
compared to end-to-end CNN training.
Beyond ResNet and Inception, lightweight
architectures such as MobileNet have been
successfully applied in embedded and real-
time systems, particularly in resource-
constrained industrial environments [3].
Recent studies have demonstrated the
applicability of hybrid methods in quality
control.  For example,  ResNet-based
convolutional neural networks have achieved
high performance for weld defect classification
across multiple radiographic datasets [4].
Similarly, transfer-learning CNN features
combined with conventional classifiers have
provided scalable and effective solutions for
weld defect detection [5].

In the context of Industry 4.0, intelligent
inspection systems are increasingly expected
to handle multimodal data and operate in
dynamic environments. Hybrid pipelines that

pair CNN feature extraction with classifiers
such as SVM or Random Forest have shown
promise not only in visual inspection but also
in vibration-based fault diagnosis for rotating
machinery [6].

Advances in segmentation and detection
techniques also contribute to improving defect
recognition. The introduction of attention
mechanisms [7] and transformer-based vision
models [8] highlights a trend toward lighter yet
robust architectures, with recent studies
proposing CNN-Transformer hybrids for
surface defect detection [4].

Specific to piston and engine components, [9]
developed a hybrid system in which classical
computer vision was employed for region-of-
interest isolation followed by CNN-based
classification. This method demonstrated
robustness and practical applicability in
detecting machining defects inside piston
chambers.

Overall, integrating pretrained CNNs such as
InceptionV3 [1] as universal feature extractors
and combining them with established
classifiers including SVM, kNN, Random
Forest, or Gradient Boosting offers a balanced
pathway between accuracy, robustness, and
computational efficiency. This paradigm not
only enhances the reliability of critical
components such as pistons but also aligns
with the broader industrial shift toward smart
manufacturing and predictive maintenance [5]
Overall, the integration of deep learning
architectures with classical machine learning
classifiers provides a balanced pathway
between accuracy, robustness, and
computational efficiency. By leveraging
pretrained models like InceptionV3 as
universal feature extractors and applying
established classifiers such as Support Vector
Machine, k-Nearest Neighbors, Random
Forest, or Gradient Boosting for decision-
making, industries can achieve reliable defect
detection even under data-constrained
conditions. This paradigm not only enhances
the reliability of critical components such as
pistons but also aligns with the broader
industrial shift toward smart manufacturing
and predictive maintenance, ultimately
contributing to safer, more efficient, and cost-
effective production systems.
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In this study, a novel hybrid framework is
proposed for piston defect detection, where
deep features extracted from the InceptionV3
architecture are classified using multiple
machine learning algorithms. Unlike previous
works focusing primarily on single-model
approaches, this research provides a
comprehensive comparison across multiple
classifiers to identify the most -effective
combination  for  real-time industrial
applications. The results contribute to the
existing literature by demonstrating a robust,
data-efficient, and generalizable solution for
defect detection in mechanical components,
supporting the evolution of intelligent
inspection systems within the industry 4.0
ecosystem.

2. Materials and Method

In this study, a 5-fold cross-validation strategy
was adopted to evaluate the classification
performance on the piston defect dataset. Deep
feature representations were first extracted
using the InceptionV3 network, and these
embeddings were subsequently classified with
machine learning algorithms including support
vector machine, random forest, k-Nearest
Neighbors, and artificial neural network. This
hybrid approach was chosen to leverage the
representational power of deep learning while
ensuring reliable decision-making through
classical classifiers. The overall workflow and
methodological framework of the study are

Piston Image Dataset
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s
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summarized in Figure 1.
2.1. Dataset

In this study, we employed the piston image
dataset, which was obtained from Kaggle [10].
The dataset consists of a total of 64 images of
automobile engine pistons, categorized into
two classes: 32 perfect pistons and 32 defective
pistons. The defective images contained
various visual anomalies and imperfections
that may occur during the manufacturing
process, while the perfect class represented
defect-free piston samples. To enhance the
diversity and size of the dataset, image
augmentation techniques such as rotation,
flipping, scaling, and brightness adjustment
were applied, resulting in an expanded dataset
comprising 640 images in total. Furthermore, a
representative sample illustrating both perfect
and defective piston images is presented in
Figure 2, providing a visual overview of the
two classes included in this study.

