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Introduction

Continuous monitoring of respiratory rate (cycle) during sleep for diseases such as, sleep ap-
nea, sudden infant death syndrome (SIDS) and chronic obstructive pulmonary disease (COPD) 
can be life saving [1-3]. When we breathe, air is inhaled into the lungs through the mouth or 
nose due to muscle contraction and then exhaled by muscle relaxation. The respiratory cycle 
consists of two parts as inhalation and exhalation. The respiratory rate is defined as the num-
ber of respiratory cycles per minute. 

There are various methods to continuously monitoring respiratory rate. In literature, these 
methods can be categorized into two groups: contact-based and contactless. In the con-
tact-based methods, as the name implies, the respiratory rate is estimated via sensors or de-
vices attached to the human body [4]. In clinical environments, for example, capnography that 
measures the carbon dioxide intensity in the exhaling air via nasal cannula or mask and pho-
toplethysmogram (PPG) which detects the volumetric changes in blood via a sensor which is 
attached to a finger are commonly used [5, 6]. Besides, some methods are developed for the 
non-clinical environments. For example, respiratory rate estimates are made by analysing the 
sounds of a person during respiratory via microphones. It is also possible to estimate the respi-
ratory rate by using the strap with accelerometer which is attached to the chest [7-9]. 

All of these contact-based systems restrict patients’ mobility, comfort and sleep patterns. There-
fore, contactless respiratory rate monitoring methods have been to developed. Contrary to con-
tact-based methods, there is no need to attach any device or sensor to the human body for 
the respiratory monitoring in contactless methods. Developed methods can be grouped into 
two classes: vision based and radio frequency (RF) based. Vision based methods are based on 
analysis and processing of images [10-12]. These methods require line of sight, depend on day-
light, violate the privacy of private life and have high computational complexity. In recent years, 
electromagnetic RF signals have begun to be used to sense respiratory activity. While RF signals 
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propagate in the air, chest movements of a person whostands 
on or near the line of sight of the propagation path as shown 
in Figure 1, affect them. Under this category, Doppler based, ul-
tra-wideband radar-based methods are available [13-17].

In this paper, differently from the above RF based contactless 
respiratory rate estimation methods, a new method that only 
uses the received signal strength is proposed. The amplitude 
of the received signal changes depending on the exhaling and 
inhaling of the person. In this paper, subspace based Multiple 
Signal Classification (MUSIC) algorithm is initially applied to es-
timate the respiratory rate for better results [18]. The proposed 
MUSIC-based method and the other power spectral density 
(PSD) methods for respiratory estimations are compared with 
the real measurement signals collected in laboratory [19-27]. 
In simulations, it is shown with the various experiments that 
the proposed subspace-based method outperforms the PSD 
method with stable and reliable respiratory rate estimation re-
sults. This paper is a revised and extended version of a paper 
that was presented at ELECO-2017 [28]. In this extended paper, 
in addition to the previous version, some new experimental 
results including effect of the body orientation, effect of the 
carrier frequency of the transmitter and the effect of the model 
order of covariance matrix that is used in MUSIC algorithm are 
presented in detail. In all these experiments, data lengths are 
selected same for PSD-based methods and MUSIC algorithm 
to make a fair comparison. The new experimental results are 
discussed and concluded. It is shown that subspace based MU-
SIC algorithm outperforms the all other methods (PSD-based) 
presented in literature for respiratory rate estimation. 

Related Works

In the existing studies, different types of measurements relat-
ed to the signal are used. These are Received Signal Strength 
Indicator (RSSI), Channel State Information (CSI) and raw data 
from Software Defined Radio (SDR) platform. MAC layer RSSI 
states the strength of the received signal and has coarse-
grained information. As RSSI can take only integer values, high 
quantization errors can be occur. Compared to RSSI, CSI have 
fine-grained information and high resolution [29]. CSI consists 
of the some RF signal propagation effects including the scatter-
ing, fading and power decay with the distance [20]. CSI, whose 
30 subcarriers are accessed using commodity Wi-Fi cards, in-

volves both subcarrier phase and amplitude information. For 
example, if we deal Wi-Fi signals with subcarriers, RSSI defines 
a general signal strength value for all subcarriers. However, CSI 
has individual amplitude and phase information for each sub-
carrier, examining this quantity leads to results that are more 
accurate. It is also possible to collect the complex raw signal 
samples with a SDR platform. In this case, it is possible to get 
high resolution/rate over the propagation path.

