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This study proposes a hybrid artificial intelligence approach for 

detecting surface defects in industrial piston components by 

combining deep learning based feature extraction with traditional 

machine learning classifiers. The experimental analysis was 

performed using the piston dataset, which includes both defected and 

perfect samples of industrial pistons. Four classification algorithms, 

namely Support Vector Machine, Artificial Neural Network, k 

Nearest Neighbors, and Random Forest, were implemented and 

compared based on their classification accuracy. The Support Vector 

Machine achieved the highest performance with an accuracy of 

99.84%, demonstrating superior capability in distinguishing between 

defected and non-defected piston surfaces. The Artificial Neural 

Network followed closely with an accuracy of 99.69%, showing 

highly stable and consistent behavior. The k Nearest Neighbors 

model reached an accuracy of 98.75%, while the Random Forest 

achieved an accuracy of 94.84%, indicating a comparatively lower 

generalization performance. The results confirm that the hybrid 

combination of deep feature extraction and conventional 

classification methods significantly improves accuracy and 

robustness in defect detection. The proposed framework contributes 

to the industry 4.0 vision by providing a reliable, efficient, and 

intelligent quality control solution suitable for real-time 

manufacturing systems, supporting digital transformation in modern 

industrial environments. 
 Keywords: Piston; InceptionV3; Artificial Neural Network; Support Vector 

Machine; k-Nearest Neighbors; Random Forest 
 

1. Introduction 

Ensuring the reliability of mechanical 

components is a crucial requirement in modern 

industry. Pistons, as one of the most critical 

parts of internal combustion engines, must be 

free of defects to guarantee optimal 

performance and safety. Traditional inspection 

methods often rely on manual expertise, which 

is time-consuming, costly, and prone to human 

error. With the increasing complexity of 

manufacturing processes and the demand for 
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higher precision, manual inspection alone has 

become insufficient. This situation has 

accelerated the integration of intelligent 

systems into industrial quality control, aiming 

to minimize errors while improving efficiency. 

Recent advancements in computer vision and 

deep learning have enabled automated defect 

detection systems that are both faster and more 

reliable than conventional approaches. 

Convolutional Neural Networks (CNNs) have 

shown outstanding performance in image-

based classification tasks due to their ability to 

extract rich hierarchical features [1]. However, 

CNNs typically require large-scale datasets to 

achieve strong generalization capability, which 

may not always be available in industrial 

contexts where defect images are scarce. To 

address this limitation, researchers have 

increasingly adopted transfer learning and 

hybrid frameworks, in which pretrained CNN 

models are employed as feature extractors and 

the extracted representations are classified 

using machine learning algorithms. 

Such hybrid strategies combine the 

representational strength of deep networks 

with the efficiency of classical classifiers, thus 

reducing overfitting risks in small-sample 

problems. For instance, [2] demonstrated that 

ResNet features combined with Support 

Vector Machines (SVM) provided superior 

accuracy in steel surface defect detection 

compared to end-to-end CNN training.  

Beyond ResNet and Inception, lightweight 

architectures such as MobileNet have been 

successfully applied in embedded and real-

time systems, particularly in resource-

constrained industrial environments [3]. 

Recent studies have demonstrated the 

applicability of hybrid methods in quality 

control. For example, ResNet-based 

convolutional neural networks have achieved 

high performance for weld defect classification 

across multiple radiographic datasets [4]. 

Similarly, transfer-learning CNN features 

combined with conventional classifiers have 

provided scalable and effective solutions for 

weld defect detection [5]. 

In the context of Industry 4.0, intelligent 

inspection systems are increasingly expected 

to handle multimodal data and operate in 

dynamic environments. Hybrid pipelines that 

pair CNN feature extraction with classifiers 

such as SVM or Random Forest have shown 

promise not only in visual inspection but also 

in vibration-based fault diagnosis for rotating 

machinery [6]. 

Advances in segmentation and detection 

techniques also contribute to improving defect 

recognition. The introduction of attention 

mechanisms [7] and transformer-based vision 

models [8] highlights a trend toward lighter yet 

robust architectures, with recent studies 

proposing CNN–Transformer hybrids for 

surface defect detection [4]. 