2.2. Inception V3

InceptionVV3 is a deep convolutional neural
network architecture that represents a
significant evolution within the Inception
model family, primarily designed for large-
scale image classification tasks. It introduces
factorized convolutions, replacing larger
convolutional filters with smaller ones to
optimize computational efficiency while
maintaining strong feature representation
capacity [11].

777 Random Forest
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Figure 1. Workflow of the proposed hybrid model
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Figure 2. Dataset

Additionally, the architecture integrates
auxiliary classifiers to prevent vanishing
gradients and to support better regularization
during training. Through these innovations—
combined with batch normalization and
aggressive dimensionality reduction—
InceptionVV3 achieves high accuracy with
reduced computational cost [12].
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Figure 3. Inception V3 architecture

Figure 3 below illustrates the core structure of
the InceptionV3 architecture, consisting of
sequential convolutional and pooling layers
that first extract low-level features such as
edges and textures. These are followed by
multiple Inception modules that operate in
parallel using filters of different sizes (1x1,
3x3, 5x5), allowing the model to capture both
fine and coarse visual patterns simultaneously
[13]. Auxiliary classifiers embedded within
intermediate layers enhance gradient flow and
stabilize learning. The final stages include
global average pooling to condense feature
maps and fully connected with Softmax layers
to generate class probabilities.

This hierarchical and modular design enables
multi-scale feature extraction, enhancing the
model’s ability to generalize across diverse
image datasets. In essence, InceptionV3

mimics a human-like perception process
progressively identifying simple features,
combining them into complex structures, and
ultimately recognizing complete objects with
remarkable accuracy and robustness [14].

2.3. Machine learning algorithms
2.3.1. Support Vector Machine

Support  Vector Machine (SVM) is a
supervised learning algorithm widely regarded
for its robustness in both classification and
regression tasks. It functions by identifying the
optimal hyperplane that maximizes the margin
the distance between the hyperplane and the
closest data points of each class, known as
support vectors. This maximization strategy
enhances the model’s generalization capacity.
In scenarios where data are not linearly
separable, kernel functions such as the Radial
Basis Function (RBF) or polynomial kernels
are deployed to project inputs into higher-
dimensional spaces where linear separation
becomes feasible [15].

In more intuitive terms, the SVM can be
imagined as drawing an invisible line or in
higher dimensions, a hyperplane that best
separates data belonging to different categories
[16]. Rather than simply finding any boundary,
it searches for the one that creates the widest
possible margin between the two classes,
ensuring that new, unseen data points can be
classified more reliably. The data points that
lie closest to this boundary are known as
support vectors, and they play a critical role in
defining the decision surface. When the data
cannot be separated by a straight line, SVM



International Journal of Automotive Engineering and Technologies, IJAET 14 (4) 255-267 259

applies the kernel trick, a mathematical
technique that transforms the data into a
higher-dimensional  space where linear
separation becomes possible. This
transformation allows SVM to handle
complex, non-linear problems  without
explicitly computing the coordinates in that
space, thus maintaining computational
efficiency [17].
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Figure 4. SVM architecture

Overall, SVM operates with a strong balance
between  simplicity and  performance,
providing robust results even when the dataset
is small, noisy, or contains many features [17].
The accompanying schematic Figure 4 visually
represents the general concept of a supervised
learning model: data features are input through
several layers of computation, and the model
learns to distinguish categories such as
“defect” versus “perfect” objects by adjusting
internal parameters (weights) until the optimal
decision boundary is achieved.

2.3.2. Random Forest

Random Forest (RF) is a robust ensemble
learning  technique that amalgamates
predictions from multiple decision trees to
enhance  classification  or  regression
performance [18]. Each tree in the forest is
trained on a bootstrap sample of the original
dataset, and randomness is further introduced
by selecting a subset of features at each split
this mitigates overfitting and reduces variance.
RF is particularly valued for its capacity to
handle large feature spaces, unbalanced data,
and missing values, and it offers useful internal
measures such as feature importance and out-
of-bag error estimation, enhancing its
interpretability and reliability in practical
applications [19].