In this study, a SDR platform based system is proposed. The pro-
posed SDR platform based approach can be applied to any RF 
signals, on the other hand, CSI and RSSI based approaches can 
only be applied to some specific signals (Wi-Fi signals). Since 
SDR platform does not have any limitation about frequency se-
lection, bandwidth and transmission mode, the current system 
can be applicable to any kind of signals.

They utilize RSS measurements taken from many links in a de-
ployed twenty device wireless network. In order to estimate the 
respiratory rate, power spectral density (PSD) based maximum 
likelihood estimation is used [19]. They report 0.42 bpm RMS 
error with 30 seconds of data, which is sufficient for frequen-
cy estimates. They also show that using directional antennas 
improves the system performance. In [20], they propose a new 
respiratory monitoring system using off-the-shelf Wi-Fi devices 
which provide CSI parameter. They are able to classify hard con-
ditions like the change of sleeping positions and sleep apnea. 
They consider two main cases that are respiratory rate estima-
tion under typical sleeping conditions and sleep posture/ap-
nea detection. They compute the Fast Fourier Transform (FFT) 
of the amplitude of signal segments and the location of the 
peaks of the FFT in each segment gives the respiratory rate of 
the breathing person. In [21], they use RSS measurements of a 
single COTS TX-RX pair but over 16 frequency channels. They re-
port mean absolute error of 0.12 bpm in most realistic scenario. 
They also estimate the respiratory rate as the peak amplitude of 
PSD. In this paper, they aim to handle the effect of external mo-
tions. Therefore, the Hidden Markov Model (HMM) is used for 
the motion interference detection. When the posture changes 
are sensed by the HMM, the system disables the monitoring 
of the respiratory rate in that time interval. In [22], they utilize 
a radar technique called as Frequency Modulated Continuous 
Wave (FMCW) to monitor the respiratory. They propose a meth-
od that utilizes the phase information of the complex time-do-
main signal. They filter the output of the FFT and keep only the 
peak and its two adjacent samples. Then, they implement the 
inverse FFT. The phase of the obtained complex time-domain 
signal will be linear and its slope give the respiratory frequen-
cy (rate). In [23], they also track the respiratory rate by using 
off-the-shelf Wi-Fi devices. The respiratory rate is determined 
by detecting the location of the peak in PSD of amplitude of 
CSI measurements. In [24], they extract the hidden breathing 
signal from noisy Wi-Fi RSS measurements. They achieve the 
accurate estimates with an Access Point (AP)-device pair. They 
estimate the instantaneous respiratory rate as the maximum 
point of the FFT of the RSS measurements. In [25], two USRP 

Figure 1. Contactless respiratory monitoring setup



302

Electrica 2018; 18(2): 300-309
Uysal and Filik. MUSIC Algorithm for Respiratory Rate Estimation

are used one for the transmitting and one for the receiving the 
wireless signal at 2.4 GHz. They combine four different algo-
rithms, which are zero-crossing, FFT maximum selection, linear 
predictive coding, least squares harmonic analysis, to estimate 
the respiratory rate. In [26], they use CSI data provided by com-
modity Wi-Fi devices. In order to detect the stationary human 
presence, they take into consideration respiratory of a person 
as an indicator. The motion interference module first detects 
whether there is a motion in the environment. If there is no 
motion, the stationary human detection module performs to 
find the answer to the question whether there is a human or 
not. In this section, the respiratory rate that is the location of 
the peak in the PSD is estimated. If the estimated respiratory 
frequency (rate) is within the nominal range (0.1-0.5 Hz), a hu-
man presence in the environment is detected. Most of the ex-
isting respiratory rate estimation methods in literature use the 
PSD approach that has many disadvantages although it is a fast 
method. Since PSD can be easily affected by noise, the proba-
bility of error increases. The frequency resolution of PSD is re-
stricted to the number of samples in a measurement window. 
Therefore, the error value cannot decrease below a certain lim-
it. In addition, it is evaluated that this method is not effective in 
estimating the respiratory rate of multiple people.