Specific to piston and engine components, [9] 

developed a hybrid system in which classical 

computer vision was employed for region-of-

interest isolation followed by CNN-based 

classification. This method demonstrated 

robustness and practical applicability in 

detecting machining defects inside piston 

chambers. 

Overall, integrating pretrained CNNs such as 

InceptionV3 [1] as universal feature extractors 

and combining them with established 

classifiers including SVM, kNN, Random 

Forest, or Gradient Boosting offers a balanced 

pathway between accuracy, robustness, and 

computational efficiency. This paradigm not 

only enhances the reliability of critical 

components such as pistons but also aligns 

with the broader industrial shift toward smart 

manufacturing and predictive maintenance [5] 

Overall, the integration of deep learning 

architectures with classical machine learning 

classifiers provides a balanced pathway 

between accuracy, robustness, and 

computational efficiency. By leveraging 

pretrained models like InceptionV3 as 

universal feature extractors and applying 

established classifiers such as Support Vector 

Machine, k-Nearest Neighbors, Random 

Forest, or Gradient Boosting for decision-

making, industries can achieve reliable defect 

detection even under data-constrained 

conditions. This paradigm not only enhances 

the reliability of critical components such as 

pistons but also aligns with the broader 

industrial shift toward smart manufacturing 

and predictive maintenance, ultimately 

contributing to safer, more efficient, and cost-

effective production systems. 
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In this study, a novel hybrid framework is 

proposed for piston defect detection, where 

deep features extracted from the InceptionV3 

architecture are classified using multiple 

machine learning algorithms. Unlike previous 

works focusing primarily on single-model 

approaches, this research provides a 

comprehensive comparison across multiple 

classifiers to identify the most effective 

combination for real-time industrial 

applications. The results contribute to the 

existing literature by demonstrating a robust, 

data-efficient, and generalizable solution for 

defect detection in mechanical components, 

supporting the evolution of intelligent 

inspection systems within the industry 4.0 

ecosystem. 

2. Materials and Method 

In this study, a 5-fold cross-validation strategy 

was adopted to evaluate the classification 

performance on the piston defect dataset. Deep 

feature representations were first extracted 

using the InceptionV3 network, and these 

embeddings were subsequently classified with 

machine learning algorithms including support 

vector machine, random forest, k-Nearest 

Neighbors, and artificial neural network. This 

hybrid approach was chosen to leverage the 

representational power of deep learning while 

ensuring reliable decision-making through 

classical classifiers. The overall workflow and 

methodological framework of the study are 

summarized in Figure 1. 

2.1. Dataset 

In this study, we employed the piston image 

dataset, which was obtained from Kaggle [10]. 

The dataset consists of a total of 64 images of 

automobile engine pistons, categorized into 

two classes: 32 perfect pistons and 32 defective 

pistons. The defective images contained 

various visual anomalies and imperfections 

that may occur during the manufacturing 

process, while the perfect class represented 

defect-free piston samples. To enhance the 

diversity and size of the dataset, image 

augmentation techniques such as rotation, 

flipping, scaling, and brightness adjustment 

were applied, resulting in an expanded dataset 

comprising 640 images in total. Furthermore, a 

representative sample illustrating both perfect 

and defective piston images is presented in 

Figure 2, providing a visual overview of the 

two classes included in this study. 

2.2. Inception V3 

InceptionV3 is a deep convolutional neural 

network architecture that represents a 

significant evolution within the Inception 

model family, primarily designed for large-

scale image classification tasks. It introduces 

factorized convolutions, replacing larger 

convolutional filters with smaller ones to 

optimize computational efficiency while 

maintaining strong feature representation 

capacity [11].  

 
Figure 1. Workflow of the proposed hybrid model 
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Figure 2. Dataset 

 

Additionally, the architecture integrates 

auxiliary classifiers to prevent vanishing 

gradients and to support better regularization 

during training. Through these innovations—

combined with batch normalization and 

aggressive dimensionality reduction—

InceptionV3 achieves high accuracy with 

reduced computational cost [12]. 