RF combines the decisions of multiple

individual trees each trained with different
subsets of data and features to produce a more
stable and accurate final prediction [20]. This
ensemble approach ensures that the model is
less sensitive to noise and anomalies in the
data, which often cause overfitting in
individual decision trees [21].

Figure 5 illustrates the operational principle of
the Random Forest model. Multiple
independent decision trees are trained on
different subsets of the training data, and each
tree produces its own classification outcome.
The final decision is obtained through a
majority voting mechanism, where the most
frequently predicted class across all trees
determines the model output. In this example,
the ensemble aggregates the outputs of
individual trees to classify objects as either
defect or perfect, demonstrating the robustness
of the RF approach in minimizing overfitting
and improving overall prediction accuracy
[21].

N

[Majority voting
|
Final class

Defect Perfect
Figure 5. RF architecture

2.3.3 k-Nearest Neighbors

k-Nearest Neighbors (kNN) is a non-
parametric, instance-based learning algorithm
widely used for classification and regression
tasks. Its core principle is to assign a label to a
query sample based on the majority class or
average value of its k closest neighbors in the
feature space, measured typically by distance
metrics such as Euclidean, Manhattan, or
cosine similarity. The performance of kNN
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strongly depends on the choice of k, the
distance function, and data normalization [22].
Unlike parametric models, kNN does not
construct an explicit decision function or learn
a model during the training phase. Instead, it
stores all training instances and performs
computations only at prediction time, which
classifies it as a lazy learning algorithm. This
structure allows kNN to model highly non-
linear class boundaries while maintaining
conceptual  simplicity.  However, its
computational complexity increases with the
dataset size, as distance calculations must be
repeated for each new query instance.

The effectiveness of kNN improves
significantly when combined with
dimensionality reduction techniques (e.g.,
PCA, t-SNE) or deep feature extraction
methods derived from convolutional neural
networks or autoencoders. Such hybrid
approaches enhance the discriminative
capability of the neighborhood structure in the
feature space [23]. Due to its flexibility and
robustness  with  well-structured  feature
representations, KNN has been successfully
implemented in biomedical image analysis,
text categorization, and industrial defect
detection tasks [24].

Figure 6 illustrates the operational mechanism
of the kNN algorithm. For a given query
instance (gray piston), the algorithm identifies
its k closest data points within the query
neighborhood, based on a chosen distance
metric such as Euclidean or Manhattan
distance. Each neighboring point contributes
one vote toward determining the class of the
query sample. Through a majority voting
process, the sample is assigned to the class
most frequently represented among its nearest
neighbors [23]. In this illustration, the query
piston is classified as defect since the majority
of its neighboring instances belong to the
defect class.

2.3.4 Artificial Neural Network

Artificial Neural Networks (ANN) are
computational models inspired by the
biological structure and functioning of the
human brain. They consist of interconnected
layers of artificial neurons organized as input,
hidden, and output layers. Each neuron
processes incoming signals by applying a

mathematical activation function and adjusts
its connection weights during training to
minimize prediction error. Through this
iterative optimization commonly achieved
using the backpropagation algorithm the
network progressively learns complex, non-
linear relationships within the data [25].
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Figure 6. kNN architecture

ANNSs are widely used in pattern recognition,
classification, and prediction tasks due to their
capability to model non-linear dependencies
between multiple input variables [26]. Once
trained, the network generalizes learned
patterns to unseen data, enabling accurate and
adaptive decision-making. As a foundational
component of modern machine learning and
deep learning, ANNs provide a flexible
framework  for  high-dimensional data
modelling and feature abstraction across
domains such as image processing, speech
recognition, and industrial quality control.

Figure 7. ANN architecture
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Figure 7 represents a simplified feedforward
artificial neural network consisting of an input
layer, multiple hidden layers, and an output
layer. Each input node transmits weighted
signals to all neurons in the subsequent hidden
layer, where non-linear transformations are
applied [27]. The hidden layers aggregate and
propagate these activations toward the output
layer, which produces the final prediction. In
this illustration, input pistons represent data
features, hidden pistons correspond to
intermediate processing neurons, and the
output piston denotes the final predicted class.
This structure demonstrates the flow of
information and the hierarchical learning
process within an ANN [27].