System Overview

In this section, the basics of respiratory, the effect of inhaling/
exhaling of a person to the received RF signal’s strength are 
discussed. Also the experimental setup used to take real mea-
surements and the measurement model for the respiratory rate 
estimation are presented.

Basics of Respiration 

Respiration is the process of human’s taking oxygen in the air and 
releasing carbon dioxide to the air to survive. It consists of two 
phases as inhalation and exhalation as seen in Figure 2. During 
inhalation, air is inhaled through the mouth or nose and travels 
towards the lungs. In the meantime, the chest wall expands, the 
diaphragm contracts and the chest volume increases. During ex-
halation, this process works in the opposite direction, and it con-
tinues cyclically. The processes during inhalation and exhalation 
are given in Table 1. In a healthy adult the number of breaths per 
minute is between 12-20, 16-22 in children, and 18-40 in infants.

The Effect of Respiratory to the RF Signal Amplitude

In this section, the effect of the respiratory to the RF signal am-
plitude is discussed in detail. The transmitting and receiving an-
tennas are located as shown in Figure 1. The distance traveled 
by the signals that are reflected (attenuated) from a stationary 
person on the transmission channel between the transmitter 
and the receiver changes depending on the breathing of that 
person. The nominal distance between the transmitter and the 
receiver is defined as do and it is expected that the periodic dis-
placement of chest wall changes the traveled distance of the 

reflected signal as periodically [30],

 (1)

where d(t) is the time-varying distance which is traveled by the 
signal during the respiratory. Since it is assumed that the dis-
placement of the chest wall is a sinusoidal function of time [31], 
this distance also varies periodically with the same frequency 
as the respiratory rate,

 (2)

where ƒR represents the respiratory rate, ΔA is the maximum 
displacement of the chest wall. The propagation delay accord-
ing to the traveled distance is defined as follows,

      (3)
 

where c is the speed of light. If the environment is assumed 
stationary, the time-varying channel impulse response can be 
modelled as follows,

 (4)

where ai is the amplitude value belong to static paths, is the 

Figure 2. Inhalation and exhalation phases [22]

Table 1. The processes during inhalation and exhalation.

During Inhalation During Exhalation

-diaphragm contracts -diaphragm relaxes

-chest expands -chest contracts

-air flows in -air flows out

-volume increases -volume decreases

-pressure decreases -pressure increases
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amplitude of the path which is affected by respiratory. t and 
τ represent fast and slow varying times, respectively. The re-
ceived signal is obtained with the convolution of the source 
signal and the channel impulse response as follows,

     (5)
 

As seen from (5), the amplitude of the received signal periodi-
cally varies with the same frequency as the respiratory rate.

The displacement of the chest wall along the anteroposteri-
or dimension is approximately 4.2 mm ~ 5.4 mm at the nor-
mal breathing and 12.6 mm at the deep breathing [27], [31]. 
The chest wall expands outwards when the air is inhaled and 
contracts inwards when the air is exhaled, as expected. These 
arguments are also observed and verified with real measure-
ments in our laboratory. The person sitting on the chair in 
Figure 3, holds his breath (after exhalation) between the 17th 
and 30th seconds. Then he continues to breathing until the 43rd 
second. Afterwards, he holds his breath again (after inhala-
tion) between the 43rd and 52nd seconds. As shown in Figure 
4 (Top), these planned movements can be easily monitored 
with variations on the received signal strength. Figure 4 (Bot-

tom) shows the received signal strength in the absence of the 
person. In this case, the signal level does not show a periodic 
change. The received RF signal’s amplitude level changes with 
inhaling/exhaling of the person and this causes a periodicity 
on the received signal due to the breathing movements. Even 
though the received signal is affected by the ambient noise, 
it preserves its periodic structure. The respiratory monitoring 
methods estimate the respiratory rate taking advantage of pe-
riodicity of the received signal. 