 
Figure 3. Inception V3 architecture 

Figure 3 below illustrates the core structure of 

the InceptionV3 architecture, consisting of 

sequential convolutional and pooling layers 

that first extract low-level features such as 

edges and textures. These are followed by 

multiple Inception modules that operate in 

parallel using filters of different sizes (1×1, 

3×3, 5×5), allowing the model to capture both 

fine and coarse visual patterns simultaneously 

[13]. Auxiliary classifiers embedded within 

intermediate layers enhance gradient flow and 

stabilize learning. The final stages include 

global average pooling to condense feature 

maps and fully connected with Softmax layers 

to generate class probabilities. 

This hierarchical and modular design enables 

multi-scale feature extraction, enhancing the 

model’s ability to generalize across diverse 

image datasets. In essence, InceptionV3 

mimics a human-like perception process 

progressively identifying simple features, 

combining them into complex structures, and 

ultimately recognizing complete objects with 

remarkable accuracy and robustness [14]. 

2.3. Machine learning algorithms 

2.3.1. Support Vector Machine 

Support Vector Machine (SVM) is a 

supervised learning algorithm widely regarded 

for its robustness in both classification and 

regression tasks. It functions by identifying the 

optimal hyperplane that maximizes the margin 

the distance between the hyperplane and the 

closest data points of each class, known as 

support vectors. This maximization strategy 

enhances the model’s generalization capacity. 

In scenarios where data are not linearly 

separable, kernel functions such as the Radial 

Basis Function (RBF) or polynomial kernels 

are deployed to project inputs into higher-

dimensional spaces where linear separation 

becomes feasible [15]. 

In more intuitive terms, the SVM can be 

imagined as drawing an invisible line or in 

higher dimensions, a hyperplane that best 

separates data belonging to different categories 

[16]. Rather than simply finding any boundary, 

it searches for the one that creates the widest 

possible margin between the two classes, 

ensuring that new, unseen data points can be 

classified more reliably. The data points that 

lie closest to this boundary are known as 

support vectors, and they play a critical role in 

defining the decision surface. When the data 

cannot be separated by a straight line, SVM 
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applies the kernel trick, a mathematical 

technique that transforms the data into a 

higher-dimensional space where linear 

separation becomes possible. This 

transformation allows SVM to handle 

complex, non-linear problems without 

explicitly computing the coordinates in that 

space, thus maintaining computational 

efficiency [17]. 

 
Figure 4. SVM architecture 

Overall, SVM operates with a strong balance 

between simplicity and performance, 

providing robust results even when the dataset 

is small, noisy, or contains many features [17]. 

The accompanying schematic Figure 4 visually 

represents the general concept of a supervised 

learning model: data features are input through 

several layers of computation, and the model 

learns to distinguish categories such as 

“defect” versus “perfect” objects by adjusting 

internal parameters (weights) until the optimal 

decision boundary is achieved. 

2.3.2. Random Forest 

Random Forest (RF) is a robust ensemble 

learning technique that amalgamates 

predictions from multiple decision trees to 

enhance classification or regression 

performance [18]. Each tree in the forest is 

trained on a bootstrap sample of the original 

dataset, and randomness is further introduced 

by selecting a subset of features at each split 

this mitigates overfitting and reduces variance. 

RF is particularly valued for its capacity to 

handle large feature spaces, unbalanced data, 

and missing values, and it offers useful internal 

measures such as feature importance and out‐

of‐bag error estimation, enhancing its 

interpretability and reliability in practical 

applications [19]. 

RF combines the decisions of multiple 

individual trees each trained with different 

subsets of data and features to produce a more 

stable and accurate final prediction [20]. This 

ensemble approach ensures that the model is 

less sensitive to noise and anomalies in the 

data, which often cause overfitting in 

individual decision trees [21]. 

Figure 5 illustrates the operational principle of 

the Random Forest model. Multiple 

independent decision trees are trained on 

different subsets of the training data, and each 

tree produces its own classification outcome. 

The final decision is obtained through a 

majority voting mechanism, where the most 

frequently predicted class across all trees 

determines the model output. In this example, 

the ensemble aggregates the outputs of 

individual trees to classify objects as either 

defect or perfect, demonstrating the robustness 

of the RF approach in minimizing overfitting 

and improving overall prediction accuracy 

[21]. 