2.4. Performance evaluations
2.4.1. Cross validation

Cross-validation is a statistical technique used
to evaluate the generalization performance of
machine learning models [28]. The dataset is
partitioned into k folds, where one-fold is used
for validation and the remaining folds are used
for training [29]. This process is repeated k
times, and the results are averaged to provide a
more reliable performance estimate [30].

In this study, 5-fold cross-validation was
applied, which is among the most preferred
approaches because it provides a strong
balance between bias and variance. This means
that the model is trained and evaluated multiple
times using different data partitions, reducing
the chance that the reported accuracy is the
result of random data configuration.
Conceptually, cross-validation can be thought
of as testing a model in several “mini
experiments,” each using a different portion of
the data for evaluation [31]. This approach
allows for a more realistic measurement of
predictive capability compared to a single
train-test split. It is especially effective when
the dataset is of limited size, as it ensures that
every sample contributes to both training and
validation at least once, maximizing data
utilization and improving the reliability of
performance metrics [31].

2.4.2 Confusion Matrix and Performance
Evaluation

To assess the effectiveness of the classification
models, a confusion matrix was constructed,

which provides detailed insights into the
model’s predictions by comparing actual labels
with predicted labels [32]. The matrix consists
of four key outcomes, True Positives (TP),
True Negatives (TN), False Positives (FP), and
False Negatives (FN). Table 1 shows that
confusion Matrix for binary classes. From
these values, several performance metrics were
derived [33].
Table 1. Structure of the confusion matrix used for
performance evaluation
Predict

FN

Actual

FP

The performance of the classification models
was evaluated using several widely adopted
metrics derived from the confusion matrix.
Accuracy represents the proportion of
correctly classified instances among all
samples, providing a general measure of
predictive  performance [34]. Precision
indicates the proportion of correctly identified
positive cases among all predictions labelled as
positive, thereby reflecting the reliability of the
model in making positive classifications.
Recall, also known as sensitivity, measures the
proportion of actual positive cases that were
correctly identified, thus demonstrating the
model’s ability to capture relevant instances.
Finally, the F1-score, calculated as the
harmonic means of precision and recall, offers
a balanced measure that is particularly
valuable when dealing with imbalanced
datasets, where accuracy alone may not
provide sufficient insight into model
effectiveness [35]. Table 2 shows that
performance metrics formulas.
Table 2. Performance metrics formulas

Metrics Formula
TP+ TN
Accuracy
TP+ TN + FP +FN
. TP
Precision
TP + FP
TP
Recall
TP+ FN
2TP
F1-Score _—
2TP + FP + FN

3. Results and Discussions
In this study, the classification results obtained
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from the four models namely Support Vector
Machine, Artificial Neural Network, k Nearest
Neighbors, and Random Forest were analyzed
in detail to evaluate their capability in
distinguishing between defected and perfect
samples. The evaluation process was carried
out through both confusion matrix analysis and
quantitative performance metrics, which
together provide a comprehensive
understanding of each algorithm’s
classification behaviour, robustness, and
sensitivity. The first stage of the evaluation
focused on the confusion matrices, which
reveal the distribution of true positives, true
negatives, false positives, and false negatives
for each model.

As shown in Figure 8, the Support Vector
Machine classifier demonstrated a near perfect
distinction  between the two classes.
Specifically, it correctly identified 319
defected and 320 perfect samples, with only
one misclassification observed in total. This
outstanding result reflects the model’s ability
to capture the optimal separating hyperplane
within the feature space, maximizing the
margin between classes and minimizing
generalization error.

The Artificial Neural Network model also
yielded highly competitive results, correctly
classifying 319 defected and 319 perfect
samples, with a single error in each class. This
performance demonstrates the network’s
strong learning capacity and its effective
mapping of nonlinear relationships between
input features and output classes. However, the
slight deviation from Support Vector Machine
in precision values suggests a minor influence
of weight initialization or possible overfitting
to specific patterns during training. The k
Nearest Neighbors algorithm produced
relatively  satisfactory results, correctly
predicting 314 defected and 318 perfect
samples, corresponding to a total of eight
misclassifications six and two respectively.
This outcome indicates that k Nearest
Neighbors can achieve reliable predictions
when class distributions are well separated but
may struggle in regions with overlapping
feature boundaries. Its sensitivity to the choice
of the k parameter and the scale of the feature
space makes it less robust than optimization-
based approaches such as Support Vector