Laboratory Experimental Setup

In this study, the HP 8647A signal generator is used to gener-
ate a continuous wave signal at 900 MHz as the transmitter. 
Ettus USRP B210 software defined radio is configured as a re-
ceiver. USRP (Universal Software Radio Peripheral) is an SDR 
platform developed by Ettus Research. The experimental set-
up established for the measurements is shown in Figure 3. A 
900 MHz carrier signal with constant amplitude is generated 
from the transmitter. The power of transmitted signal is ad-
justed as 0 dbm. VERT900 omni-directional vertical antenna 
with 3 dBi gain is used as an antenna in both transmitter and 
receiver.

Measurement Model

Propagation path between the transmitter and receiver is 
shown in Figure 1. It is assumed that the transmitted signal is 
a (phase or frequency) modulated signal with a constant peak 
amplitude which is a reasonable assumption for wireless com-
munication signals. In this case, the averaged received signal 
strength are assumed constant during communications. On 
the other hand, the breathing of a person on the propagation 
path of the signal (as shown in Figure 1, 3) will change the am-
plitude level of the received signal which is already observed in 
literature [19, 20]. If there is no movement between transmitter 
and receiver, the received signal’s averaged amplitude should 
be,

 (6)
 
where µ is the mean of received signal, w is assumed additive 
zero-mean noise signal. If a breathing person exists in the envi-
ronment, the magnitude of the baseband complex signal can 
be modelled as follows,

 (7)

 (8)

Ac, ƒR,  are the amplitude, respiratory frequency (rate) and 
phase, respectively. Since breathing requires a periodic action 
in the form of inhaling and exhaling the cosine model in (8) is 
suitable to model respiratory. Then the respiratory rate estima-
tion evolves to the frequency estimation (ƒR) of the baseband 
received signal.

Figure 3. Experimental setup in laboratory

Figure 4. (Top) The effect of the exhalation, inhalation and breath 
holding on the received signal amplitude. (Bottom) The signal in 
the absence of the person.
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Respiratory Rate Estimation System

In this section, the proposed respiratory rate estimation sys-
tem is discussed. Firstly, the pre-processing steps, which are 
required to make an accurate estimate are given. Then, the pro-
posed subspace-based MUSIC algorithm is presented in detail. 
Finally, PSD-based MLE algorithm, which is commonly used in 
literature is considered.

Pre-processing Steps

In order to make the respiratory rate estimation algorithm 
properly with real measurements, some pre-processing steps 
are required. In this section, the basic pre-processing steps 
such as Outlier Removal, Downsampling and DC Removal are 
briefly summarized.

Since the data used is from actual/real measurements, in some 
cases, due to hardware deterioration several extreme points 
(spurious peaks) which are not originated from the chest move-
ments can also be observed on the received signal strength. 
These spurious peaks are refered to as outliers. In Figure 5 
(Top), the outliers can be seen that near 8, 10, 38, 46, 55 and 59 
seconds. In order to eliminate these spiky peaks (outliers), the 
well-known Hampel identifier is used [32] in this study. Hampel 
identifier calculates the median (µ) and median absolute devi-
ation (σ) of the samples in the measurement window. Then, it 
determines an upper and lower bound using µ and σ. Upper 
and lower bounds are set to µ + 3σ and µ – 3σ, respectively. 
A new sample, which is out of these bounds, is qualified as an 
outlier. The outliers are detected and removed from the origi-
nal signal as seen from the Figure 5 (Bottom).

The received signal is sampled by the USRP at 1200 Hz. Since 
the respiratory rate is below 1 Hz, high sampling rate makes 
difficult to distinguish the breathing signal in the frequency 
spectrum. Moreover, high sampling rate increases the com-

putational cost. Due to these reasons, the received signal is 
downsampled without distorting its waveform and periodic 
form. After downsampling, the sampling rate of the received 
signal is reduced to 1 Hz.

