
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

295

Organization of Variation Based Personal Genetic Data

with Relational Database
Araştırma Makalesi/Research Article

Onur ÇAKIRGÖZ

1

, Süleyman SEVİNÇ
2

1Computer Engineering Department, Bartın University, Bartın, Turkey

2Computer Engineering Department, Dokuz Eylül University, İzmir, Turkey

onurcakirgoz@bartin.edu.tr, suleyman.sevinc@cs.deu.edu.tr
(Geliş/Received:20.04.2018; Kabul/Accepted:30.07.2018)

DOI: 10.17671/gazibtd.417443

Abstract— Relational databases are currently being used effectively in many hospitals and clinics to store patient records

and assay results. With the rapid development of sequencing technologies, sequencing costs have declined considerably.

In addition, the number of personalized medicine practices is increasing day by day, and accordingly the size of the

personal genetic data that needs to be stored and questioned is also increasing. Although relational databases are

appropriate for storing patient records and assay results, additional designs and solutions are needed to efficiently store

personal genetic data. In this study, a novel solution is proposed for the integration of variation-based personal genetic

data into relational database. Within the scope of this solution, formats for both non-structural and structural variation

types have been developed and compression algorithms have been used. The proposed method was tested with real data

of 2504 people, published by 1000 Genome Project. Compared to the space required to store the raw sequence data, it

was seen that the proposed method yielded a space gain of 99.74%.

Keywords— relational database, data format, genetic data, variation

Varyasyon Bazlı Kişisel Genetik Verilerin İlişkisel

Veritabanı ile Organizasyonu

Özet— İlişkisel veritabanları halihazırda birçok hastanede ve klinikte hasta kayıtlarını ve tahlil sonuçlarını depolamak

için etkin bir şekilde kullanılmaya devam etmektedir. Sekanslama teknolojilerinin gelişmesiyle birlikte sekanslama

maliyetleri önemli bir ölçüde düşmüştür. Bunun yanında, kişiselleştirilmiş tıp uygulamalarının sayısı her geçen gün

artmaktadır ve buna bağlı olarak depolanması ve sorgulanması gereken kişisel genetik verilerin boyutu da yükselmektedir.

Her ne kadar ilişkisel veritabanları hasta kayıtlarını ve tahlil sonuçlarını depolamak için uygun olsa da kişisel genetik

verilerin verimli bir şekilde depolanması için ek tasarımlara ve çözümlere ihtiyaç vardır. Bu çalışmada, varyasyon bazlı

kişisel genetik verilerin ilişkisel veritabanına entegrasyonu için yeni bir çözüm önerilmektedir. Bu çözüm kapsamında,

hem yapısal olmayan hem de yapısal varyasyon tipleri için formatlar geliştirilmiştir ve sıkıştırma algoritmaları

kullanılmıştır. Önerilen yöntem 1000 Genom Projesi’nin yayınlamış olduğu 2504 kişiye ait gerçek veriler ile test

edilmiştir. Ham sekans verilerinin depolanması için gerekli olan alan ile karşılaştırıldığında, önerilen yöntemin %

99,74'lük bir alan kazancı sağladığı görülmüştür.

Anahtar Kelimeler— ilişkisel veritabanı, veri formatı, genetik veri, varyasyon

1. INTRODUCTION

The desire of human being to recognize itself, its

environment, nature and the universe has been enduring

since the beginning of human history. This human desire

for discovering and recognizing has caused numerous

investigations and scientific studies in numerous fields,

and as a result of these efforts, important turning points in

the history of mankind have taken place. When we evaluate

the situation in terms of bioinformatics field, the discovery

of the cell, the discovery of DNA, the understanding of the

working principle of the cell, and immediately after them

the actualization of the human genome project [1] are

considered important turning points. In particular, the

human genome project has paved the way for countless

scientific researches that will enable important discoveries

and information to be released in terms of human life and

human health. At this point, the international HapMap

project [2] and 1000 genome project [3-6], which catalog

the genetic variations, must be put in a separate place. Both

mailto:onurcakirgoz@bartin.edu.tr
mailto:suleyman.sevinc@cs.deu.edu.tr

296 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

these enormous projects, as well as countless scientific

researches carried out before or after these projects, have

made it possible for human beings to recognize their own

biology and properties (relationship between genetic and

diseases) to a very large extent [7-11]. In addition to this,

the boundaries of traditional medicine have been overcome

and personalized medicine concept and approach has

entered into our lives [12-15]. For a particular disease,

traditional medicine applies the same treatment to

everyone and gives everyone the same drug. Unlike

traditional medicine, personalized medicine has adopted

the person-specific treatment and the person-specific drug

approaches. At this point, the most important mainstay of

personalized medicine is genetic characteristics and

genetic variations [12]. Therefore, it is necessary to

identify the genetic factors that cause diseases and that

reveal physical and behavioral similarities / differences

between individuals. For this reason, the need for the

storage and processing of genetic data of a large number of

people has arisen.

Relational databases have been used effectively to store

and query data in numerous fields since the day they were

first created [36-37]. An important one of these fields is

medicine [38]. In hospitals and clinics, relational databases

have been used to record and query patient records and

laboratory results and are still in use today. Besides, the

size of the genetic data produced is increasing day by day

because of the reasons such that the development of

sequencing technology at a dizzying pace [16],

correspondingly, the reduction of sequencing costs,

understanding the effects of genetic characteristics on

human health and disease, the acceleration of personalized

medicine, the anticipation that preventive medicine will

greatly reduce the general health expenditures. On the

other hand, sequencing devices often produce raw

sequence data in the form of files, usually in fasta [17] or

in their own format. It is very difficult to organize and

manage personal genetic data in this way. Even, as the

number of people increases, it becomes impossible. In this

kind of approach, clinicians and researchers have to cope

with a large number of files and folders. Apart from that,

variations and genotypes/haplotypes are very significant in

personalized medicine. Naturally, clinicians obtain the

variations from the raw sequence data and usually keep

these variation data in excel spreadsheets. On the one hand,

the patient's records and laboratory results are stored in the

relational database, on the other hand the patient's personal

variation information is stored in the form of an excel table.

Therefore, it is necessary to transfer personal genetic data

to the relational database in order to store and manage

personal genetic data in a structured and systematic

manner, and to easily evaluate genetic data together with

other information about the patient held in the database.

As is known, human DNA consists of approximately 3.2

billion base pairs and chromosomes are in pairs. From a

computer science perspective, this data corresponds to a

string of approximately 3.2 billion lengths. Assuming that

we represent each base with 1 byte and that the pairs of

chromosomes are identical, the space occupied by this data

is approximately 3.2 GB. On the other hand, this data is

the raw sequence data produced by the sequencing device,

that is, the unprocessed data. As we have already

mentioned, the practices of personalized medicine mainly

use personal variation data (genotype). Sequence

alignment algorithms are utilized to obtain variations from

the raw sequence data, but the execution of these

algorithms takes a long time [18-20]. The use of variation

data in personalized medicine applications and the

necessity of using costly sequence alignment algorithms to

obtain this data has led to the necessity of organizing

variation-based personal genetic data in a structured way.