Machine. The Random Forest classifier
although capable of capturing nonlinear
interactions displayed the weakest
performance among the evaluated models. It
correctly labeled 308 defected and 299 perfect
samples while misclassifying 12 and 21
instances respectively. These results imply that
the Random Forest model had difficulty in
identifying subtle inter class variations
possibly due to an insufficient number of
decision trees or inadequate tree depth.
Additionally, ensemble based models like
Random Forest can be more prone to
overfitting in small datasets where the number
of samples per class is limited.

The confusion matrix comparisons collectively
highlight that Support Vector Machine and
Artificial Neural Network provided the most
stable and reliable classifications, while k
Nearest Neighbors and Random Forest
exhibited performance degradation due to their
dependence on local data characteristics and
random  feature = sampling  strategies
respectively. The overall pattern of
misclassifications suggests that both Support
Vector Machine and Artificial Neural Network
successfully generalized the distinguishing
features of the dataset leading to minimal
classification errors. Following the confusion
matrix analysis quantitative performance
metrics were computed using five fold cross
validation to ensure statistical reliability. The
obtained results are summarized in Table 3.
As presented in Table 3, the Support Vector
Machine model achieved the best overall
performance with the highest accuracy and F1
score values of 0.9984 as well as perfect
precision of 1.0000. This result confirms that
Support Vector Machine is particularly
effective in handling high dimensional feature
spaces and linearly separable structures even
with limited training data. The model’s ability
to maximize the margin between classes
contributes to its superior generalization
capability which is further supported by the
minimal number of false classifications
observed in the confusion matrix. The
Artificial Neural Network model followed
closely with an overall accuracy of 0.9969
maintaining perfectly balanced precision recall
and F1 score values. This indicates a robust
and consistent learning process with minimal
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Figure 8. Confusion matrices results

Table 3. Performance metrics

Fi-
Score
SVM 0.9984 1.0000 0.9969 0.9984
ANN 0.9969 0.9969 0.9969 0.9969
kNN 0.9875 0.9937 0.9812 0.9874

RF 0.9484 0.9362 0.9625 0.9492

Model Accuracy Precision Recall

bias toward either class. The slightly lower
performance compared to Support Vector
Machine may be attributed to the network’s
sensitivity to hyperparameter tuning including
learning rate number of hidden neurons and
regularization parameters. Nevertheless its
performance demonstrates that deep multilayer
architectures are well suited for complex
nonlinear feature interactions typical of defect
detection problems. The k Nearest Neighbors
model achieved an accuracy of 0.9875
precision of 0.9937 and recall of 0.9812
reflecting a moderate trade off between
sensitivity and specificity. While its simplicity
and instance based learning mechanism make
it computationally efficient for small datasets
its reliance on distance metrics can lead to
decreased performance when feature scales
vary or when noise is present. Despite this
limitation k Nearest Neighbors still produced
satisfactory results confirming its validity as a

baseline model in defect classification tasks.
The Random Forest model obtained the lowest
accuracy and precision among all classifiers
although its recall indicated a relatively strong
ability to detect positive cases. However, the
combination of a higher false positive rate and
overall weaker generalization points to model
instability. This can occur when the feature set
is not diverse enough to exploit ensemble
averaging effectively or when the number of
estimators and tree depth are insufficient for
capturing fine grained data patterns.