When the spectral analysis is carried out, it is seen that the first 
component of the signal in frequency domain contains high 
energy. This DC component that is the average value of the sig-
nal in frequency domain suppresses the other frequency com-
ponents. Besides, DC component does not contain any infor-
mation about the respiratory. For removing the DC component 
from signal, the average value is subtracted from entire signal. 
After DC removal process, the component at 0 Hz is removed 
from the frequency spectrum of the signal,

 (9)

where is the average amplitude of the received signal and y(t) 
is the output of the DC removal system.

MUSIC Algorithm

In this section, we consider the estimation of the respiratory 
rate using Multiple Signal Classification (MUSIC) algorithm 
which is a subspace based method [18]. MUSIC algorithm is 
commonly used to estimate the direction of arrival of signals 
as well as the frequency of the periodic signals. MUSIC is a su-
per-resolution technique and since it works by separating sig-
nal and noise subspaces, it estimates the respiratory frequency 
more accurate than sample windowed PSD based methods. 
The m samples collected from the measured and pre-processed 
signal are modeled as follows,

      (10)

 

      (11)
 

here, x(t) defines the sinusoidal source signals. A matrix con-
tains  the sinusoidal source signals and is defined as follows,

   
  (12)

 

where m is a positive integer which is the number of samples in 
the sequence and it also defines the model order of the cova-
riance matrix. n is the number of unknown sinusoidal compo-
nent. In subspace-based methods, the number of component 
must be known to decompose the signal and noise subspace. 
So, it is assumed that n is known. The covariance matrix of y(t) 
is defined as,

Figure 5. (Top) The original signal with outliers. (Bottom) The
signal whose outliers are removed using Hampel identifier.



305

Electrica 2018; 18(2): 300-309
Uysal and Filik. MUSIC Algorithm for Respiratory Rate Estimation

 (13)

With the combining of (10) and (13), the covariance matrix be-
comes,

      (14)

 

where

 (15)

where Rs and Rw are the signal and noise correlation matrices, 
respectively. σ2 is the noise power and I is the identity matrix. 
The eigendecomposition of R contains the information on the 
respiratory frequencies .

MUSIC is derived from the covariance model in (13) 
with m > n. The eigenvalues of R matrix are obtained as 

 and  is a set of or-
thogonal eigenvectors corresponding to  and 

 are the orthonormal eigenvectors associated 
with . The eigenvectors of R can be divided 
into two subsets as shown in the following,

      (16)

where S and G denote signal and noise subspace, respectively. 
As the noise subspace G is orthogonal to A matrix, the follow-
ing definition can be used,

 (17)

where A is a function of the frequencies . The columns  
of G belong to the null space of A as shown in (17). The true 
respiratory frequencies  are the only solutions of the 
equation  for any m > n. The MUSIC algo-
rithm is defined in two steps as follows,

• Step-1: Compute the sample covariance matrix

     
(18)

 

and its eigendecomposition. Ŝ and Ĝ are the signal and noise 
eigenvectors obtained from matrix.

• Step-2: Using Ĝ noise subspace which is obtained in Step-
1 determine the respiratory frequency estimates as the lo-
cations of the n highest peaks of the estimation function

    (19)
 

In this study, since there is a single patient, the number of sinu-
soidal signals is assumed one (n = 1). It is also possible to moni-
tor multiple patients (n > 1) with the MUSIC algorithm.

PSD-Based MLE

In this section, the power spectral density (PSD)-based maxi-
mum likelihood estimation (MLE) is given as an extension of 
the classical sinusoidal parameter estimation problem [19]. In 
[19], a respiratory rate estimator which estimates the respira-
tory rate as the frequency at the maximum of the PSD is pro-
posed. The MLE of frequency  is defined as,

      (20)

 

In the power spectrum, the frequencies close to zero are ex-
cluded specifically. They determine the sampling rate to satisfy 
the Nyquist criterion.