The logic here is: Instead of using sequence alignment

algorithms each time to obtain variations, identifying the

variations (genotypes/haplotypes) once and store them

permanently. The crucial question that needs to be asked at

this point is: What is the average number of variations

detected in a person's entire genome and what is the

average length of those variations? The answer to this

question will demonstrate the feasibility and efficiency of

the proposed method. In a study [21] conducted using the

variation data published by the 1000 genome project, it was

determined that the average number of

genotypes/haplotypes in the whole genome of a person is

approximately 4.5 million. In addition, in the same study,

it was determined that the average length of these

variations was below 3 bases. These results have shown

that it is a very accurate and logical decision to store

personal genetic data in a variation-based manner.

2. RELATED WORK

When we consider human genome from computational

perspective, we will see a string made up of letters

A,G,C,T. Since Dna sequence is a string consisting of

letters A, G, C, T, researches have intensively used textual

data compression techniques to reduce the huge storage

costs. Textual data compression techniques are basically

classified under four main headings: Substitutional-

Statistical methods, Grammar-based methods,

Transformational methods, and Table compression

methods. Among these methods, Substitutional-Statistical

methods have showed the greatest improvements. The

basic logic of this class of methods is, as the name implies,

combining the substitutional techniques and statistical

techniques in order to improve the compression ratio.

Biocompress 1 [22] is the first example of Substitutional-

Statistical methods. Later, many studies were published.

Among them, the well-known studies are DNACompress

[23] and DNAPack [24]. Although these studies combine

the substitutional and statistical techniques to improve the

compression performance, XM [25] a pure statistical

compression method, yielded better results than DNAPack,

the best performing of the Substitutional-Statistical

methods that we investigated. If XM is used to compress

the human genome, approximately 1,20 GB and 1,18 GB

will be sufficient to store female genome and male genome,

respectively.

The 1000 Genomes Project published the variation data of

2504 anonymous people as VCF [26] and BCF [27] files.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

297

The VCF (Variant Call Format) format [28] is a tab

delimited text file format for storing variations and

individual genotypes. Although VCF is widely used in the

community, it has substantial drawbacks. Because the file

is text, it requires a lot of space on disk and is excessively

slow to parse. BCF is a binary, compressed equivalent of

VCF. A BCF file is composed of a series of compressed

blocks of binary records. BCF files are faster and take up

less space compared to VCF files. Because these two file

formats are equivalent, both have some common

shortcomings. While storing the genetic data of many

people; low allele frequencies lead to so much redundant

space usage. These formats don't provide any structure to

divide the chromosome into regions and to store the data in

this way. Finally, to add the variation-based genetic data of

a new person to the file, the file needs to be updated from

beginning to end.

Structural approaches for storing and querying genomic

data are Genomics Algebra [29], the Phd thesis of Tata [30]

and GQL [31]. J. Hammer and M. Schneider have proposed

an integrating approach that is based on two fundamental

structures. These are genomics algebra and genomics

functions. While genomic algebra consists of genomic data

types (e.g., genome, gene, protein, nucleotide), genomic

functions consist of functions (e.g., translate, transcribe).

They propose extending SQL by embedding these two

structures into it. However, in order to extend SQL, data

structures that will be running in the background should be

created and added to the system. For instance, to add a new

function such as get_variations() to SQL, necessary data

structure should be added to the system too. The second

and the third studies, the Phd thesis of Tata and GQL, are

very similar to the first study. They are also based on

genome query algebra and use a standard SQL-like syntax.

In fact, the main difference between the first study and

others is that while the first study recommends making

additions to existing database management systems, other

studies recommend constructing the system from scratch.

Naturally, they have also data-structures requirement.

These three studies have other common shortcomings too.

The space requirements of the methods were not

calculated. The methods were not tested on real personal

genetic data.

As mentioned earlier, within this study, the variation data

published by the 1000 genome project has been used. This

dataset contains whole-genome genetic data of 2504

individuals selected from different populations and is open

to the use of researchers. This dataset has also been used in

many scientific studies for different purposes [32-35].

3. RELATIONAL DATABASE SCHEMA

The relational database schema, designed to hold variation-

based personal genetic data in relational database, appears

in Figure 1. As shown in Figure 1, the relational database

consists of four tables. The names of these four tables are

“Records”, “Reference_Chromosomes”, “Individuals” and

“Variations”. Each of these tables will be discussed

separately in the following sections.

Figure 1. Relational Database Schema

3.1. Table Individuals

The table "Individuals", as the name suggests, is a table

designed to hold information about individuals. Normally,

this table is one of the indispensable tables in any hospital

information system. Naturally, the integration of personal

genetic data into the hospital information system will be

carried out through this table. Consciously, the table was

kept as simple as possible and the reason for this will be

explained below. This table has a total of five fields. The

first of these, the field with the name "Individual_ID", is

the primary key of the table. Therefore, thanks to this

index, other information about any person whose

“Individual_ID” is known, can be retrieved from the

Individuals

Individual_ID int

Name nvarchar(20)

Family_ID char(7)

Population char(3)

Gender tinyint

Column Name Data Type Allow Nulls

Records

Record_ID int

Individual_ID int

Chromosome_ID int

Variations varbinary(MAX)

Column Name Data Type Allow Nulls

Reference_Chromosomes

Chromosome_ID int

Chromosome_Number tinyint

Genome_Assembly nvarchar(50)

Start_Index int

End_Index int

Length int

Sequence varchar(MAX)

Column Name Data Type Allow Nulls

Variations

ID int

Variation_ID nvarchar(MAX)

Chromosome_ID int

Type char(1)

Position int

Reference_Bases varchar(MAX)

Alterations varchar(MAX)

Info nvarchar(MAX)

Column Name Data Type Allow Nulls

298 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

database very quickly. In addition, this field is the foreign

key in the "Records" table, which will be explained in

detail later and the relationship between these two tables

appears in Figure 1. Other fields of the "Individuals" table

hold the name, family id, population and sex of the person

and the names of these fields are "Name", "Family_ID",

"Population" and "Gender", respectively. In fact, the fields

of the Individuals table can be further increased in line with

the needs of clinical applications; but because we used

fundamentally the variant data that the 1000 genomes

project published, we had to adhere to some of the designs

in this project. On the other hand, basically, even only 3

fields ("Individual_ID", "Name" and "Gender") are

sufficient to hold variation-based personal genetic data.