 
Figure 5. RF architecture 

2.3.3 k-Nearest Neighbors 

k-Nearest Neighbors (kNN) is a non-

parametric, instance-based learning algorithm 

widely used for classification and regression 

tasks. Its core principle is to assign a label to a 

query sample based on the majority class or 

average value of its k closest neighbors in the 

feature space, measured typically by distance 

metrics such as Euclidean, Manhattan, or 

cosine similarity. The performance of kNN 
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strongly depends on the choice of k, the 

distance function, and data normalization [22]. 

Unlike parametric models, kNN does not 

construct an explicit decision function or learn 

a model during the training phase. Instead, it 

stores all training instances and performs 

computations only at prediction time, which 

classifies it as a lazy learning algorithm. This 

structure allows kNN to model highly non-

linear class boundaries while maintaining 

conceptual simplicity. However, its 

computational complexity increases with the 

dataset size, as distance calculations must be 

repeated for each new query instance. 

The effectiveness of kNN improves 

significantly when combined with 

dimensionality reduction techniques (e.g., 

PCA, t-SNE) or deep feature extraction 

methods derived from convolutional neural 

networks or autoencoders. Such hybrid 

approaches enhance the discriminative 

capability of the neighborhood structure in the 

feature space [23]. Due to its flexibility and 

robustness with well-structured feature 

representations, kNN has been successfully 

implemented in biomedical image analysis, 

text categorization, and industrial defect 

detection tasks [24].  

Figure 6 illustrates the operational mechanism 

of the kNN algorithm. For a given query 

instance (gray piston), the algorithm identifies 

its k closest data points within the query 

neighborhood, based on a chosen distance 

metric such as Euclidean or Manhattan 

distance. Each neighboring point contributes 

one vote toward determining the class of the 

query sample. Through a majority voting 

process, the sample is assigned to the class 

most frequently represented among its nearest 

neighbors [23]. In this illustration, the query 

piston is classified as defect since the majority 

of its neighboring instances belong to the 

defect class. 

2.3.4 Artificial Neural Network 

Artificial Neural Networks (ANN) are 

computational models inspired by the 

biological structure and functioning of the 

human brain. They consist of interconnected 

layers of artificial neurons organized as input, 

hidden, and output layers. Each neuron 

processes incoming signals by applying a 

mathematical activation function and adjusts 

its connection weights during training to 

minimize prediction error. Through this 

iterative optimization commonly achieved 

using the backpropagation algorithm the 

network progressively learns complex, non-

linear relationships within the data [25]. 

 
Figure 6. kNN architecture 

ANNs are widely used in pattern recognition, 

classification, and prediction tasks due to their 

capability to model non-linear dependencies 

between multiple input variables [26]. Once 

trained, the network generalizes learned 

patterns to unseen data, enabling accurate and 

adaptive decision-making. As a foundational 

component of modern machine learning and 

deep learning, ANNs provide a flexible 

framework for high-dimensional data 

modelling and feature abstraction across 

domains such as image processing, speech 

recognition, and industrial quality control. 

 

Figure 7. ANN architecture 
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Figure 7 represents a simplified feedforward 

artificial neural network consisting of an input 

layer, multiple hidden layers, and an output 

layer. Each input node transmits weighted 

signals to all neurons in the subsequent hidden 

layer, where non-linear transformations are 

applied [27]. The hidden layers aggregate and 

propagate these activations toward the output 

layer, which produces the final prediction. In 

this illustration, input pistons represent data 

features, hidden pistons correspond to 

intermediate processing neurons, and the 

output piston denotes the final predicted class. 

This structure demonstrates the flow of 

information and the hierarchical learning 

process within an ANN [27]. 

2.4. Performance evaluations 

2.4.1. Cross validation 

Cross-validation is a statistical technique used 

to evaluate the generalization performance of 

machine learning models [28]. The dataset is 

partitioned into k folds, where one-fold is used 

for validation and the remaining folds are used 

for training [29]. This process is repeated k 

times, and the results are averaged to provide a 

more reliable performance estimate [30]. 

In this study, 5-fold cross-validation was 

applied, which is among the most preferred 

approaches because it provides a strong 

balance between bias and variance. This means 

that the model is trained and evaluated multiple 

times using different data partitions, reducing 

the chance that the reported accuracy is the 

result of random data configuration. 