Experimental Results

In this part, we design some experiments in laboratory in or-
der to observe the performance of the respiratory monitoring 
system. In order to get statistically significant performance 
results, a total of 270 measurements (trials) are collected in 
laboratory. In order to analyse the effect of carrier frequen-
cies and body orientations of a participant to respiratory 
rate estimation, the distances between the transmitter and 
the receiver, the transmit powers and carrier frequencies are 
changed in a controlled manner while collecting data. Each 
measurement is one and half and three minutes long. In all 
these measurements, the distances between the transmitter 
& subject and subject & receiver are taken equal, as the par-
ticipants are sitting the midpoint of the distance as shown in 
Figure 3. The different length sliding window is shifted along 
the signal and the respiratory rate is estimated from each 
measurement window. The proposed subspace-based MUSIC 
method is first time applied to estimate respiratory rates us-
ing received signal strength. The mean absolute error (MAE) is 
used as a performance metric, which measures the accuracy 
of the system. The participants try to keep their respiratory 
rates fixed using a chronometer. 

In order to analyse the effect of selected window length, trans-
mitter frequency and body orientations of a participant to re-
spiratory rate estimation, different experiments are carried out. 
For all these different experiments, the proposed subspace 
based MUSIC method are compared with the commonly used 
PSD-based MLE method in [19].
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In Figure 6, normalised spectrum estimations, which are ob-
tained using MUSIC and the PSD algorithms, are compared. The 
number of samples (window durations) are selected as W = 40 
seconds for these two algorithms. In this experiment, actual re-
spiratory rate is 15 bpm (0.25 Hz). As seen from the figure, the 
peaks in both spectrums occur at the frequencies correspond-
ing to the respiratory rate of the person. It can be seen that the 
peak in the MUSIC spectrum has narrower (sharp) main lobe 
width according to PSD spectrum. As expected, it is observed 
that the MUSIC spectrum has higher frequency resolution than 
the PSD spectrum that is commonly used in respiratory rate es-
timation literature.

In Figure 7, the window duration is decreased to W = 16 sec-
onds and the actual respiratory rate is 20 bpm (0.33 Hz). In this 

case, although the main lobe width of the peak at the MUSIC 
spectrum expands, it is not significantly effected by the de-
crease in window duration. However, it can be seen that the 
main lobe width increases excessively in the PSD spectrum. It 
can be seen that the frequency resolution of the PSD decreases 
with the shortening of window duration. In the case of low sig-
nal to noise ratio (SNR), it is evaluated that the MUSIC algorithm 
will be more accurate and robust. Besides, in multiple person 
case, PSD-based method cannot distinguish different frequen-
cies due to its low resolution.

Effect of the Body Orientation

In the first experiment, the participant is sitting on the LOS be-
tween the transmitter and the receiver as in position-1 (front). 
In second experiment, the participant swaps his position to the 
position-2 (side). The positions are shown in Figure 8. In Figure 
9, the estimation accuracies of the proposed MUSIC and PSD 
based MLE methods for W = 20 are shown. It is shown in the fig-
ure that better performances are obtained in case of position-1. 
Fig. 10 shows the effect of the body orientations relative to the 
transmitter (front and side) on the estimation performances of 
the subspace-based MUSIC method and PSD-based MLE meth-
od. In both positions of the participant, it can be seen that all 
methods can estimate the respiratory frequency. During respi-
ration, the displacement of the chest wall is 4.2 ~ 5.4 mm in the 
anteroposterior dimension and 0.6 ~ 1 mm in the mediolateral 
dimension [27], [31]. Therefore, as the change in the anteropos-
terior dimension is greater than the change in the mediolateral 
dimension, with more variation in the amplitude level of the 
received signal is observed in this case. The obtained greater 
variation reveals that more distinct sine wave and better per-
formances are obtained in case of position-1. 

In addition, it can be seen in the figure, error rates decrease with 
the increasing of window duration. However, selection of the 

Figure 7. (Top) The power spectrum of the PSD-based MLE meth-
od. (Bottom) Pseudospectrum estimation using MUSIC algorithm. 
In both cases, window duration W = 16 sec and actual respiratory 
rate ƒR = 0.33 Hz (20 bpm).

Figure 8. The positions of the user during body orientation exper-
iments. Top and bottom figures show position-1 and position-2, 
respectively.