From these areas, the "Gender" field is important for

reading (transforming into genotype / haplotype objects

from the byte sequence created in accordance with the

general format) individual genotypes or haplotypes of sex

chromosomes. Since females have two X chromosomes,

the variation-based genetic data for female x chromosomes

must be stored in a diploid format and read. On the other

hand, males have one x and one y chromosome. For this

reason, variation-based genetic data for male sex

chromosomes should be stored and read in haploid format.

3.2. Table Reference_Chromosomes

Another one, from the tables that are required to hold

variation-based personal genetic data, is the

"Reference_Chromosomes" table. As is known, the

personal variations are determined by the alignment of the

raw sequence data of the person to the reference

chromosome. Therefore, the reference chromosome used

for this operation is important. If the reference

chromosome used to align the raw sequence data is

changed, the individual variations that will emerge will

also change. For this reason, the reference chromosome

used for alignment is one of the indispensable data in a

database that holds variation-based personal genetic data.

Accordingly, the "Reference_Chromosomes" table has

been designed and added to the schema.

This table consists of a total of seven fields and each

reference chromosome corresponds to a row of this table.

The fields of the table were named as "Chromosome_ID",

"Chromosome_Number", "Genome_Assembly",

"Start_Index", "End_Index", "Length" and "Sequence",

respectively. From these fields, the "Chromosome_ID"

field is the primary key of the table. Also, this field is the

foreign key in the "Records" table, and the relationship

between these two tables is also shown in Figure 1. The

second field of the table, "Chromosome_Number", as the

name implies, holds the number of the chromosome. At

this point, let's say that number 23 represents the X

chromosome and number 24 represents the Y

chromosome. The third field of the table,

"Genome_Assembly", holds the assembly of the reference

chromosome. Thanks to this field, different versions

(assembly) of the same chromosome (e.g. chromosome-1)

can be stored in the table. In this way, we have the

possibility to store multiple records (provided that the

assemblies are different) of the same chromosome of the

same person in the "Records" table. The other three fields

of the table, "Start_Index", "End_Index" and "Length"

represent the start position, end position and length of the

reference chromosome, respectively.

The last field of the table, "Sequence", as the name

suggests, holds the reference chromosome sequence.

Because chromosomes are made up of millions of base

pairs, the data held in this field is quite big. For example,

suppose that the chromosome consists of 300,000,000 base

pairs. In this case, the sequence data held in this field takes

up approximately 300 MB. Although this data is quite

large, it can be retrieved from the database in a short time

because it is a single data (whole). On the other hand, any

part of the raw sequence data can be fetched by the

SqlDataReader.GetChars() method in the

System.Data.SqlClient library, which is provided by .net.

Actually, the structure of the "Reference_Chromosomes"

table also provides the possibility of storing reference

chromosome sequences in pieces; but, the structure of the

"Records" table and the general format we have designed

prevent it. To store the reference chromosome sequences

in pieces, one more table should be added to the database,

and the newly added table must be associated with the

"Reference_Chromosomes" table.

3.3. Table Records

The "Records" table is the most significant table of our

relational database and consists of only four fields. These

fields are "Record_ID", "Individual_ID",

"Chromosome_ID", and "Variations", respectively. The

field "Record_ID" is the primary key of this table. On the

other hand, the "Individual_ID" field of this table is linked

to the "Individual_ID" field of the "Individuals" table. The

same also applies to the "Chromosome_ID" field and the

"Chromosome_ID" field of the

"Reference_Chromosomes" table. The field, where the

variation-based personal genetic data is stored, is the

"Variations" field. As can be noted, the data type of this

field is varBinary (MAX), that is, the data is stored in the

form of a byte array in this field. In our practice, the

personal genetic data encoded in the form of a byte

sequence in accordance with the general format is held in

this field in a compressed form. The details about

compression will be given in the section that describes the

analysis results. To summarize, one row of the "Records"

table holds genotypes/haplotypes associated with a

chromosome of a person. In this way, for a single

assembly, the data of the whole female genome is kept in

23 rows. This number is 24 for men.

3.4. Table Variations

The "Variations" table is designed to hold generic

variations. Both non-structural variations and structural

variations are stored in this table. For this purpose, there

are eight fields on the table. Also, the only table that the

"Variations" table is linked to is the

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

299

"Reference_Chromosomes" table and the fields

"Chromosome_ID" of both tables are linked together to

form this relationship. Naturally, the "Chromosome_ID"

field of the "Variations" table is the foreign key. Other

fields of the table and the intended use of these fields are

as follows: The "ID" field is the primary key of the table.

The field "Variation_ID" represents the id of the generic

variation. At this point, the "ID" field and the

"Variation_ID" field should not be confused. The "ID"

field uniquely identifies the variation in the table and this

field is automatically assigned a value by the database

itself. On the other hand, the "Variation_ID" field also

uniquely identifies the variation and the variation IDs are

determined by the organizations with international

validity; but, for newly discovered variations, the value of

this field is null. Already, the IDs of thousands of newly

detected variations have been indicated as null in the

variation catalog published by 1000 genomes project. The

fourth field of the table, the "Type" field, indicates the type

of variation and this field only takes two values: while the

'N' character represents non-structural variations, the 'S'

character represents structural variations.

Other areas of the table named "Position",

"Reference_Bases" and "Alterations" hold the position at

which the variation occurs, the reference allele and the

alternate alleles of the variation, respectively. In addition,

alternate alleles are separated from each other by ‘;’ in the

"Alterations" field. The last field of the table, "Info", holds

the other information associated with the variation. The

information in this field is stored in the form of colon

separated <property>=<value> pairs.

4. ENCODING AND DATA FORMATS

4.1. Encoding the Sequence

As known, DNA sequence is made up of nucleotide bases

and there are four bases. These are Adenine, Guanine,

Cytosine and Thymine. Apart from these, sequencing

devices return “N” character for the bases which cannot be

identified. Therefore, there are totally 5 characters. Three

bits are sufficient to represent these 5 characters. But, since

a byte is composed of 8 bits, we preferred using 4 bits to

represent the bases. Naturally, one byte can store two

characters. Accordingly, the formula “Ceiling(Length/2)”

is used to compute the number of bytes adequate to store

the sequence, where “Length” stands for the length of the

sequence in the formula.