1.00 Precision

Recall
. Fl-Score
0.98
0.96
0.
0.92
0.0 SVvM ANN k-NN

Random Forest

o
=

Performance Metrics

Figure 9. Comparison of classification model
performances

Figure 9 visually compares the overall
performance of the models, demonstrating that
the Support Vector Machine and Artificial
Neural Network surpass the other techniques
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across all evaluation criteria. The Support
Vector Machine's consistent and steady
outcomes illustrate its durability, whereas the
Random Forest's comparatively inferior
metrics underscore its restricted adaptation to
intricate feature distributions. The aggregated
results from confusion matrices and statistical
metrics indicate that models optimized for
features,  particularly  Support  Vector
Machines, are superior at differentiating
between defective and flawless samples
compared to distance or ensemble-based
methods. This result is consistent with
previous research in industrial defect
detection, where Support Vector Machine
exhibited consistently higher accuracy and
generalization than other conventional
classifiers. Furthermore, its computational
efficiency and scalability render it a
formidable contender for real-time quality
control systems where high precision and
minimal latency are essential. In conclusion,
although all four models yielded satisfactory
classification results, the Support Vector
Machine proved to be the most reliable and
precise method, closely followed by the
Artificial Neural Network, while k Nearest
Neighbors and Random Forest functioned as
complementary but less robust alternatives.
The comparison research verifies that the use
of optimal feature extraction and margin-based
classification can substantially improve
detection accuracy.

4. Conclusion and Future Work

This study presented a hybrid machine
learning based approach for industrial defect
detection by integrating deep learning driven
feature  extraction  with  conventional
classification algorithms, namely Support
Vector Machine, Artificial Neural Network, k
Nearest Neighbors, and Random Forest. The
hybrid framework demonstrated remarkable
robustness and adaptability, effectively
combining the representational power of deep
architectures with the interpretability and
efficiency of traditional classifiers. Among all
evaluated models, the Support Vector Machine
achieved the highest overall performance, with
an accuracy of 99.84%, precision of 1.0000,
and F1-score of 0.9984, followed closely by
the Artificial Neural Network, which exhibited

balanced and stable metric values.

The confusion matrix analyses confirmed that
the hybrid model structure not only enhanced
classification accuracy but also minimized
misclassification rates, particularly under
limited data conditions. The superior
performance of Support Vector Machine and
Artificial Neural Network underscores the
potential  of  optimization-based  and
connectionist approaches for reliable defect
recognition in complex manufacturing
environments. The proposed methodology
aligns seamlessly with the Industry 4.0 vision,
which emphasizes intelligent automation,
cyber-physical systems, and data-driven
decision-making. Owing to its high accuracy,
low latency, and scalability, the developed
hybrid model can be readily integrated into
real-time quality control systems, enabling
smarter, more autonomous, and more efficient
production lines.

Looking ahead, several research directions can
further extend the proposed framework.
Expanding the dataset with diverse and
complex defect categories will allow a more
rigorous evaluation of scalability and
generalization performance. The incorporation
of advanced architectures such as
Convolutional Neural Networks, Vision
Transformers, and  hybrid  ensemble
mechanisms may further enhance defect
detection accuracy and robustness. Moreover,
adopting explainable artificial intelligence
techniques will provide valuable insight into
model decision mechanisms, improving
transparency and trust in  industrial
applications. Future efforts will also focus on
deploying the hybrid models in real industrial
environments to evaluate their real-time
performance in terms of latency, adaptability,
and resilience under operational variability.
Additionally, exploring multi-modal data
fusion, combining visual, thermal, and
acoustic inputs, could significantly improve
classification reliability. These developments
are expected to strengthen the bridge between
intelligent machine learning systems and
Industry 5.0, fostering human-centric,
adaptive, and sustainable manufacturing
ecosystems.
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Nomenclature
Abbreviation

/ Symbol Description
TP True Positive — correctly
classified defected samples
True Negative — correctly
TN .
classified perfect samples
False Positive — perfect
FP samples incorrectly
classified as defected
False Negative — defected
FN samples incorrectly
classified as perfect
Accuracy Ratio of correctly classified

samples to the total number

of samples

Deep convolutional neural
InceptionV3 network used for feature
extraction
Support  Vector Machine,
Margin-based  supervised
learning  algorithm  for
optimal class separation
Artificial Neural Network ,
Multilayer ~ computational
model inspired by biological
neural systems
k Nearest Neighbors
Instance-based classifier that
KNN assigns labels based on the
majority of nearest data
points
Random Forest, Ensemble
method that aggregates
multiple decision trees to
improve prediction stability
Integration of deep feature
Hybrid extraction with classical
Model machine learning
classification
A technological paradigm
emphasizing  automation,
digitalization, and intelligent
manufacturing systems

SVM

ANN

RF

Industry 4.0
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