Figure 6. (Top) The power spectrum of the PSDbased MLE meth-
od. (Bottom) Pseudospectrum estimation using MUSIC algorithm. 
In both cases, window duration W = 40 sec and actual respiratory 
rate ƒR = 0.25 Hz (15 bpm).
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long window duration reveals some disadvantages. We take the 
samples from the received signal for a duration W before esti-
mating the respiratory rate. Therefore, window duration W is im-
portant because it determines the waiting time. Moreover, the 
long window duration causes to miss sudden changes in respi-
ratory rate. The proposed MUSIC based method outperforms the 
PSD-based MLE method for all window durations. As seen from 
the Figure 10, while the MAE of the proposed method is lower 
than 0.1 breaths per minute (bpm) for all window durations W 
> 30 seconds, the PSD-based method cannot reach this rate for 
all window durations. Especially for short window duration (W 
< 30), the performance of our proposed method is quite better 
than the PSD-based MLE method. This is important for the respi-
ratory monitoring system requiring low latency.

Effect of the Carrier Frequency

This experiment is designed to show the effect of the carrier 
frequency of the transmitted signal to the estimation perfor-
mances. Figure 11 shows the MAE values in terms of bpm of 
different carrier frequencies for W = 30. Carrier frequencies 
of the transmitter are set to 900 MHz, 2.4 GHz and 4 GHz, re-
spectively. Distance between the transmitter and the receiv-
er is specified as 2 meters and the transmitted power is ad-
justed as 0 dBm. We observe that respiratory rate estimation 
accuracy decreases with the increasing of the frequency of 
the radio signal. This is because the effect of human respira-
tory on radio signal propagation decreases as the frequency 
of the radio signal increases. As seen from the Figure 11, the 
best performance is obtained when the carrier frequency is 
selected as 900 MHz. In this case, the proposed MUSIC meth-
od can estimate the respiratory rate with 0.1 bpm accuracy. 
The lowest accuracy is obtained with PSD-based method for 
all carrier frequencies.

Figure 9. The effect of body orientation for W = 20

Figure 10. Performance comparison between PSD and MUSIC 
methods according to the W in the body orientation experiment.

Figure 11. MAE (bpm) values according to the carrier frequencies.

Figure 12. Respiratory rate estimation performance of MUSIC 
method according to the covariance matrix model order, W is se-
lected 40 sec
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Effect of the Covariance Matrix Model Order

Figure 12 shows the effect of the covariance matrix model 
order (m) to the respiratory rate estimation accuracy m. corre-
sponds the number of samples in the sequence which are used 
to construct the covariance matrix. As the subspace-based 
methods use the eigendecomposition of the covariance ma-
trix, the model order is a critical parameter. The sliding window 
duration is set to 40 seconds. It can be seen from the figure, the 
highest accuracy is obtained when m is selected as 10. Select-
ing a large value for m not only reduces the system accuracy 
but also increases the computational complexity because the 
size of the matrix increases.

Conclusion 

In this study, we present a contactless respiratory monitoring 
system that requires no devices or sensing module on the hu-
man body. The proposed system uses subspace based MUSIC 
algorithm to estimate the respiratory rate using only a single 
TX/RX pair. In the laboratory, we designed some experiments 
using real measurements to show the performance of the pro-
posed respiratory rate estimation system. The proposed system 
uses complex raw data collected with SDR platform that does 
not any limitation about frequency selection, bandwidth, etc. 
In the experiments, many cases including the effect of carrier 
frequency, the effect of the covariance matrix model order, the 
effect of the body orientation are investigated. Our proposed 
MUSIC-based respiratory rate estimation method is compared 
with the PSD-based MLE method for the different measure-
ment window durations and scenarios. It is shown with several 
experiments that the proposed MUSIC-based method can esti-
mate the respiratory rate of a person with 0.08 bpm mean abso-
lute error in ideal case. It is also shown that the MUSIC method 
outperforms the commonly used PSD-based MLE method. The 
performances of the MUSIC algorithm, which provide more ac-
curate estimates with low signal strength and limited number 
of samples, are shown through real measurements. 
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