Table 1. The Format for Small Indels

Variation Type Field Description Type

Substitution &

Insertion

L_T
Length of the Sequence(Higher 4 bits) and Type of

the Variation(Lower 4 bits)
Unsigned Byte

If Length

< 15
Alt

A byte array storing the sequence,

byte[Ceiling(Length/2)]
Byte Array

If Length

= 15

Len Length of the Sequence
Unsigned 16 Bit

Integer

Alt
A byte array storing the sequence,

byte[Ceiling(Length/2)]
Byte Array

Deletion

L_T
Length of the Sequence(Higher 4 bits) and Type of

the Variation(Lower 4 bits)
Unsigned Byte

If Length

< 15
- Null, no information is stored -

If Length

= 15
Len Length of the Sequence

Unsigned 16 Bit

Integer

4.2. Small Indels Variation Format

The basic element of the data format we developed is

variation. There are two different formats for non-

structural variations. While the same format was designed

for both substitution and insertion, a different format was

designed for deletion. The cause that gives rise to this

situation is while we should store the sequence in insertion

and substitution, we don’t need to store the sequence in

deletion. The first field of both formats is “L_T”. While

higher 4 bits of “L_T” indicates the length of the sequence,

lower 4 bits indicates the type of the variation. If the value

of the higher 4 bits of “L_T” is 15, there are two

alternatives. The length of the sequence might be either 15

or more than 15. Therefore, there is also an extra field

“Len” in the case where the value of the higher 4 bits of

“L_T” is 15. The field “Len” stores the length of the

sequence. The last field of the format devised for

substitution and insertion is “Alt” and this field is used to

store the sequence. Since we don’t need to store the

sequence in deletion, there is no “Alt” field in the deletion

300 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

format. You can attain the other details about the variation

format from Table 1.

4.3. Structural Variation Format

As is known, the structural variations are basically divided

into five. These are Cnv (Copy number variation), Del

(Deletion), Dup (Duplication), Ins (Insertion) and Inv

(Inversion). Furthermore, the structural variation of the

insertion type is also divided into four within itself,

depending on the type of the inserted element. As a result,

there are a total of 8 different structural variations. The

information that defines these eight different structural

variations and naturally, that needs to be stored shows

similarities and/or differences. Therefore, it would be a

right and rational approach to group structural variations

that have more common features and to design a common

format for each group. This choice will both provide a

significant convenience in terms of design and reduce

space requirement. From this point of view, 5 structural

variations with the most common features were collected

in one group and the other 3 structural variations were

collected in a separate group. The formats designed for

these two groups appear in Table 2 and Table 3,

respectively. For the sake of clarity, the table structure

created for small indels is adopted here as well. In addition,

since the formats of the structural variations are more

complex, they were divided into a certain number of

sections. Our goal in doing so is to be able to explain the

formats more easily. Accordingly, the thick lines in the

tables separate these sections. For example, in Table 2

there are two thick lines and these two thick lines separate

three sections.

Table 2. Structural Variation Formats-1

Variation Type Field Description Type

CNV & DEL &

DUP & INS:MT

& INV

CNV

DEL

DUP

nCNA_Type
How many CNAs (Higher 4 bits) and

Type of the Variation (Lower 4 bits)
Unsigned Byte

CNA Copy Number Allele: How many copies
Signed

byte[nCNA]

INS:MT

INV
U_Type

Higher 4 bits unused and Type of the

Variation (Lower 4 bits)
Unsigned Byte

L_ID Length of the Variation ID Unsigned Byte

ID Variation ID Char[L_ID]

L_CS Length of the Source Call Set Unsigned Byte

CS Source Call Set Char[L_CS]

END End coordinate of the Variation
Unsigned 32 Bit

Integer

If not INS:MT - Null, no information is stored -

If INS:MT

M_Start
Mitochondrial start coordinate of

inserted sequence

Signed 32 Bit

Integer

M_End
Mitochondrial end coordinate of inserted

sequence

Signed 32 Bit

Integer

EInfo_Type

Existence of Extra Info (higher 4 bits)

and Type of the field L_EInfo (Unsigned

Byte=1, Unsigned 16 Bit Integer=2)

Unsigned Byte

If EInfo=1

L_EInfo Length of the Extra_Info Appropriate type

Extra_Info

Extra Information for the Variation

(colon separated <property>=<value>

pairs)

Char[L_EInfo]

The fields of the format designed to hold the information

of five structural variations and their characteristics are as

follows: The first part of the table is divided into two

according to the types of the variations. If the type of

variation is Cnv, Del or Dup, the first part consists of two

fields. These fields are “nCNA_Type” and “CNA”. The

"nCNA_Type" is of type unsigned byte and the first four

bits of this field are used to hold the number of CNAs. On

the other hand, the last four bits represent the type of

variation. The field “CNA” is an array of type signed byte

and holds the copy numbers. If the type of the variation is

Ins:Mt or Inv, the first section consists of a single field, and

the name of this single field is "U_Type". "U Type" is of

type unsigned byte and the last four bits of this field are

used to hold the type of the variation; the first four bits are

not used.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

301

The first five fields of the second section are standard, and

these fields are "L_ID", "ID", "L_CS", "CS" and "END",

respectively. From these fields, "L_ID" can be handled

together with "ID". The same situation applies to "L_CS"

and "CS". The "L_ID" field is used to keep the length of

the variation-id represented by "ID". Similarly, the "L_CS"

field is used to hold the length of the Source Call Set

represented by "CS". The last field existing as the standard

of the second section is "END" and holds the end

coordinate of the variation. Apart from these five standard

fields, if the type of the variation is Ins:Mt, there are two

extra fields in this section. These fields, whose names are

"M_Start" and "M_End" denotes mitochondrial start and

end coordinates of the inserted sequence. Accordingly, the

type of these fields is Signed 32 Bit Integer.

The third section, that is, the last section, is basically

designed to hold extra information concerning the

variation. The first field of this section is standard. The first

four bits of this field, whose name is "EInfo_Type",

indicate whether extra information is available. The fact

that the first four bits are 1 means that extra information is

available. If the first four bits are 1, there are two other

fields at the end of this section to keep the other

information associated with the variation. The names of

these fields are "L_EInfo" and "Extra_Info". The

"L_EInfo" field represents the length of the "Extra_Info"

field. On the other hand, the type of the "L_EInfo" field is

determined according to the last four bits of the

"EInfo_Type" field. If the last four bits of "EInfo_Type"

are 1, the type of "L_EInfo" is unsigned byte; on the

contrary, if this value is 2, the type of "L_EInfo" is

unsigned 16 Bit Integer. The last field of this last section,

the "Extra_Info" field, is the actual field that holds the other

information associated with the variation. The information

in this field is stored in the form of colon separated

<property>=<value> pairs.

The common format developed for the second group of

structural variations (INS:ME:ALU, INS:ME:LINE1,

INS:ME:SVA) appears in Table 3. As can be seen from the

table, this common format, developed for three structural

variations, consists of three sections and these three

sections are separated from each other by two thick lines.