Conceptually, cross-validation can be thought 

of as testing a model in several “mini 

experiments,” each using a different portion of 

the data for evaluation [31]. This approach 

allows for a more realistic measurement of 

predictive capability compared to a single 

train-test split. It is especially effective when 

the dataset is of limited size, as it ensures that 

every sample contributes to both training and 

validation at least once, maximizing data 

utilization and improving the reliability of 

performance metrics [31]. 

2.4.2 Confusion Matrix and Performance 

Evaluation 

To assess the effectiveness of the classification 

models, a confusion matrix was constructed, 

which provides detailed insights into the 

model’s predictions by comparing actual labels 

with predicted labels [32]. The matrix consists 

of four key outcomes, True Positives (TP), 

True Negatives (TN), False Positives (FP), and 

False Negatives (FN). Table 1 shows that 

confusion Matrix for binary classes. From 

these values, several performance metrics were 

derived [33]. 

Table 1. Structure of the confusion matrix used for 

performance evaluation 

 Predict 

A
ct

u
al

 

TP FN 

FP TN 

The performance of the classification models 

was evaluated using several widely adopted 

metrics derived from the confusion matrix. 

Accuracy represents the proportion of 

correctly classified instances among all 

samples, providing a general measure of 

predictive performance [34]. Precision 

indicates the proportion of correctly identified 

positive cases among all predictions labelled as 

positive, thereby reflecting the reliability of the 

model in making positive classifications. 

Recall, also known as sensitivity, measures the 

proportion of actual positive cases that were 

correctly identified, thus demonstrating the 

model’s ability to capture relevant instances. 

Finally, the F1-score, calculated as the 

harmonic means of precision and recall, offers 

a balanced measure that is particularly 

valuable when dealing with imbalanced 

datasets, where accuracy alone may not 

provide sufficient insight into model 

effectiveness [35]. Table 2 shows that 

performance metrics formulas. 

Table 2. Performance metrics formulas 

Metrics Formula 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

3. Results and Discussions 

In this study, the classification results obtained 



262           International Journal of Automotive Engineering and Technologies, IJAET 14 (4) 255-267 

 

from the four models namely Support Vector 

Machine, Artificial Neural Network, k Nearest 

Neighbors, and Random Forest were analyzed 

in detail to evaluate their capability in 

distinguishing between defected and perfect 

samples. The evaluation process was carried 

out through both confusion matrix analysis and 

quantitative performance metrics, which 

together provide a comprehensive 

understanding of each algorithm’s 

classification behaviour, robustness, and 

sensitivity. The first stage of the evaluation 

focused on the confusion matrices, which 

reveal the distribution of true positives, true 

negatives, false positives, and false negatives 

for each model. 

As shown in Figure 8, the Support Vector 

Machine classifier demonstrated a near perfect 

distinction between the two classes. 

Specifically, it correctly identified 319 

defected and 320 perfect samples, with only 

one misclassification observed in total. This 

outstanding result reflects the model’s ability 

to capture the optimal separating hyperplane 

within the feature space, maximizing the 

margin between classes and minimizing 

generalization error.  

The Artificial Neural Network model also 

yielded highly competitive results, correctly 

classifying 319 defected and 319 perfect 

samples, with a single error in each class. This 

performance demonstrates the network’s 

strong learning capacity and its effective 

mapping of nonlinear relationships between 

input features and output classes. However, the 

slight deviation from Support Vector Machine 

in precision values suggests a minor influence 

of weight initialization or possible overfitting 

to specific patterns during training. The k 

Nearest Neighbors algorithm produced 

relatively satisfactory results, correctly 

predicting 314 defected and 318 perfect 

samples, corresponding to a total of eight 

misclassifications six and two respectively. 

This outcome indicates that k Nearest 

Neighbors can achieve reliable predictions 

when class distributions are well separated but 

may struggle in regions with overlapping 

feature boundaries. Its sensitivity to the choice 

of the k parameter and the scale of the feature 

space makes it less robust than optimization-

based approaches such as Support Vector 

Machine. The Random Forest classifier 

although capable of capturing nonlinear 

interactions displayed the weakest 

performance among the evaluated models. It 

correctly labeled 308 defected and 299 perfect 

samples while misclassifying 12 and 21 

instances respectively. These results imply that 

the Random Forest model had difficulty in 

identifying subtle inter class variations 

possibly due to an insufficient number of 

decision trees or inadequate tree depth. 