The fields of each section and their characteristics are as

follows: In the first section there are eight different fields

and the names of these fields are "MEINFO_Type",

"SVLEN", "L_ID", "ID", "L_CS", "CS", "L_TSD" and

"TSD", respectively. The field "MEINFO_Type" is of type

unsigned byte and the first four bits of this field determine

whether mobile element information exists or not. If the

first four bits are 1, the second section stores the

information about the mobile element, but, if the first four

bits are 0, then the second section stores nothing, in other

words, the second section doesn’t exist. On the other hand,

the last four bits of "MEINFO_Type" represent the type of

the variation. The second field of the first section,

"SVLEN", denotes the length of the structural variation

and the type of this field is Signed 32 Bit Integer. From the

remaining fields of the first section, "L_ID", "L_CS" and

"L_TSD" are used to store the lengths of the fields "ID",

"CS" and "TSD", respectively. The “ID" field represents

the variation-id and, accordingly, its type is a char array.

On the other hand, while "CS" holds the Source Call Set,

"TSD" holds Precise Target Site Duplication for bases.

Likewise, the types of these fields are also char arrays.

The second section is basically designed to store

information regarding the mobile element. As we have

already mentioned, the presence of this section depends on

the first four bits of the first field of the first section. In

accordance with the purpose of this section, there are five

standard fields. The first field of this section, "L_MEN", is

used to keep the length of the mobile element name

represented by the field "MEN". The names of the two

subsequent fields are "ME_SPos" and "ME_EPos". These

fields are used to hold the start and end positions of the

mobile element, respectively, and the types of both fields

are Signed 32 Bit Integer. The last field of this section,

whose name is “Polarity”, denotes the polarity of the

mobile element. Accordingly, the value of this field can be

either ‘+’ or’-‘. Because one byte (or one character) is

sufficient to represent these values, the type of the

“Polarity” field was determined as char.

The third section is basically designed to hold extra

information regarding the variation. The first field of this

section is standard. The first four bits of this field, whose

name is "EInfo_Type", indicate whether extra information

is available. The fact that the first four bits are 1 means that

extra information is available. If the first four bits are 1,

there are two other fields at the end of this section to keep

the other information associated with the variation. The

names of these fields are "L_EInfo" and "Extra_Info". The

"L_EInfo" field represents the length of the "Extra_Info"

field. On the other hand, the type of the "L_EInfo" field is

determined according to the last four bits of the

"EInfo_Type" field. If the last four bits of "EInfo_Type"

are 1, the type of "L_EInfo" is unsigned byte; on the

contrary, if this value is 2, the type of "L_EInfo" is

unsigned 16 Bit Integer. The last field of this last section,

the "Extra_Info" field, is the actual field that holds the other

information associated with the variation. The information

in this field is stored in the form of colon separated

<property>=<value> pairs.

302 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

Table 3. Structural Variation Formats-2

Variation Type Field Description Type

INS:ME:ALU &

INS:ME:LINE1 &

INS:ME:SVA

MEINFO_Type
Mobile element info (Higher 4 bits) and

Type of the Variation(Lower 4 bits)
Unsigned Byte

SVLEN Structural Variation Length
Signed 32 Bit

Integer

L_ID Length of the Variation ID Unsigned Byte

ID Variation ID Char[L_ID]

L_CS Length of the Source Call Set Unsigned Byte

CS Source Call Set Char[L_CS]

L_TSD Length of TSD Unsigned Byte

TSD
Precise Target Site Duplication for

bases (if unknown, value will be null)
Char[L_TSD]

If MEINFO=0 - Null, no information is stored -

If MEINFO=1

L_MEN Length of MEN Unsigned Byte

MEN Mobile element name Char[L_MEN]

ME_SPos Mobile element Start Position
Signed 32 Bit

Integer

ME_EPos Mobile element End Position
Signed 32 Bit

Integer

Polarity Polarity (‘+’ or ‘-‘) Char

EInfo_Type

Existence of Extra Info (higher 4 bits)

and Type of the field L_EInfo

(Unsigned Byte=1, Unsigned 16 Bit

Integer=2)

Unsigned Byte

If EInfo=1

L_EInfo Length of the Extra_Info Appropriate type

Extra_Info

Extra Information for the Variation

(colon separated <property>=<value>

pairs)

Char[L_EInfo]

4.4. General Format

The general format, which was designed for the storage of

the personal genotypes or haplotypes (depending on the sex

of the individual and/or chromosome), can be seen from

Table 4. As it can be seen from the table, the general format

was devised to store all or a portion of the personal

genotypes/haplotypes for the variations detected on any

chromosome of an individual. In short, the general format

can be defined as: chromosomes are composed of regions;

each region is made up of records.

The details of the format are as follows: Since the

variations are detected by aligning a sequence to the

reference sequence, the assembly of the human reference

genome should be specified. Accordingly, the first two

fields of the general format are used for that purpose. The

names of these fields are “L_Hga” and “Hga”, respectively.

“L_Hga” holds the character length of the human genome

assembly, represented by the field “Hga”. Additionally, the

types of these fields are unsigned byte and char array. The

third field of the format is “N_Regions”. “N_Regions” is

used to hold the number of regions. After that field, the part

comes where the indices of the regions are held.

The indices section is actually a list and its length equals

the value of the "N_Regions" field. On the other hand, the

fact that this section is a list is indicated with a rational

visual approach in the table. Each element of the indices

section is composed of three different fields. These fields

are “C_SPos”, “C_EPos” and “SO_CReg”. The fields

“C_SPos”, “C_EPos” and “SO_CReg” hold the start

position and end position of the region on the chromosome,

and the start offset of the compressed region in the byte

array, respectively. Regions are kept in order according to

their start and end positions. This simple but significant

approach gives us the possibility to make binary search. In

this way, the region or regions that match the given

position information can be determined in a very short

time. Besides, since the initial offset (SO_CReg) in the

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

303

compressed byte array of any detected region is also held,

there is also the opportunity to position directly in that

position and bring the relevant region. Here, the

corresponding region is fetched as a compressed byte array

and then it is decompressed.

Table 4. General Format

Field Description Type

L_Hga Length of the Human Genome Assembly Unsigned Byte

Hga Human Genome Assembly (ex. GRCh37) Char[L_Hga]

N_Regions Number of Regions
Unsigned 32 Bit

Integer

List of Indexes (n=N_Regions)

C_SPos Chromosomal Start Position of the Region
Unsigned 32 Bit

Integer

C_EPos Chromosomal End Position of the Region
Unsigned 32 Bit

Integer

SO_CReg Start offset of the compressed region
Unsigned 32 Bit

Integer

List of Uncompressed/Compressed Regions (n=N_Regions)

N_Rec Number of Records in the Region
Unsigned 32 Bit

Integer

List of Records (n=N_Rec)

If
 H

ap
lo

id
 V_Pos Position of the Variation

Unsigned 32 Bit

Integer

Var Variation Variation

If
 D

ip
lo

id

V_Pos Position of the Variation
Unsigned 32 Bit

Integer

I_Byte

For Diploid Genotypes, there are five situations:

Only first allele has the variation, I_Byte=00000000

Only second allele has the variation, I_Byte=00000001

Both alleles have the same variation, I_Byte=00000010

The alleles have different variations, I_Byte=00000011

The alleles have the same Structural variations, but different

CNA, I_Byte=00000100

Unsigned Byte

Var
If the value of I_Byte is 00000011, two variations Variation[]

Else, one variation Variation

The next section of the general format holds compressed

regions. This section is a list of compressed regions, and

the length of this list is, as you will guess, equal to the

length of the index list. Although we express compressed

regions and index region as a list, the whole of the general

format is actually a byte array, and as we have already

mentioned, we have the possibility to position on any offset

of this array. When looking at the format of a compressed

region in Table 4, basically two components are seen. The

first of these, the field with the name “N_Rec” shows the

number of records (personal genotype or haplotype) in the

compressed region, and the type of this field is Unsigned

32 Bit Integer. The second component is a list of records.

On the other hand, there are two different Record formats,

one for haploid calls and the other for diploid calls. Haploid

format consists of two fields (“V_Pos”, “Var”) whereas

diploid format consists of three (“V_Pos”, “I_Byte”,

“Var”). The extra field “I_Byte” of the diploid format is

used to represent five situations whose details are given in

Table 4. For haploid calls, e.g. on Y, male

nonpseudoautosomal X, only one allele value should be

given. Accordingly, one variation is stored in the “Var”

field of Haploid format. For diploid calls, e.g. on

chromosome 1, female nonpseudoautosomal X, two

alleles’ values should be given. Here, based on the value of

the field “I_Byte”, either one variation or two variations

can be stored in the “Var” field of Diploid format.

5. THE RESULTS OF THE ANALYSIS MADE ON

THE RELATIONAL DATABASE

In the process of recording variation-based personal

genetic data into the relational database, the data are passed

through many stages and/or undergoing transformation.

These stages are the encoding of class objects according to

the general format (conversion to byte array), the

compression (in parts) of the data encoded in the form of

byte array and storage of the compressed byte array into

the database, respectively. On the other hand, in the process

of reading the data stored in the database and transforming

304 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

it into class objects, these steps are implemented backward.

Namely; first, the data held in the form of compressed byte

array is fetched from the database, then, this data is

decompressed, and finally, the decompressed data is

transformed into class objects. Table 5 below shows the

analysis results regarding time requirements of the

operations carried out at the mentioned stages. In addition,

the results of the analysis on the size of the area occupied

by the data at each step are also given in Table 6. The

values indicated on both tables are the average of 2504

people. Also, analyzes on time and space requirements

were performed separately for each chromosome. At this

point, since the sex chromosomes of females and males are

different, analyzes of the X chromosome were made

separately for females and males. Accordingly, the rows

starting with "X) F" and "X) M" on both tables indicate the

mean values of the females and males, respectively. The

various physical characteristics of the test computer are as

follows: (Asus K55VJ-SX077D, Windows 8.1 Pro 64 bit,

Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz, 6 MB

Intel® Smart Cache, 8 GB DDR3 1600 MHz, 750 GB

7200rpm). Also, Sql Server 2008 R2 was selected as the

database management system.

Table 5, which shows the time requirements of the

processes that need to be realized in the system, consists of

a total of 12 columns, if we do not take the first column

into account. Eight of these columns are dedicated to

compression and decompression operations, two of them

are to the operations of writing to the database and reading

from the database, one of them is to encoding operation and

one of them is to decoding operation. In the process of

recording variation-based personal genetic data into the

relational database, encoding operation (conversion to byte

array) and the compression of the byte array lead to extra

source usage (RAM) and delay. On the other hand, similar

source usage and delay are valid for the decompression and

the decoding operations in the process of reading the data

stored in the database. The time losses caused by these four

operations appear in Table 5.

Table 5. Time Table for the Operations Related to the Relational Database (in millisecond)

Chr No

Encoding

General

format

Gzip Algorithm Deflate Algorithm Database

Decoding Gzip Fastest Gzip Optimal Deflate Fastest Deflate Optimal
Write Read

Comp Decomp Comp Decomp Comp Decomp Comp Decomp

1) 117.04 79.37 47.08 173.81 42.19 62.73 40.05 165.84 35.61 54.32 26.85 278.5

2) 122.1 82.78 51.07 183.35 46.79 66.29 42.61 173.58 39.21 58.53 34.35 296.58

3) 106.07 76.23 42.12 156.5 38.07 53.07 34.6 147.57 31.36 57.3 41.55 246.44

4) 120.45 73.89 44.36 167.7 40.65 61.63 36.91 161.98 33.45 120.42 44.4 262.69

5) 101.12 69.64 37.74 138.11 32.71 47.83 31.67 133.62 28.7 150.52 42.54 217.56

6) 107.04 78.49 40.97 154.84 35.74 50.22 32.23 140.67 29.06 110.09 41.78 220.71

7) 96.08 70.06 35.3 132.07 31 46.36 29.6 128.2 26.29 124.45 42.5 201.61

8) 88.52 66.94 32.97 121.96 28.74 43.95 26.69 118.89 24.71 129.08 41.63 182.9

9) 70.46 52.98 25.32 97.58 22.61 33.86 21.32 92.41 18.98 89.15 38.99 145.07

10) 84.09 56.54 31.93 116.22 27.18 43.4 25.32 109.11 23 110.41 39.77 172.93

11) 83.19 59.33 32.4 114.88 27.79 43.91 26.86 113.79 24.41 143.48 40.36 179.57

12) 81.12 60.48 29.26 110.96 25.78 44.15 23.74 104.6 21.6 94.37 39.49 155.42

13) 65.58 45.52 23.56 85.74 22.01 36.49 19.57 88.92 18.02 95.04 33.17 126.62

14) 59.34 46.27 19.98 74.66 17.68 28.49 16.44 72.66 15.91 80.23 32.31 104.82

15) 51.83 39.96 18 70.28 16.19 26.22 14.7 63.97 13.39 59.5 30.27 93.12

16) 53.01 45.79 18.45 75.39 16.42 25.65 15.26 67.76 14.36 59.43 31.56 97.95

17) 45.42 37.67 17.13 65.67 15.58 23.07 13.86 63.05 12.57 34.74 28.88 82.26

18) 46.8 39.78 17.5 66.05 15.67 30.77 15.26 65.2 13.23 23.2 29.52 89.28

19) 37.97 39.95 14.65 55.5 12.92 22.37 11.68 52.16 10.56 30.99 29.05 73.96

20) 34.8 35.41 14.77 53.64 11.88 21.16 10.68 53.15 9.84 39.77 28.6 63.46

21) 25.25 23.38 9.83 44.15 8.25 14.44 7.93 33.6 6.92 15.99 22.88 39.96

22) 22.62 26.43 8.86 37.47 7.61 16.9 7.04 31.15 6.33 28.44 21.04 31.65

X)F 55.71 38.88 21.99 79.36 20.42 29.94 17.96 78.39 16.33 108.98 43.69 107.13

X)M 32.59 30.94 17.09 60.13 13.49 21.83 11.86 51.53 11.1 56.01 34.34 48.6

Y) 0.24 0.86 0.14 1.16 0.14 0.71 0.12 0.8 0.12 13.9 14.21 0.33

Female
Total

1675.61 1245.77 635.24 2375.89 563.88 872.9 521.98 2260.27 473.84 1818.43 805.18 3470.19

Male

Total
1652.73 1238.69 630.48 2357.82 557.09 865.5 516 2234.21 468.73 1779.36 810.04 3411.99

For compression operation, basically two different classes

(algorithms) in the "System.IO.Compression" library that

".net" provides were compared. The names of these classes

are "GZipStream" and "DeflateStream". In addition, two

different compression levels (“Fastest” and “Optimal”) of

both algorithms were tested and these levels indicate

whether to emphasize speed or compression efficiency

when compressing the stream. Therefore, a total of 4

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

305

different compression methods are compared. The

comparison results are as follows: Except for one or two

results, the “Gzip” algorithm completes the compression

process longer than the “Deflate” algorithm. This applies

to both "Fastest" and "Optimal" levels. That is, the "fastest"

level of the Deflate algorithm is the method that performs

the compression process fastest. On the other hand, in the

same way, the “Gzip” algorithm completes the

decompression process longer than the “Deflate”

algorithm. Moreover, surprisingly, the "optimal" levels of

both algorithms perform decompression operation more

quickly than their "fastest" levels. Therefore, the algorithm

performing the fastest decompression is “Deflate-optimal”.

Table 6 shows the size of the area occupied by the data in

the recording process. In this table, except for the last two

rows in which the total values for the whole genome of

females and males are shown, the values in the other rows

are in bytes. The values on the last two rows of the table

are in MB. As can be seen from the table, the algorithm and

its' level with the best compression performance is Deflate-

Optimal. Both the Optimal level of the Deflate algorithm

and the other three alternatives achieved quite successful

results. All of these four methods have reduced the size of

the byte array encoded according to the general format by

approximately 50% and there is little difference between

the results of the methods.

Two criteria have been taken into consideration in

determining the method to be used for the compression of

the byte array. These criteria are the compression ratio and

the duration of the decompression process. At this point,

the question "why was the duration of the decompression

process chosen as a criterion?" may come to mind. As the

genetic data of any person is recorded only once into the

database, naturally, the compression process is also

performed once. On the other hand, since the process of

reading from the database is repeated in each clinical

application, the decompression process is also carried out

many times. From this point of view, the duration of the

decompression process has been selected as the criterion.

Surprisingly, in terms of both the compression ratio and the

duration of the decompression operation, the best

algorithm is "Deflate-optimal". Therefore, this algorithm

has been used as the compression method in our

application as well. Accordingly, the variation-based

genetic data for the whole genome of females occupies

15.270 MB in the database. This value is 15.086 MB for

males.

Table 6. Size Requirement Table for the Operations Related to the Relational Database (in bytes)

Chr No
General

format

Gzip Algorithm Deflate Algorithm
Number of

Regions Gzip Fastest Gzip Optimal
Deflate

Fastest

Deflate

Optimal

1) 2408112 1253248 1224781 1250774 1222307 137

2) 2541726 1320030 1289846 1317418 1287234 145

3) 2166207 1121046 1095114 1118818 1092886 123

4) 2290589 1178695 1150662 1176340 1148307 130

5) 1883022 977429 955463 975492 953527 107

6) 2020235 1034925 1010897 1032850 1008822 115

7) 1789965 923548 901590 921706 899748 102

8) 1653394 847277 826890 845575 825188 94

9) 1303419 673591 657558 672248 656214 74

10) 1551477 801238 782168 799641 780571 88

11) 1558968 805382 786268 803777 784664 89

12) 1475290 767316 749813 765797 748294 84

13) 1170156 607522 593367 606316 592161 66

14) 1006770 522732 510626 521693 509587 57

15) 906607 471686 460954 470749 460017 52

16) 946070 485095 473347 484117 472370 54

17) 839810 438596 428962 437727 428093 48

18) 884164 457790 446836 456876 445922 50

19) 707567 363672 355261 362939 354528 40

20) 652718 337391 329537 336714 328860 37

21) 465189 239537 233823 239051 233338 26

22) 420671 217256 212262 216817 211823 24

X)F 1103835 579597 568871 578456 567730 63

X)M 655681 373474 372391 372683 371600 43

Y) 4845 2959 3013 2941 2995 1

Female Total 30.275 MB 15.663 MB 15.301 MB 15.632 MB 15.270 MB 1805

Male Total 29.852 MB 15.469 MB 15.117 MB 15.439 MB 15.086 MB 1786

In clinical applications, the data to be processed in RAM

are class objects. In the process of converting the personal

genetic data held in the database into class objects, the data

passes through multiple stages and the space occupied by

306 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

the data at each step must also be taken into consideration.

Let's explain this with an example. The whole genome data

of females takes up 15.27 MB in the database. When this

data is stored in memory, it again occupies 15.27 MB in

the same way. Because this data is a compressed data, it is

decompressed primarily and as a result of the

decompression process, a separate byte array that occupies

30.275 MB emerges. It is no longer necessary to keep the

compressed data in memory at this point, and for this

reason, the compressed data is discarded. Then, a byte

array encoded according to the general format and

occupying 30.275 MB in memory is passed through decode

operation and the personal genotype objects are generated.

After the personal genotype objects are generated, the byte

array encoded according to the general format is discarded

from the memory. Therefore, the areas used in these two

intermediate stages are seen as temporary losses.

6. CONCLUSION

In this study, a relational database was utilized for the

organization of variation-based personal genetic data, and

the space requirements and query performances of this

database was computed. Relational databases have been

successfully used in many areas so far. But unfortunately,

there are several challenges confronted when using

relational databases for storing personal genetic data. In

order to store all the variations existing in the genome of a

person in relational database, normally, millions of rows

are required. In practice this is almost impossible.

However, based on our storage approach and the designed

data formats, variations of each chromosome are stored in

type of "varbinary (MAX)". In this way only 23 rows are

used to store variation-based genetic data for the entire

genome of females. In contrast to females, the number of

rows required to store variation-based genetic data for the

whole genome of males is 24. By using this proposed

method, the space required to store all the variations in the

genome of a person is approximately 0.26 % of the space

required to store the raw sequence of this person. This

means that, on average, our method provides a space

saving of approximately 99.74%. In addition, our method

yielded better results than the accomplished compression

methods. The space need of our method is 0.015 GB as

opposed to 1.2 GB obtained by the accomplished

compression methods.