Additionally, ensemble based models like 

Random Forest can be more prone to 

overfitting in small datasets where the number 

of samples per class is limited. 

The confusion matrix comparisons collectively 

highlight that Support Vector Machine and 

Artificial Neural Network provided the most 

stable and reliable classifications, while k 

Nearest Neighbors and Random Forest 

exhibited performance degradation due to their 

dependence on local data characteristics and 

random feature sampling strategies 

respectively. The overall pattern of 

misclassifications suggests that both Support 

Vector Machine and Artificial Neural Network 

successfully generalized the distinguishing 

features of the dataset leading to minimal 

classification errors. Following the confusion 

matrix analysis quantitative performance 

metrics were computed using five fold cross 

validation to ensure statistical reliability. The 

obtained results are summarized in Table 3. 

As presented in Table 3, the Support Vector 

Machine model achieved the best overall 

performance with the highest accuracy and F1 

score values of 0.9984 as well as perfect 

precision of 1.0000. This result confirms that 

Support Vector Machine is particularly 

effective in handling high dimensional feature 

spaces and linearly separable structures even 

with limited training data. The model’s ability 

to maximize the margin between classes 

contributes to its superior generalization 

capability which is further supported by the 

minimal number of false classifications 

observed in the confusion matrix. The 

Artificial Neural Network model followed 

closely with an overall accuracy of 0.9969 

maintaining perfectly balanced precision recall 

and F1 score values. This indicates a robust 

and consistent learning process with minimal  
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Figure 8. Confusion matrices results 

 

Table 3. Performance metrics 

Model Accuracy Precision Recall 
F1-

Score 

SVM 0.9984 1.0000 0.9969 0.9984 

ANN 0.9969 0.9969 0.9969 0.9969 

kNN 0.9875 0.9937 0.9812 0.9874 

RF 0.9484 0.9362 0.9625 0.9492 

bias toward either class. The slightly lower 

performance compared to Support Vector 

Machine may be attributed to the network’s 

sensitivity to hyperparameter tuning including 

learning rate number of hidden neurons and 

regularization parameters. Nevertheless its 

performance demonstrates that deep multilayer 

architectures are well suited for complex 

nonlinear feature interactions typical of defect 

detection problems. The k Nearest Neighbors 

model achieved an accuracy of 0.9875 

precision of 0.9937 and recall of 0.9812 

reflecting a moderate trade off between 

sensitivity and specificity. While its simplicity 

and instance based learning mechanism make 

it computationally efficient for small datasets 

its reliance on distance metrics can lead to 

decreased performance when feature scales 

vary or when noise is present. Despite this 

limitation k Nearest Neighbors still produced 

satisfactory results confirming its validity as a 

baseline model in defect classification tasks. 

The Random Forest model obtained the lowest 

accuracy and precision among all classifiers 

although its recall indicated a relatively strong 

ability to detect positive cases. However, the 

combination of a higher false positive rate and 

overall weaker generalization points to model 

instability. This can occur when the feature set 

is not diverse enough to exploit ensemble 

averaging effectively or when the number of 

estimators and tree depth are insufficient for 

capturing fine grained data patterns. 

 
Figure 9. Comparison of classification model 

performances 

Figure 9 visually compares the overall 

performance of the models, demonstrating that 

the Support Vector Machine and Artificial 

Neural Network surpass the other techniques 
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across all evaluation criteria. The Support 

Vector Machine's consistent and steady 

outcomes illustrate its durability, whereas the 

Random Forest's comparatively inferior 

metrics underscore its restricted adaptation to 

intricate feature distributions. The aggregated 

results from confusion matrices and statistical 

metrics indicate that models optimized for 

features, particularly Support Vector 

Machines, are superior at differentiating 

between defective and flawless samples 

compared to distance or ensemble-based 

methods. This result is consistent with 

previous research in industrial defect 

detection, where Support Vector Machine 

exhibited consistently higher accuracy and 

generalization than other conventional 

classifiers. Furthermore, its computational 

efficiency and scalability render it a 

formidable contender for real-time quality 

control systems where high precision and 

minimal latency are essential. In conclusion, 

although all four models yielded satisfactory 

classification results, the Support Vector 

Machine proved to be the most reliable and 

precise method, closely followed by the 

Artificial Neural Network, while k Nearest 

Neighbors and Random Forest functioned as 

complementary but less robust alternatives. 

The comparison research verifies that the use 

of optimal feature extraction and margin-based 

classification can substantially improve 

detection accuracy. 

4. Conclusion and Future Work 

This study presented a hybrid machine 

learning based approach for industrial defect 

detection by integrating deep learning driven 

feature extraction with conventional 

classification algorithms, namely Support 

Vector Machine, Artificial Neural Network, k 

Nearest Neighbors, and Random Forest. The 

hybrid framework demonstrated remarkable 

robustness and adaptability, effectively 

combining the representational power of deep 

architectures with the interpretability and 

efficiency of traditional classifiers. Among all 

evaluated models, the Support Vector Machine 

achieved the highest overall performance, with 

an accuracy of 99.84%, precision of 1.0000, 

and F1-score of 0.9984, followed closely by 

the Artificial Neural Network, which exhibited 

balanced and stable metric values. 

The confusion matrix analyses confirmed that 

the hybrid model structure not only enhanced 

classification accuracy but also minimized 

misclassification rates, particularly under 

limited data conditions. The superior 

performance of Support Vector Machine and 

Artificial Neural Network underscores the 

potential of optimization-based and 

connectionist approaches for reliable defect 

recognition in complex manufacturing 

environments. The proposed methodology 

aligns seamlessly with the Industry 4.0 vision, 

which emphasizes intelligent automation, 

cyber-physical systems, and data-driven 

decision-making. Owing to its high accuracy, 

low latency, and scalability, the developed 

hybrid model can be readily integrated into 

real-time quality control systems, enabling 

smarter, more autonomous, and more efficient 

production lines. 

Looking ahead, several research directions can 

further extend the proposed framework. 

Expanding the dataset with diverse and 

complex defect categories will allow a more 

rigorous evaluation of scalability and 

generalization performance. The incorporation 

of advanced architectures such as 

Convolutional Neural Networks, Vision 

Transformers, and hybrid ensemble 

mechanisms may further enhance defect 

detection accuracy and robustness. Moreover, 

adopting explainable artificial intelligence 

techniques will provide valuable insight into 

model decision mechanisms, improving 

transparency and trust in industrial 

applications. Future efforts will also focus on 

deploying the hybrid models in real industrial 

environments to evaluate their real-time 

performance in terms of latency, adaptability, 

and resilience under operational variability. 

Additionally, exploring multi-modal data 

fusion, combining visual, thermal, and 

acoustic inputs, could significantly improve 

classification reliability. These developments 

are expected to strengthen the bridge between 

intelligent machine learning systems and 

Industry 5.0, fostering human-centric, 

adaptive, and sustainable manufacturing 

ecosystems. 
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Nomenclature 

Abbreviation 

/ Symbol 
Description 

TP 
True Positive – correctly 

classified defected samples 

TN 
True Negative – correctly 

classified perfect samples 

FP 

False Positive – perfect 

samples incorrectly 

classified as defected 

FN 

False Negative – defected 

samples incorrectly 

classified as perfect 

Accuracy Ratio of correctly classified 

samples to the total number 

of samples 

InceptionV3 

Deep convolutional neural 

network used for feature 

extraction 

SVM 

Support Vector Machine, 

Margin-based supervised 

learning algorithm for 

optimal class separation 

ANN 

Artificial Neural Network , 

Multilayer computational 

model inspired by biological 

neural systems 

kNN 

k Nearest Neighbors 

Instance-based classifier that 

assigns labels based on the 

majority of nearest data 

points 

RF 

Random Forest, Ensemble 

method that aggregates 

multiple decision trees to 

improve prediction stability 

Hybrid 

Model 

Integration of deep feature 

extraction with classical 

machine learning 

classification 

Industry 4.0 

A technological paradigm 

emphasizing automation, 

digitalization, and intelligent 

manufacturing systems 
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