REFERENCES

[1] International Human Genome Sequencing

Consortium, “Finishing the euchromatic sequence of

the human genome”, Nature, 431(7011), 931-945,

2004.

[2] International HapMap Consortium, “A second

generation human haplotype map of over 3.1 million

SNPs”, Nature, 449, 851–861, 2007.

[3] 1000 Genomes Project Consortium, “A map of

human genome variation from population-scale

sequencing”, Nature, 467(7319), 1061-1073, 2010.

[4] 1000 Genomes Project Consortium, “An integrated

map of genetic variation from 1,092 human

genomes”, Nature, 491(7422), 56-65, 2012.

[5] 1000 Genomes Project Consortium, “A global

reference for human genetic

variation”, Nature, 526(7571), 68-74, 2015.

[6] P. H. Sudmant, et al., “An integrated map of structural

variation in 2,504 human

genomes”, Nature, 526(7571), 75-81, 2015.

[7] B. Alberts, et al., Molecular Biology of the Cell.

Garland Science, New York, A.B.D., 2007.

[8] M. M. Alves, et al., “Contribution of rare and

common variants determine complex diseases—

Hirschsprung disease as a model”, Developmental

biology, 382(1), 320-329, 2013.

[9] W. P. Gilks, J. K. Abbott, E. H. Morrow, “Sex

differences in disease genetics: evidence, evolution,

and detection”, Trends in Genetics, 30(10), 453-463,

2014.

[10] J. Hardy, A. Singleton, “Genomewide association

studies and human disease”, N. Engl. J. Med, 360,

1759–1768, 2009.

[11] W. L. Lowe, T. E. Reddy, “Genomic approaches for

understanding the genetics of complex

disease”, Genome research, 25(10), 1432-1441,

2015.

[12] C. Katsios, D. H. Roukos, “Individual genomes and

personalized medicine: life diversity and

complexity”, Personalized Medicine, 7(4), 347-350,

2010.

[13] M. A. Hamburg, F. S. Collins, “The path to

personalized medicine”, New England Journal of

Medicine, 363(4), 301-304, 2010.

[14] G. S. Ginsburg, J. J. McCarthy, “Personalized

medicine: revolutionizing drug discovery and patient

care”, TRENDS in Biotechnology, 19(12), 491-496,

2001.

[15] N. J. Schork, “Personalized medicine: time for one-

person trials”. Nature, 520(7549), 609-611, 2015.

[16] E. L. Van Dijk, H. Auger, Y. Jaszczyszyn, C.

Thermes, “Ten years of next-generation sequencing

technology”, Trends in genetics, 30(9), 418-426,

2014.

[17] Internet: Fasta Format,

https://en.wikipedia.org/wiki/FASTA_format,

20.04.2018.

[18] A. Löytynoja, N. Goldman, “An algorithm for

progressive multiple alignment of sequences with

insertions”, Proceedings of the National academy

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 11, SAYI: 3, TEMMUZ 2018

307

of sciences of the United States of

America, 102(30), 10557-10562, 2005.

[19] H. Li, N. Homer, “A survey of sequence alignment

algorithms for next-generation

sequencing”, Briefings in bioinformatics, 11(5), 473-

483, 2010.

[20] T. Lassmann, E. L. Sonnhammer, “Kalign–an

accurate and fast multiple sequence alignment

algorithm”, BMC bioinformatics, 6(1), 2005.

[21] O. Çakırgöz, Organization and Processing of

Personal Genetic Data for Clinical Use, Phd Thesis,

Dokuz Eylül University, The Graduate School of

Natural and Applied Sciences, 2017.

[22] S. Grümbach, F. Tahi, “Compression of

DNAsequences”, Proceedings of the IEEE Data

Compression Conference (DCC), 340–350, 1993.

[23] X. Chen, et al., “DNACompress: fast and effective

DNA sequence

compression”, Bioinformatics, 18(12), 1696-1698,

2002.

[24] B. Behzadi, F. L. Fessant, “DNA compression

challenge revisited: a dynamic programming

approach”, CPM, Springer, 190–200, 2005.

[25] M. D. Cao, et al., “A simple statistical algorithm for

biological sequence compression”, Proceedings of

the IEEE Data Compression Conference (DCC),

43–52, 2007.

[26] Internet: The Variation data as VCF files,

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/201

30502/, 23.07.2016.

[27] Internet: The Variation data as BCF files,

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/201

30502/supporting/bcf_files, 23.07.2016.

[28] Internet: The VCF File Format,

https://github.com/samtools/hts-specs, 19.03.2016

[29] J. Hammer, M. Schneider, “Genomics Algebra: A

New, Integrating Data Model, Language, and Tool

for Processing and Querying Genomic Information”,

Proceedings of the 2003 CIDR Conference, 2003.

[30] S. Tata, Declarative querying for biological

sequences, Phd Thesis, The University of Michigan,

Michigan, 2007.

[31] V. Bafna, et al., “Abstractions for

genomics”, Communications of the ACM, 56(1), 83-

93, 2013.

[32] T. J. Pemberton, Z. A. Szpiech, “Relationship

between Deleterious Variation, Genomic

Autozygosity, and Disease Risk: Insights from The

1000 Genomes Project”, The American Journal of

Human Genetics, 102(4), 658-675, 2018.

[33] J. S. A. Ramos, et al., “Unraveling CYP2E1

haplotypes in alcoholics from Central Brazil: a

comparative study with 1000 genomes population”,

Environmental Toxicology and Pharmacology, 62,

30-39, 2018.

[34] K. Okamura, et al., “Lists of HumanMethylation450

BeadChip probes with nucleotide-variant information

obtained from the Phase 3 data of the 1000 Genomes

Project”, Genomics data, 7, 67-69, 2016.

[35] K. Nunes, et al., “HLA imputation in an admixed

population: An assessment of the 1000 Genomes data

as a training set”, Human immunology, 77(3), 307-

312, 2016.

[36] S. Demircioğlu, S. Özdemir, “İlişkisel Veri

Tabanlarında Anahtar Kelime Arama”, Bilişim

Teknolojileri Dergisi, 5(3), 51-56, 2012.

[37] S. Öztürk, H. Atmaca, “İlişkisel ve İlişkisel Olmayan

(NoSQL) Veri Tabanı Sistemleri Mimari

Performansının Yönetim Bilişim Sistemleri

Kapsamında İncelenmesi”, Bilişim Teknolojileri

Dergisi, 10(2), 199-209, 2017, DOI:

10.17671/gazibtd.309303.

[38] A. Haltaş, A. Alkan, “Medlıne Veritabanı Üzerinde

Bulunan Tıbbi Dökümanların Kanser Türlerine Göre

Otomatik Sınıflandırılması”, Bilişim Teknolojileri

Dergisi, 9(2), 181-186, 2016.

